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This paper investigates the view update problemxXmBiL views

published from relational data. We considevwL views defined oSy titfe, preveqtokenBy, oy titfe, PTEred, SakenBy,

in terms of mappings directed by possibly recursivebs, com- "CS820""Logic’ *CS560" "Complexity

pressed intdAGs and stored in relations. We provide new tech wurd studbnt, shdent, ’/\1 stlent pSudent 5

niques to efficiently supporML view updates specified in terms of > Son N

>_<Path expressions with recursion and comple>_< filters. Thg interac- o, name, sdy nane, T SReh Sdanamegy name,
tion betweerxpath recursion andAG compression okML views TTvort ke o2 il L Y087 "Tom

makes the analysis ofML view updates rather intriguing. In ad- Figure 1. Example XML view

dition, many issues are still open even for relational view updates,
and need to be explored. In response to these, orntneside, we
revise the notion of side effects and update semantics based on th
semantics okML views, and present efficient algorithms to trans-
late XML updates to relational view updates. On the relational side,
we propose a mild condition ogpJviews, and show that under
this condition the analysis of deletions on relational views becomes
PTIME while the insertion analysis iNP-complete. We develop

an efficient algorithm to process relational view deletions, and a
heuristic algorithm to handle view insertions. Finally, we present
an experimental study to verify the effectiveness of our techniques.

on XML view updates [2] has addressed the problem by translat-
éng XML view updates to relational view updates and delegate the
problem to the relationalBMs; however, most commerciaBMSs

only have limited view-update capability [16, 25, 28]. The state of
the art inxML view updates research [30, 31, 32] solves the prob-
lem by explicitly focusing omon-recursively definekmL views
andxML updates definedithoutrecursivexpath queries. Though

a complete solution, the restrictions posed in [32] are unfortunate
since the recent proposals ®&wL update languages [22, 29] em-
ploy recursivexpath queries whil®TbDs (and thusxmL view def-
initions) found in practice are often recursive [6]. In accordance
to these requirements we advance the state of the art by supporting

1. Introduction recursively definedkmL views and recursivexPath update spec-
As a classical technical problem, view updates have been stud-ifications. These requirements extend the side effects considered
ied for relational databases for decades (se®,[9, 11, 17, 23]), N [32], which we identify and address. In doing so, we provide an

and techniques developed in that area have been introduced intend-to-endi(e.,from xMmL views to the underlying@sms) solution
commercialbemss [16, 25, 28].  Recently, a number of systems {0 the problem and advance the theory of relational view updates.
have been developed for publishing relational datanm [1, 4, We consider more generaML views and updates: possibly re-
12, 16, 25, 28]. The publishedvL documents can be seenxgL cursivexML view definitions andkML updates specified in terms
viewsof the relational data. For all the reasons that updating data Of XPath expressions with recursion (descendant-or-self /) and
through its relational views is needed, it is also important to update complex filters, as illustrated by the example below.

relational databases through theiL views. _ Example 1.1: Consider aregistrar databasd,, which maintains
In this paper we study themL view update problepwhich can  siudent data,enroliment recordsourse data and a relatioprereg.
be stated as follows. Given amL view defined as a mapping: It is specified by the relational scher® (with keys underlined):

‘R — D from relations of a scheni® to XML documents (trees)
of aDTD D, arelational instancé of R, thexmL view T = o(I),

andupdatesA x on thexmL viewT’, we want to computeslational i o : o
updatesA ; such thatA x (T) = o(Ar(I)). Thatis, the relational ~ Where atuplécl, c2)in prereq indicates that2 is a prerequisite of

course(cnptitle, dept), student(ssmame),
enroll(ssn, cnp prereqg(cnol, cng2

updatesA z, when propagated tomL via the mapping, yield the cl. That is,prereq gives the prerequisite hierarchy of courses.
desiredxmL updatesA x on the viewT'. As depicted in Fig. 1 (the dotted lines will be illustrated shortly),
define xML views of relations, their support fokmML view up- department by extractings course-registration data frofa. The

dates is either very restricted or not yet available. Previous work View is required to conform to thetp D below (the definition of
elements whose type BCDATA is omitted):

<! ELEMENT db (coursé&)>

<! ELEMENT course (cno, title, prereq, takenBy)

<! ELEMENT prereq (coursg>
Permission to make digital or hard copies of all or part of this work for <$ ELEMENT takenBy (studert>
personal or classroom use is granted without fee provided that copies are <! ELEMENT student  (ssn, nane)
not made or distributed for profit or commercial advantage and that copies Note that the view is defined recursively since ted Dy is
bear this notice and the full citation on the first page. To copy otherwise, 10 oy rgjye Course is defined indirectly in terms of itself viare-
republish, to post on servers or to redistribute to lists, requires prior specific . . ;.

e Now consider arxmL updateAx = insert T" into Py

permission and/or a fee. req). . . -
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00. posed on thexmL view Ty, whereP, is a (recursivexpath query



course[cno=CS650]//course[cno=CS320]/prereq, andT" is the sub-
tree representing the cour§s240 It is to find all theCS320nodes
below CS650in Ty and for eachcs320nodevw, insertT” as a pre-
requisite ofv. To carry outA x, we need to find update&r on
the underlying databadg such thatA x (75) = oo(Ar(lo)). O

Already a hard problem for relational views, the view update
problem forxmL views introduces several new challenges, which
previous work [2, 30, 32, 31] oRML view updates cannot handle.

First, the notion of updatside effectsand update semantics
should be revised in the context mfiL views of relations. Re-
ferring to the example above) x asks for insertingcS240as a
prereq of only thoseCS320nodes belowCS650 whereas in reality,
CS320has a uniquerereq hierarchy (published from the same re-
lational records) and thus the insertion will result in side effects. In
order to be consistent with the semantics of xive. view, we re-
solve the side effect problem by revising the insert semantics suc
that the insertion will be performed ateryCS320node. The ef-

updates specified in terms aofPath expressions witliecursion
and complex filters Given XML updatesAx on anXxML view

T = o(I), which is compressed intoraG and stored in relations,
we do the following. (a) We define relational viewsthat char-
acterize the compressediL view, such that the number of views
in V is bounded by the size of even ifo is recursively defined.
(b) We revise the notion of side effects of view updates based on
the semantics ofmML views, and provide an algorithm for translat-
ing A x to group updateg\y, on V' while capturing the side effects
of XML view updates. (c) We develop our own algorithms for pro-
cessing relational view updates, and translaie to updatesA r

on the underlying databageby means of our algorithms, such that
Ax(T) = o(Agr(I)) under the new semantics BfML view up-
dates. IfAy or Ar does not exist, we detect and report it as early
as possible. More specifically, we make the following contributions

hto the study of view updates in bo#mL and relational settings.

e On thexmL side. (a) We refine the notion of side effects and

fect of side effects on deletions is even more subtle and calls for the update semantics famL views of relations, based on the se-
a new semantics (see in Section 3.) Previous work [2, 30, 32, 31] mantics ofxmL views. (b) We develop an algorithm to translate

did not consider the new side-effect issuesmi view updates on
possibly recursive views.

Second, thmL view o (1p) may becompressedy storing each
subtree shared by multiple nodes in the ety once as indicated

(recursivg updatesA x on a possibly recursively defingdkmL
view to updates\y on the relational representatidnof the xmL
view. (c) To do the translation, we present an efficient algorithm
for evaluatingxpath queries wittcomplex filterson DAGS, based

in Fig. 1 (replacing the subtrees in the dotted triangles by dotted on a new indexing structure to handle recursion and a new tech-
edges). The need for this is evident: the compressed view becomeghique for handling filters. (d) We also develop efficient algorithms

a directed acyclic grapp@G), which is often significantly smaller

to incrementally maintain the indexing structure.

than the original tree and may even lead to exponential savings in¢ On the relational side.(a) We identify akey-preservatiorton-

space. Furthermore, one may want to store the vieaGj in re-

dition on spJviews, which is less restrictive than the conditions

lationsitself. This raises another question: how should one define jmposed by previous work [9, 11, 17]. This condition does not

relational views that characterize the compressed view (DAG)?
If one is to reduce th&mL view update problem to its relational

reduce the expressive power mfGs. (b) We establish complex-
ity results for the updatability problem. We show that under key-

counterpart, this question has to be answered. However, this is NON-preservation orsPJviews, while the problem for tuple insertions

trivial: the xmL view is recursively defined, and aime relational
encoding may requir@finitely manyrelational views. Previous
work [2, 30, 32, 31] did not consider the relational-view character-
ization of compressed and possibly recursively defixed views.

Third, to locate where the updates take place, one has to evaluate

the (recursivexpath queryP, embedded im\ x, on DAGs instead

of XML trees. Added to the complication of the predefime

Dy (resp. thexmL view definitionog) being recursive, the inter-
action between recursion kpPath and recursion in themL view
definition makes it hard to translaxeiL view updates to relational
(view) updates. As observed in [21], translation from (recursive)
xPath queries (resp. updates) over recursiwe. views (stored

in relations) tosQL queries (resp. updates) is nontrivial. To our

is NP-complete, it becometsactablefor groupdeletions (which is
NP-complete without key preservation). (c) We proposeTaviE
algorithm for processing group deletions spaviews. (d) To pro-
cess group insertions we give an efficient heuristic algorithm.

e Experimental study.Our experimental results verify the effec-
tiveness and efficiency of our techniques.

These techniques are the first for processing. updates with
recursion and complex filtersn compressed and possibly recur-
sively definedxmL views, without relying on the high-end and
mostly unavailable view-update functionality of the underlying re-
lational bBMS. They provide the capability of supportingvL
view updates within the immediate reach of mgstL publishing

knowledge, no efficient algorithm has been published for evaluat- Systems. On the relational side, our complexity results and algo-

ing XPath queries witttomplex filteroon DAGs stored in relations

rithms are a useful addition to the study of relational view updates.

While these are new issues beyond what we have encounteredOrganization. Section 2 reviewssTGs and XML compression.
in relational view updates, automated processing of relational view Section 3 introduces relational views, characterizes compres-
updates is already intricate, even under various restrictions on thesion of xML views, definesxmL updates, and refines the notion of

views [9, 11, 17]. In fact even the updatability probleime,, the
problem of determining whether a relational view is updatable

side effects foxmML view updates. Section 4 develops our indexing
structure and algorithms for translatimgiL updates to relational

w.r.t. given updates, is mostly unsolved and few complexity results view updates, and Section 5 presents our complexity results and

are known about it [9, 3]. This tells us that it is unrealistic to reduce

algorithms for handling relational view updates. An experimental

thexMmL view update problem to its relational counterpart and then study is given in Section 6, followed by related work in Section 7

rely on thebBmssto do the rest.

Contributions. We propose new techniques for updatiogm-
pressedand possiblyrecursivelydefinedxmL views viaschema-
directedxmL publishing in particularatcs [1] . We allowxmL

Lour techniques are applicablexeiL views published from relations via
other systems (e.g., SilkRoutePERANTO) as long as they represent the
XML views in terms ofspiqueries.

and future work in Section 8. Proofs are given in [13].

2. Schema-Directed XML View Definition

To studyxML view updates we first fix arML view definition
language. We choogg G [1] for its capability to recursively define
XML views of relations. In this section we first reviewGs and
then present aAG compression okKML views.



2.1 Attribute Translation Grammar

An Attribute Translation GrammanrgaG) is defined by annotat-
ing aDTD with spJqueries. To presemrGs, we first reviewdbTDs.

DTDs. Without loss of generality, we formalizemrd D to be a
triplet (E, P, r), whereFE is a finite set oklement types-isin E
and is called theoot type P defines the element types: for ea¢h
in E, P(A) is aregular expression of the form:

PCDATA | ¢ | By,...,Bn | B1+...+ By | B*

wheree is the empty wordB is a type inE (referred to as &hild
typeof A), and 4+, *,” and ‘x’ denote disjunction, concatenation
and the Kleene star, respectively (we uséihstead of |” to avoid
confusion). We refer ttd — P(A) as theproductionof A. A
DTD is recursiveif it has an element type that is defined (directly
or indirectly) in terms of itself. As shown in [1] athTDs can be
converted to this form in linear time.

o =

ATGs. We now briefly review the syntax and semanticsants
(see [1] for details). AmTG o : R — D specifies a mapping from
instances of the source relational scheRido documents of the
targetpTD D as follows. (a) For each element tydeof D, o de-
fines a semantic attribuged whose value is a single relational tuple
of a fixed arity and type; intuitively$ A controls the generation of
A elements in thexmL view, and is used to pass data downwards
as the document is produced. (b) For each produgtienA — «
in D and each typd in «, o specifies apPJquery,rule(p), which
extracts data from a relational database; using the dat& and
generates th& children of anA element and thei$ B values.

Given a relational databask with schemaR, the ATG o is
evaluated top-down starting at the raotof D. A partial tree
T is initialized with a single node of type, and this node is
marked as @ud to be expanded. The treE is then grown by
repeatedly selecting a bibf some element typd and evaluating
the queries associated with. More specifically, we find the
productionp = A — « in D, and generate the children bty
evaluatingrule(p) and using the value of the attribuged of b.
Hererule(p)'s are defined and evaluated based on the form: of
(1) If ais By, ..., By, then a node taggeB; is created for each
¢ € [1,n] as a child ofb. The tuple value of$ B, associated
with the new B; child is determined by projection frorA,
ie., $B; = ($A.a;,...,$A.a}) is in rule(p) for i € [1,n],
wherea! is a field of the tuple A.
(2) If «is By + ...+ By, thenrule(p) is defined by

case fgA) of 1:$B; :=$A, n:$B, =$A,

where f is a function that map8A to natural numbers ifil, n].
That is, based on the conditional test, exactly one chifg, is
created. The value of the parent attribfité is passed down to that
child. No B, child is created if # j.
(3) If ais B*, thenrule(p) is defined by$B — Q($A), where
Q is aspJiquery overl, and it treats$A as a constant. For each
distincttuplet returned byQ($A), a B child is generated, carrying
t as the value of it§ B attribute.
(4) If o is PCDATA, then the rule specifies formatting of the values
of $B for presentation (strin@CDATA).

(5) If ais ¢, then norule(p) is defined and no action is taken.
The elementchildren of nodeh become new buds and are also

db — course*
$course — Q1
Q@1: selectdistinct c.cno, c.titlefrom course ¢
wherec.dept = “CS”

course— cno, title, prereq, takenBy
$cno = $course.cno, $title = $course.title,
$prereq = $course.cno, $takenBy = $course.cno

prereq — course*
$course — Q2($prereq)
Q2(c1): selectdistinct c.cno, c.title from prereq p, course ¢
where p.cnol =¢; and p.cno2 = c.cno

takenBy — student*
$student — Q3 ($takenBy)
Q3(c): selectdistinct s.ssn, s.namdrom enroll e, student s
wheree.cno =c and e.ssn = s.ssn

Figure 2: Example ATG o¢

(with tag db), and then evaluates que€y; to extractCs courses

from I (case (3)). For each distinct tupten the output ofQ,, it
generates aourse child v. of db, which is a bud carrying as the
value of its attributécourse. The subtree of the bud. is then
generated by using (case (1) above). Specifically, it creates the
cno, title, prereq and takenBy children ofv., carrying the corre-
sponding fields oé. It then creates a text node carryingno as its
PCDATA, as the child of theno node (case (4)); similarly fauitle.

It creates the children of therereq node by evaluating)- to find
prerequisites of the course, and again for each tuple in the output of
Q- it generates aourse node; similarly it constructs theikenBy
subtree by extractingtudent data viaQs (case (3)). Note tha®-

and Qs takec.cno as a constant. Sinasurse is recursively de-
fined the process proceeds until it reaches courses that do not have
any prerequisited,e., when Q- returns empty at therereq chil-

dren of those course nodes. When the computation terminates the
ATG generates arML view as shown in Fig. 1, which conforms to
theDTD Dy of Example 1.1. O

Observe that aaTG o : R — D defines aecursivexmL view
if its embeddedTD D is recursive. As a result, given a datab&se
of R, the depth of themL view o () is decided at run-time, rather
than statically, by the databagéollowing a data-driven semantics.

2.2 DAG Compression of XML Views
We next describe theAG compression okKML views.

The subtree property. An XML view of a relational database is
determined by the underlying relational data.AlrG this is refle-
cetd as thesubtree property More specifically, consider anTG

o : R — D. For any databaskof R and any typed of D, an A-
element (subtreé)s in thexmL view o (1) is uniquely determined
by the value of the semantic attribuie!l at the root ofT’4. Thus,
the ATG in fact defines a functiosT() such that, given an element
type A and a valueg of $A, ST(A, t) returns a subtree rooted at a
node tagged! and carrying as its attribute.

DAG compression. As noted in Section 1, a subtrea(A, $A)
may appear at multiple places in tReiL view o(I). It is natural
and more efficient taompresshe xML tree by storing asingle
copyof sT(A, $A) no matter how many times it occurs in theiL
view. This leads to ®AG representation of themL view o (I). In
Fig. 1, for examplecourse; andstudent, are shared subtrees (see

processed. The process proceeds until the partial tree cannot bdhe dashed lines). Note that theg is rooted: the root o& (/) is

further expanded. The finadML tree does not expose attribute
values$ A, which are used in the relational storage of the tree.

Example 2.1: TheATG oy given in Fig. 2 defines themL view de-
scribed in Example 1.1. Givenragistrar databasd, oo computes
an XML view oo () as follows. It first generates the root element

alsothe root of thebAG. This DAG compressiorof o (1) may be
exponentiallysmaller tharo(I) stored as a tree. In this paper we
considerxML views compressed inDAGS.

3. View Updates Revisited in the XML Setting



In this section we define themL updates studied in this paper,
revise the notion of side effects gfuL view updates, and provide
relational views to characterizeaG compression okML views.
Finally, we outline our approach to processiwL view updates.

3.1 XML View Updates: Side Effects and Semantics
We first definexmL view updates and their new semantics.

Syntax. Following [22, 29] we specifyxML updates in terms of
xPath expressions: (apsert (A,t) into p, (b) delete p. Here

A is an element type, andis a tuple value of the same type as
the semantic attribut®A of A. We use the valueof the semantic
attribute$ A of the root of a subtresT(A, t) to uniquely identify
ST(A, t), based on the subtree property mentioned earlier. We de-
fine p as anxpath expression:

e | A // | »/p | plal,
p|p="s |label)=A | gAqlqVaql|—g,

* |

q

wheree, A, x and '/’ denote theself-axis a label (tag), a
wildcard and thechild-axis, and //’ stands for/descendant-or-
self::node(), respectively;q in p[q] is called afilter, in which s

is a constant (string value), and’; * V' and ‘=’ denote conjunc-
tion, disjunction and negation, respectively. Fgr we abbreviate

pi/// aspi//and// [pz as//p:.

Side effects. Before we define the semantics xfiL updates on
views, we first study the side effects &mL view updates. Recall
from Example 1.1 the updat& x, which is to change the subtrees
(prerequisite hierarchy) of only thoses320nodes belowCS650
However, the subtree property of thxeiL view tells us that the
subtree of a£S320node isuniquely determinedly the value of its
semantic attribut8course, which is determined by the same set of
relational records foall CS320nodes. As a resulgll CS320nodes
must have thesamesubtree. In other words, changes incurred to
the subtree of angS320node must also be reflected atl CS320
nodes, rather than only to those belo®650

The side-effect issue is more subtle for deletions. As an exam-
ple, considedeletecourse[cno=CS650]/prereq/course[cno=CS320]
on thexmL tree of Fig. 1. The deletion aims to remove course
Ccs320from the prerequisites of courses650 Again the subtree
property tells us that we should remove @$320nodes, but not
only theCs320node under these50node. On the other hand, this
cannot be simply done by removing @§320nodes physically as
done in previous work orML view updates [2, 30, 31, 32£S320
is itself an independerttS course and moreover, may be a prereq-
uisite of other courses. For thizlete operation to make sense,
we need first to find all thparentsof the nodes to be removed,
i.e.,thoseprereq nodes unde€S650nodes, and then remo@s320
from thechildrenlist of only thoseparentnodes.

These suggest that we have to refine the notiosidé effects
to capture the semantics and the hierarchical naturavaf views.
More specifically, if a change is to be made to the subsreel, ¢)
of an A element with the tuplé as its semantic attributRA, the
same change has to be made to the subtreall tife A elements
with the same semantic attribute While this is generally consid-
ered a “side effect” in the setting of relational view updates, it is
necessarily the semanticsxfiL view updates.

The semantics ofXML view updates. The semantics okmL
views call for a new semantics &L view updateglifferentfrom
that of updates orML data [22, 29]. The semantics of theert
operation onxmL views is described as follows. Given amL
view T with root r, (a) it finds the set of alelementseachable
fromr viap in T, denoted by-[p]; (b) for each element in r[p],
it adds the new subtregT(A,t) as the rightmost child of; and

moreover, (c) for each elementthat has the same type and se-
mantic attribute value as, it also addssT(A, t) as the rightmost
child of w as required by the semantics>afiL views.

The delete operation onxmL views is carried out as follows:
(a) it computes-[p]; (b) for each node € r[p], it removes the
subtreesT(A, ¢) from the children list of the parent nodeof v,
where A is the type ofv andt is the value of$ A atv; and (c) for
any nodeu’ that has thesame type and semantic attribute vahse
the parentu of v, it removessT(A, t) from the children list ofu'.

Compared to the previous work [2, 30, 31, 32], we supgent
view updates that (a) are defined with much rickeath expres-
sions withrecursion and complex filtergb) operates on (possibly)
recursively definedkmMmL views, and (c) possess a new semantics
that captureside effect®f XML view updates. To avoid side effects
a brute-force solution is adopted in [2]: no elements are allowed to
appear more than once in amL view; “conditional translatable
updates” address the issue in [32] albeit in a more restrictive set-
ting in terms of expressiveness (no recursively defixed views
or recursivexpath expressions).

3.2 Relational Coding of Recursively Defined XML Views

Consider am7G o : R — D that definesxmL views of re-
lational databases oR. To reduce the update problem femL
views defined by to its relational counterpart, we define relational
viewsV, to characterizer. This is nontrivial: (a) is possibly re-
cursively defined; on such views the encoding methods of previous
work (e.g.,[2]) may lead tanfinitely many relational views; (b) we
considemAG compressedML views,i.e.,aDAG representation of
o([I) as opposed to treemssumed in previous work. To this end we
defineV, by means of the edge relations«fI) as follows.

(a) We assume a compact, unique value associated with each tu-
ple value of semantic attributeA in o(7). We abstract away the
implementation of this identity value by assuming w.l.0.g. the ex-
istence of a Skolem functiogen _id that, given the tuple value of

$A, computesid_A that is uniqgue among all identities associated
with all semantic attributes. We ugen_A to denote the set of the
identities of all$ A tuples, which is computed once.

(b) We encode axmL view definition o in terms of),, a set
of spiqueriesQ.qq._4.5 coding the edge relations of. More
specifically, for each productiod — P(A) in the DTD embed-
ded ino, and for each child typé3 in P(A), we create a rela-
tion edge_A_B with two columns,id_A andid_B. Consider pro-
ductions of the formA — B*, where$B «— Q($A) is the as-
sociated query ir. Thenedge_A_B is the set of pairgia, ib)
such thata = gen_id(a), ib = gen_id(b), wherea € gen_A,
b € Q(a). The definition ofQ.44._a_g is similar for productions
of other forms. One example of an edge-relation query derived
from theoo ATG of Fig. 2 iISQecdge prereq-course:

select gen_id(gp), gen_id(c.cno, c.title)
from  genprereq gp, prereq p, course ¢
where p.cnol =gp.cno and p.cno2 = c.cno

Observe the following abo,. First,), encodes theAG com-
pressionof XML view o(I). Indeed, for any subtregT(A, $A4) in
o([I), each edgéia, ib) in ST(A, $A) is storedonly oncein a rela-
tion edge_A_B no matter how many timest(A, $A4) (and thus the
edge) appears im(I). This is because the tupléa, :b) is uniquely
determined by the semantic-attribute values of the corresponding
nodes, which are the same in different occurrencestfi, $ A).
Second, eacl)cqge_4_5 in V, is defined by aspiquery. Thus),
consists of onlyspJiviews Third, V, consists of eboundednum-
ber of relational viewseven if o is recursivelydefined. Indeed,
eachedge_A_B relation codes edges from-nodes toB-nodes



XML update Ay reject reject

Ax one | A
_.| prpD |___ | translation: v relational view V
validation Ax toAy (compression)
AR translation:

Figure 3: Overview of XML view updates

Input: the relational view/” and topological ordeL.

Output: reachability matrix)/.

1. M:=0;

2. for(k :=|L|; k > 0; k--) I*processL from right to left */
3 d = L[k];

4. Ag:={a2| a2 € anc(a1), a1 € parent(d) };

5

6

insert (a, d) into M for eacha € Ag;
return M

Figure 4: Algorithm Reach

that may appear at an arbitrary depth of the tree, and the number of . . . .
edge relations iV, is boundedby the size of th@ T D. view updates of commercialBMSs, in Section 5 we present an

i ] ) effective technique for processing relational view updates.
Updates on relational views.Given an updaté\ x on aDAG com- Conducti dates. After the relational update » i ted
pressedkML view o (1), we propagate it to updatésy on the re- onducting updates.Alter the refational updata r 1S computed,

lational viewV = V), (I). The relational view update&y consist we update the underlying datababeising A, update the rela-

of edge tuples of the form= (ia, ib) to be inserted into or deleted “0”‘?" viewsV’ usnngAV, and fln_ally,_ln the_backgroundlnvoke
from an edge relationdge_A_B. our incremental algorithm to maintain the indexing structures and

The bAG compression okmL views also complicates the pro- to remove fromyen_A those node ids that are no longer reachable

cessing of view updates: (a) thheath query embedded in ammL from the root of thexmL view T.

update has to be evaluated on4G rather than a tree; (b) a shared . . .
tree cannot be simply removed, as illustrated by the example below.4.  Mapping XML View Updates to Relations

Consider again thdelete operation on thexmL view of Fig. 1, In this section we present a technique for translativ. up-
as described earlier. Suppose nowxiva. view is compressed into dateA x on anxMmL view T' to updateg\y on relational viewd/,
aDAG. We cannot simply remove the subtreeasf320physically which represent theac compression of. The technique con-
even if all CS320nodes are in therereq subtree of som&Ss650 sists of four parts: (a) indexing structures for checking ancestor-
nodes. This is because some subtrees inS&i&20(i.e., certain descendant relationships (Section 4.1), (b) an efficient algorithm
students) may be shared and referenced by other nodes. for evaluatingxpath queries omAGs (Section 4.2), (c) algorithms

In response to this, we compute the relational view updates to translateA x to Ay (Section 4.3), based on the indexing struc-
such that (a) a newly inserted subtree is only stored onéeé o tures and the evaluation algorithm, and (d) incremental algorithms

matter how many times it appears in the updated view, and (b) a for maintaining our indexing structures (Section 4.4).
deleted subtree is not physically removed: only the typleib) N
in V representing the corresponding parent-child edge is deleted4.1 Auxiliary Structures

from its edge relatiordge_A_B. More specifically, the tuple cor- To efficiently process ‘//’ and filters on@AG, we introduce two
responding t@a is not removed fronyen_A becauséa is a par- auxiliary structures: a topological order and a reachability matrix.
ent nodev € r[p] and needs to be kept in thevL view. To Topological order. Recall from Section 3 the functiogen_id(),

cope with subtree sharing is not removed frongen_53 when the which generates a unique id for each node based on its semantic-

edget is removed fromedge_A_B; instead, upon the completion  5¢ibyte value. Given aAc stored in relationd’, we create a list
of processingAv, our incremental maintainance algorithm runsin 1 consisting of all the distinct node identities i topologically
the backgroundo remove tuples frongen_B's that are no longer  gorted such that precedes in L only if u is not an ancestor af

linked to any node; itis at the completion d&fy: when gen_B's in the DAG, i.e., there is no path fromu to v in the DAG. As will
are updated (similarly for insertions). Note thatn_B's aré not e seen shortly, while based dnalone one cannot determine the
defined as a view; they are derived frdi(i.e., the edge relations  ancestor-descendant relatidnis useful in evaluatingpath filters
V) and maintained in the background. as well as in computing and maintaining the reachability matrix.

. . The listL can be computed i@ (]V]) time (seee.qg.,[8]), where
3.3 Processing XML View Updates . ) |V| is the size of the relational views. Its siz&/, is the number of
We propose a framework for processirgL view updates, as  gistinct nodesn the DAG, denoted bye. Note that is computed

shown in Fig. 3. For eacTG (xML view definition)s : R — D, once wherV/ is created and it is maintained incrementally.
we maintain a relational databag®f R, and the relational views

V that encode theAaG compression of" = o (7). The users pose
updates on (the virtual vievi). Given a singlexmL updateA x on
T as input, we are to generate a group updaigon I such that
Ax(T) = o(Ar(I)) if suchAp exists; and otherwiseeject A x
as early as possible. Specifically, the framework processgsian
updateA x onT in three phases, namelyyD validation transla-
tion from A x to Ay, andtranslation fromAy to Ag. TheDTD
validation phase is simple and its discussion is deferred to [13].

From xML view updates to relational view updates.Given an

Reachability matrix. To identify the ancestor-descendant relation-
ship between a pair of nodes imaG, we use am x n reachability
matrix M: a cell in M is a bit. Given a row denoting node:; and

a columnyj indicating noden;, if cell M, is set,n; is an ancestor
of n; in thexML view (orn; is a descendant of;).

To storeM, we conceptually need as many bitsréts The cost
for that is prohibitive. To overcome this, we store only information
about the set bits of the reachability matrix. ThatAd, is physi-
cally stored as a tabl&/ (anc, desg, whereancdenotes an ancestor
node, andlesca descendant. We usdesc(a) (resp.anc(a)) to de-

update (insertion or deletion)x on the (virtual)xmL view T, note the descendants (resp. ancestors) of nadéieved from)M.
this phase trgnslate.fsx to agrouprelational view updaté\y on Table M can be computed i)(|V [2log|V|) time fromV (see,

V' (See Section 4). e.g.,[8]). Capitalizing on the topological orddr we give Algo-
From relational view updates to base relation updatesGiven a rithm Reach, shown in Fig. 4, that computéd in O(n |V|) time.
group updated on relational views/, this phase translates It is based on dynamic programming: it ensures that for a mbde
to a group updaté r on the databasg if A exists; it reject\ x the ancestors of the nodes in the set of parents, afenoted by

otherwise. Instead of relying on the limited support for relational parent(d), are already known before we compute ancestbss



such that we can computé&,; by using those previously computed

ancestors (lines 4-5). This can be achieved by processing the nodes$

in the order ofL from right to left (line 2). Note thaparent(d) can
be computed from the edge relationsiin

To see that AlgorithnReach is in O(n |V|) time, observe the
following: (a) for each node i we visit its parents once and thus
any nodev is visitedin(v) times, wheren(v) is the in-degree o,
i.e.,the number of incoming edges tan the DAG; (b) the sum of
in(v)’s for all v is |V]; and (c) each visit takes at mag{(n) time.
In practice| M| < n* < |V|?, whereV is typically much smaller
than thexmL treeT’, even up to an exponential factor.

We remark thatl is very useful in maintainind//, and on the
other hand\/ helps in maintainind. as to be shown in Section 4.4.

4.2 Evaluating XPath Queries on DAGs

To translate updated x on XML views to updateg\ i on rela-
tional views, we have to evaluate tlkeath expression embedded
in A x. TheDAG compression okML views introduces new chal-
lenges: previous work orPath evaluation has mostly focused on
trees rather thamAGs. While evaluation algorithms were devel-
oped for path queries amaGs [5, 26], they cannot be applied here
because (a) they do not deal with complex filters which, as will be
seen shortly, require a separate pass of the inpat and (b) they

Input: an insertion of the form\ x = insert (A, t) into p
overT', and the relational view .
Output: a group insertiom\ - overV'.
1. AV = @,
2. Es:={((B,genid(3u)), (C, genid($v))) | (u,v)
is an edge irsT(A, t), u, v with type B, C resp};
r4 :=theid of ST(A, t)’s root as generated hyen _id(t);
for each ((B, ui), (C,vi)) € E4
Ay = Ay U {insert (u, vi) into edge_B_C'};
for each (B, ui) € r[p]
Ay = Ay U { insert (ui, r4) into edge_B_A};
return Ay ;

ONO O AW

Figure 5: Algorithm Xinsert

Bottom-up. The key idea is based on dynamic programming. For
each nodev in the topological ordef., and for each sub-filteq

in the topological orde€), we compute the values oél(q, v) and
desc(gq,v). This can be done by structural induction on the form
of q. For example, wheg is label() = A, val(q, v) is true if and
only if v isin gen_A. Whengq is g1 V ¢2, val(g, v) := val(q1, v)

V val(gz,v). Whengq is a path expressiop, p can be rewritten
into a “normal form™n1/ ... /n., where eachy; is either (a)[g:],

(b) a label A, (c) wildcard %, or (d) ‘//’. The normal form can
be obtained irO(|p|) time by capitalizing on the following rewrite
rules: plg] = p/elq], ande[qi] ... [gn] = €lg1 A ... A gn]. For

do not address maintenance of the indexing structures the employ.example, ifq is rewritten as/ /n/ . . . n, With n; = //, val(g, v)

which is necessary when tibac is updated. Path-query evaluation

is true if eitherval(nz/ ... /nn,v) Or desc(nz/ . .. /Mn, w) IS true

algorithms were also developed for semi-structured data (generalfor some childu of v; correspondinglydesc(q, v) is true if either

graphs). However, these algorithms neither tmsts differently
from cyclic graphs (and thus may not be efficient when dealing with
DAGS), nor considekPath queries used iRML view updates.

To this end we outline an efficient algorithm for evaluating an
xPath queryp on anxMmL treeT that is (a) compressed a®DaG,
and (b) stored in relatiorig. The algorithm takes as input arath
queryp overT, the relational view$/, and the reachability matrix
M. It computes (a) a sef[p] consisting of, for each node reached
by p, a pair(B, v), wherew is the id andB the type of the node
respectively; and (b) a sé,(r) consisting of, for each reached
by p, tuples of the forn{(C, ), v), whereu is the id of a parent of
v in the DAG (i.e.,there is an edge from to v) such thap reaches
v throughu, andC is the type ofu. We shall see that the s&, ()
is needed for handling deletions. Note that for eactiere are
possibly multiple(C, «) pairs, since we are dealing wittbaé (in
which a node may have multiple parents) rather than a tree.

ForxML data stored as a trdg [19] developed an algorithm that
evaluates arxpPath queryp in two passes (linear scans) 0f The
basic idea of [19] is to first conveTt to a binary-tree representation

(before the two-pass process is invoked), and then run a bottom-up

tree automaton on the binary tree to evaluate filters, followed by

val(g, v) or desc(q, u) holds. Note that the children af can be
efficiently identified by using the indexes dn. In addition, the
algorithm proceeds in the topological orddrand@. Therefore,
the truth values ofal(nz/ . .. /nn, v) @anddesc(nz/ . .. /nn, u) are
already available before having to assign a valuevidfq, v) and
desc(q, v). Similarly val(g, v) can be computed for all other possi-
ble rewrites ofy.

Top-down. Upon the completion of the bottom-up phase, we com-
puter[p] and E,(r) as follows. As mentioned earligr can be
normalized in the form o1/ . .. /n,, in which all the filters have
already been evaluated to a truth value at each node satigfying
Starting from the root, we find nodes reached after each sep
These nodes can be easily found by using indexes on the edge rela-
tionsV whenn; is A or %, and by means of the reachability matrix
M whenn; is ‘/I'. We now have all the information we need: upon
the very last step,, we accumulate all nodes reachable in that step
into r[p], along with their types. Correspondingly, and whenever
the last step leads to a node to be inserted[jf] we accumulate
the originating parent id, (r) along with its type.

Complexity. In the bottom-up phase, each nads visited at most

a run of a top-down tree automaton to identify nodes reached by in(v) times, wherein(v) is the in-degree of. In the top-down

p. It has linear-time complexity, the ‘optimal’ one can expect [19].
We next show thaa comparable complexityan be achieved when
evaluatingxpath queries on aAG stored in relations.

Our evaluation algorithm uses the following variables: (a) A list
Q of filters including all the sub-expressions of filterszintopo-
logically sorted such that for any, g2 in Q, g1 precedesgs if ¢; is
a sub-expression @f,. (b) For eachy in Q and each node in L,
two Boolean variablegal(g, v) anddesc(q, v) to denote whether or
not the filterq holds atv and at any descendambf v, respectively.

Using these variables, we present a two-pass algorithm to evalu-

atep onV: a bottom-up phase that evaluafé®rsin p and com-
putes the Boolean variables associated with each nadd., fol-
lowed by a top-down phase that computdg] and E,(r) using

the filters computed. Due to lack of space we only outline the algo-
rithm below.

phase, each node is visited only once, except the final step when
a nodeu may be included inE,(r) at mostout(u) times, where
out(u) is the out-degree af. Putting these together, the complex-
ity of the algorithm isO(|p| |V'|) time.

Compared to the algorithm of [19], observe the following.
(a) When theDAG is a tree, our algorithm visits each node at most
twice, i.e.,it has the same complexity as that of [19]. When dealing
with DAGSs that do not have a tree structure, it is necessary to visit
all the edges in theAGs in the worst case and thus our algorithm is
optimal. (b) In contrast to [19], our algorithm does not require the
conversion to binary trees and the construction of tree automata,
which are potentially very large. (c) Our algorithm worksmsGs
including but not limited to trees while [19] cannot work DAGS.

4.3 Translating Updates from XML to Relations



On account of the relational representatioaé) of XML views,
a singlexmL update may be mapped to multiple relational updates
(a group update) over the edge tablés We next give two algo-
rithms, Xinsert and Xdelete, for translatingxmL view insertions
and deletions to relational view updatfs-, respectively.

Insertion. Algorithm Xinsert is presented in Fig. 5. GiveA x =
insert (A, t) into p on thexML view T', the objective is to return
the group of insertiong\y over V' (which will then be tested for

acceptance). The first step is to find the set of edges in the newly

inserted subtreeT(A, ¢) with the rootr 4, which is computed by
the algorithm of [1] and the functiogen _id() (lines 2-3). We then
generate the relational view updates: for each ddgevi) in the
newly inserted subtree, we addi, vi) to Ay (lines 4-5); more-
over, for each(B,ui) € r[p], we add(ui,r4) as a new edge
to Ay (lines 6-7). The set[p] of nodes (pair{ B, ui) of node
ids along with their types) reached kyath p from the root ofT’
(line 6) is computed using the evaluation algorithm of Section 4.2.

Deletion. Algorithm Xdelete is shown in Fig. 6. GiveAx =
delete p, it returns the group of relation view deletiods,, over

V', which will be passed to subsequent steps for acceptance tesli

(Section 5.2). For each node in r[p] and each parenti of vi in
E,(r), it removes the edgéui,vi) from V (lines 2-3). Here the
parent-child relation is computed by using the 8&{(r), whose
computation is coupled with that ofp] (See Section 4.2).

Observe that these algorithms implemérg new semanticsf
XML view updates given in Section 3. This is achieved by leverag-
ing the characterization of themL view T in terms of relational
views V. Indeed, for two edge&:, v), (v, v) in T, if two parents
u andu’ of the same node have the same element typeand
the same value of the semantic attribité, the two edges are rep-
resented by aingletuple in some edge relationige_A_B. Thus
there is no need to sear¢hto find different nodes sharin®, ¢),
i.e.,xML side effects described in Section 3 do not incur extra cost.
Furthermore, the set semanticsiofensures that a newly inserted
subtree is storednly once In addition, AlgorithmXdelete does
not physically remove a deleted subtree; instead, only the corre-

sponding parent-child edge is removed. These naturally comply to

the requirements afAG update semantics given in Section 3.

Example 4.1: Consider thexML updateA x, = delete //course
[cno=CSs32{//student[sid=S04 on thexML tree in Fig. 1, which
is to delete studergo2from the CS320subtree. Given this as in-
put, Algorithm Xdelete yields Ay, = {(takeBy,, student)}. As
another example, givel x, = delete //student[sid-509, we get
Ay, ={(takeBy,, student), (takeBy,, student)}. a

Complexity. Algorithm Xinsert takesO(|Ea| + |r[p]]) time at
most, which is the cost of inserting the “inner” connections of
ST(A,t) into V and connectingT(A, t) to the rest ofl, where

|E 4| is the number of edges BIT(A, t). Algorithm Xdelete takes
O(|Ep(r)|) time. Together with the complexity(|p| |V|) of eval-
uatingp, this is the cost of generatintyy from A x.

4.4 Maintenance of Auxiliary Structures

We next outline how to maintain the reachability matkik and
the topological ordef in response to updates ovir We should
remark that the maintenance bf andL is computed in théack-
groundin parallel with the processing of relational updates;
as a result, in our framework (Fig. 3), maintenance does not slow
down the process of carrying ogiL view updates.

The maintenance is nontrivial, as illustrated by the next example.

Example 4.2: Recall thexmL updateAx, from Example 4.1
This entails that all reachability information 892be deleted from

Input: a deletionA x = delete p overT and the rel. view/.
Output: a group deletiom\y, overV

1. Ay =0

2. foreach((C,ut),vi) € Ep(r), where(B, vi) € r[p]
3. Ay = Ay U { delete (ui, vi) from edge_C_B};
4. return Ay,

Figure 6: Algorithm Xdelete

the root of theCS320subtree and fronall nodeson the path to
S02 Moreover, this course may be a prerequisite of other courses,
€.9.£S650 sinceCS320s subtree is shared, the reachability infor-
mation fromCS650to S02should be updated. a

RecomputingM from the updated’” bears a prohibitive cost.
What we ideally would like is tdncrementallyupdate M. Ex-
isting incremental techniques [15, 18] for updading reachability
information are not applicable since they rely on special auxil-
iary structures which are themselves expensive to construct and
maintain €.g.,[15] requires the computation of a spanning tree,
taking O(n |V]) time for each node insertion). On the other
hand, incremental algorithms of updating topologically ordered
ists (e.g.,[24]) take O(|V'|) time per edge insertion. Given these
high individual complexities we follow a hybrid approach by main-
taining both auxiliary structures at once.

Maitenance of auxiliary structures in responsgta. view dele-
tions takes place in the form of Algorithl(;, .y delete, shown in
Fig. 7. Due to space constraints we omit the maintenance algorithm
A, 1yinsert for insertions, which can be found in [13]. The algo-
rithm efficiently produces the following by scanning the elements
of anxmL deletionA x: (a) deletionsA s over M, (b) an updated
L, and (c) as an added bonus, the set of edygsin the deleted
subtree that are no longer connected to any nodes inAleeand
are to be passed to the garbage collectobfekgroundprocess-
ing (see Section 3.) The sAt, is a direct consequence of deletions
Ay computed by AlgorithnXdelete. The need arises when a node
d € Ay is to be completely removed from the subtree. This hap-
pens when either all its incoming edges ardis(r) (described in
Section 4.2), or all its parent nodes are deleted.

The algorithm progresses by populating deletidng while, at
the same time and whenever applicable, removing elements from
L and populatingA;,. The first step is arranging all nodes in
all deleted subtrees in a ligir (line 2). To do so, we compute
desc(r[p]), i-e., the descendants of all nodesrifp]; we then sort
L g according tal; this is always possible sinder C L. For each
noded in T we associate a staleep(d), initialized totrue, and
keeping track of whether the node should be ultimately deleted or
not (line 3). Ly is then traversed backwards (line 4); this process-
ing order of Lz ensures that eachin Ly is processed after its an-
cestors thus guaranteeing correct deletion semantics. Foréach
Lr we compute its undeleted parents (lines 628)i.e.,any node
a in its parent set for whickeep(a) is true) and then itsiewances-
tors Aq (line 9). If there is a node id’s current ancestorsnc(d)
that is not inAg, it should be removed from/ (lines 10-11). If
d does not have any parentse(, P, = () we set itskeep state to
false and delete it fronl (lines 13-14). Observe that according to
the semantics af,, an element removal does not affect the topolog-
ical order of the rest of its elements. In addition, all outgoing edges
from a deleted nodé are deleted fron¥ (lines 15-16); chidlrer!’
of d can be readily identified frord’s type.

Example 4.3: Recall Ax, from Example 4.1. Giver\x,, Al-
gorithm Ay, delete returns (1)A}, = 0, (2) unchanged., and
(3) Anr, = {(prereq, student), (prereq, sid:), (prereq, name),
...}, i.e., the reachability information from nodes pregegourse
and takenBy to nodes in thes02 subtree,i.e., nodes studenf



Input: a deletion of the form\ x = delete p overT’, the rel.
view V', reachability matrix)\/ and topological ordeL.

Output: deletionsA{, overV, A, over M, and updated lisE.

1. AL =0 Ay =0

2. Lp :=the sorted listlesc(r[p]) according to topological orddr;

3. keep(d) :=trueforeachd € T'; [*initialize state */

4. foreachdin Ly traversed backwards

5. Py =10;

6. for eacha € parent(d)

7. if ((C,a),d) ¢ Ep(r) andkeep(a) = true

8. then P; := Py U{a};

9. Ag:={az | a2 € anc(a1),a1 € Py},

10.  foreacha € anc(d) \ Agq

11. Apn =AU { delete (a, d) from M},

12. if P4 =0 /[*computeA{, and update.*/

13.  thenkeep(d) := false;

14. deleted from list L;

15. for any childd’ (of type H) of d (of type G)

16. Al = Af, U { delete (d, d’) from edge G_H};

17. return (A%, Ay, L)

Figure 7: Maintenance algorithm A, )delete for deletions

sid; and name. Note that{ (takeBy,, student), (takeBy,, sick),
(takeBy,, name), ...}, i.e., the connection between node takgBy
(and thus coursg and theso2subtree still holds and is not included
in An, . GivenAx, in Example 4.1, AlgorithmA . delete re-
turns (1)AY, ={(student, sid:), (student,name)}, (2) the new
L by removing student sid and name from the old L, and
(3) A, composed of the connections between nodes irstize
subtree and all its ancestor nodes including db, cquiakenBy,
course, takenBy, and prereg, o

Complexity. The worst-case time complexity of the algorithm is
O(n |V|), which is the cost of computing new ancestors for nodes
in Lr. For each node i r we visit its parents once, which in total
takes at mosD(|V]) time (in practice it is much smaller thak|);

at each visit, the algorithm takes at maktn) time.

Observe the following: (a) The analysis given above is the worst-
case complexity. In practice the updatedL view A x (T) differs
only slightly from the old viewT", and the cost of maintaining/
and L is much smaller than what worst-case complexity indicates.
(b) As remarked earlier, all maintenance is condudatetthe back-

groundand thus does not become a bottleneck. (c) As will be seen . .
| 5.2 Handling Group Deletions

in Section 6, our experimental study verifies that the incremental
approach is far more efficient than its batch counterpart.

5. Updating Relational Views

In this section we extend the study of relational view updates
by providing complexity results (Proofs in [13]) and techniques for
processingPJview updates under key preservation. These results
are not only important for updatingvL views defined in terms of
ATGS, but are also useful for studying relational view updates.

5.1 Key Preservation and Relational View Updates

We propose a mild condition osPJviews, and show that this
condition simplifies the analysis of relational view updates.

Key preservation. Consider &spiqueryQ (R, . .., Ry) that takes
base relation®y, ..., R, of R as input, and returns tuples of the
schemaR(d). We say that) is key preservingf for each R;,
the primary key ofR; is included ina (with possible renaming).
That is, the primary keys of all the base relations involve@iare
included in the projection fields of (therJiquery)Q.

Observe the following. First, key preservation is far less restric-
tive than other conditions proposed in earlier work for handling re-
lational view updatesg(g.,[11, 17]; see Section 7). Second, every

spJquery in the definition of arATG view o can be made key-
preserving by extending its projection-attribute list to include the
primary keys. The extension does not affect the expressive power of
ATGS. For exampleR)s in o of Fig. 2 can be made key-preserving
by addinge.cno to its select clause. Thus, in the sequel we assume
w.l.0.g. that all the queries iRTGs are key-preserving.

Analysis. We consider the following decision problem:

PROBLEM: sPJView Updatability Problem

INPUT: A collection of viewsY defined aspJiqueries
under key preservatigra relational database
of schemaR, and a group view updat&y .

QUESTION Is there a group updatA r on the databasé
such thatAy (V(I)) = V(Ar())?

Here Ay consists of either only tuple deletions or only tuple inser-
tions, as produced by the translation algorithm of the last section.
These deletions and insertionsy- are translated to deletions and
insertions inA g, respectively. We us¥ to denote the view (7).

It is known [3] that without key preservation, the updatability
problem is alreadyP-hard for a single deletion and a singtg
view, i.e.,when Ay consists of a single deletion andis a view
defined with projection and join operators only. In contrast, we
show that key preservation simplifies the updatability analysis for
a collection ofspiviews and group deletions.

Theorem 5.1: For group view deletiondy, the spiview updata-
bility problem is inPTIME. O

However, the problem is intractable for insertions under key
preservation; the lower bound can be verified by reduction from
the non-tautology problem, which iP-complete (cf. [14]).

Theorem 5.2: The spaview updatability problem isiP-complete
even whem\y has a single insertion an@ has a single view. O

These are thérst complexity results for relational view updates
under key preservation. In Section 5.2 we presentriEe algo-
rithm for computing database deletiodsz from view deletions
Ay, which suffices to prove Theorem 5.1. In light of Theorem 5.2,
we present a heuristic algorithm for computing database insertions
AR from view insertionsAy in Section 5.3.

We give aPTIME algorithm for computing database tuple dele-
tions A i from a group of view deletiond . Consider an instance
of the view-tuple deletion problem: multiple views defined in
terms ofspiqueries under key preservation, a datablaseschema
R, and a group view deletioAy consisting of pair§@, ¢), which
denote that the view tupleis to be deleted from the vie®(I)
for some@ in V (note that the output of the algorithms in the last
section can be expressed in this format). AssumeZhabnsists
of relation schema®;, ..., Rx,andl is I1, ..., I;. Each viewQ
in V is of the formzz(cc(S1 x ... x S;)), whered is a list of
columns ofR, C'is aconjunctive conditionandsS; is (a renaming
of) someR;. Note that the key preservation condition assures that
@ contains the primary key of; for j € [1,[]. Given these, the
algorithm is to find a collectiom\ r of tuples to be deleted from
I such thatAv (V(I)) = V(Ar(I)) if Ag exists; otherwise it
rejectsAy, whereAy (V(I)) denotes(I) \ Ay.

Let Vu be the viewQ(I), and consider a tuplein Ay that is
to be deleted fronly. The key preservation condition allows us
to identify, for eachS;, a uniquetuple t; via its key in¢, such
thatti, ..., ¢ producet via Q. Let us useSr(Q,t) to denote the
set consisting of all the pairsS;, t;), referred to as theeletable
sourceof ¢ in V. Observe the following. (a) Deleting amy from



Input: a view definitions), a relational databask the view
Vo = Q(I) for each@ € V, and a group deletiony, .
Output: a group updaté\ ; on [ if it exists.
AR :=0;
foreach (Q,t) in Ay
computeST(Q, t), the deletable source ofn Vo;
for eachQ’ in V andeacht in Viy, but notinAy,
computeSr(Q’, t');
foreach (Q,t) in Ay
if there existg.S;, ¢;) in Sr(Q, t) such thaiS;, ;) is notin
Sr(Q’,t") forany@’ in V and anyt” in Vi, but notinAy,
8. then Ag = ARU{(Sj,tj)};
9. elserejectAy, andexit;
10. return Agr

1.
2.
3.
4.
5
6
7

Figure 8: Algorithm delete

S; suffices to remove from V. (b) Deletion of a source tuple
t; from Vg is side effect freaf and only if (S;,¢;) is not in the
deletable source of any tupté € V(I) \ Ay that is to remain in
the view afterAy is carried out. From these one can see tlen
be deleted fronV, if and only if there exist.S;,¢;) € Sr(Q,t)
such that for all)’ € V and all’ that are inQ’ (I) but notinAy,
(S;,t;) is notinSr(Q’,t"). Note that wheronly the updatability
problemis concerned, deleting any of sutchsuffices,.e.,one can
choose an arbitrary; from Sr(Q,t) satisfying the condition (b)
given above, if there exists any.

Based on this we give Algorithrdelete in Fig. 8. It first com-
putes the deletable sourSe(Q), t) for each view tuplé in Ay and
each tuple that is iw(I) but not inAy (lines 2-5). It then checks,
for each(@,t) in Ay, whether or not there is a source tuple in
Sr(Q,t) that can be deleted without violating condition (b) given
above, and if so it updateSr; it rejectsAy- otherwise (lines 6-9).

It returnsAr if all view tuples inAy can be deleted without side
effects (line 10). One can verify that the vidican be updated by
Ay if and only if such aAr exists.

Complexity. Observe thatSr(Q,t) can be computed ID(|Q|)
time; the size ofSr(Q, t) is bounded byO(|Q|). Checking the
side-effect free condition (line 7) takes at maxt|V ()| — |Av|)

time even if no indexes o are used, while the worst-case data
complexity of Algorithmdelete is in O(JAv|(|[V(I)| — |Av]))
time. Note that we focus on data complexity in this sectios,(
ignoring the view size), since the evaluation o§ruquery Q(I)

may already take exponential time when the combined complexity
is considerede.g.,when@ = Rx...x R for n Cartesian products.

Minimal deletions. The focus of Algorithndelete is to solve the
updatability problemi.e., whether or not there exists g such that
Av(V(I)) = V(Ag(I)). It does not address, however, whidh;
to select if multiple validA r’s exist. In the presence of multiple
AR’'sitis natural for one to choose tlsenallesisetA r of tuples to
delete,i.e., a setAr such thajAr| is the smallest. Theninimal
view deletion problenis thus to find, given a collectiow of view
definitions, a databadeand view deletiong\y, the smallest set of
tuple deletionsA r such thatAy (V(I)) = V(Ar(I)).

However desirable, the minimal view deletion problem is in-
tractable, even under the key preservation condition. The lower
bound can be verified by reduction from the minimal set cover
problem, which is known to be NP-complete (cf. [14]).

Theorem 5.3: For spiviews under key preservation, the minimal
view deletion problem is NP-complete. a

5.3 Processing Group Insertions

Theorem 5.2 tells us that any practical algorithm for handling
group view insertions is necessarily heuristic. We approach this by
reducing thespJiview insertion problem t&AT, one of the most

studiedNP-complete problems. This allows us to leverage a well-
developedsAT solver [27] to efficiently computé\  if it exists.

An instance ofSAT (cf. [14]) is¢ = /\ieLl,n Ci, whereC; is a
disjunction of literalsj.e., propositional varlablles or their negation.
Itis to find a truth assignment that satisfie®, if such au exists.

Below we outline our heuristic algorithm, referred to as Algo-
rithm insert. The algorithm takes the same input as that of Al-
gorithm delete given in Fig. 8, namely)V, I, Vo(I) for each
Q € V, and Ay, except that tuples il\y are to be inserted
into the views. It either finds a set of insertiofsz such that
Av(V(I)) = V(Ar(I)), or it rejectsAy . It does the following:

e Compute a propositional logic formula (i.e., a SAT instance)
fromV, I, Vo (I)'s, andAy,, such tha is satisfiable if and only
if there existsD i such thatAy (V(I)) = V(Ar(I)).

e Utilize an existing heuristic tool [27] fogAT to processp.

o If the tool returns a truth assignmemntthat satisfiesh, compute
Ar from u; otherwise reject the view updatés, as well asA x.

We next illustrate each of the three steps.

Deriving ¢. The encoding is a little involved. It takes four steps.
First, we derive tuples that have to be present in base relations

so thatAy can be computed through queriesinConsider @, t)

in Ay, which indicates that tupleis to be inserted into the view
Q(I), as illustrated in Section 5.2. For eatland each relation
R; involved inQ, we derive anR; tuple template; = (d;, b:, z)
from t and@, wherega; corresponds to the (primary) key &F;, b;

to the other columns oR; whose values can be determined from
t, andz; to variables whose values are unknown. Note tiait
known due to the key preservation condition. If there is no tuple
in the instancd; of R; with the keyad;, we add; to a setX;. Note
that no more thaf)| |Av | many tuple templates are in the¥eg's.

Example 5.1: Consider two relations?,, R. and aspJiview @
given below, where keys are underlined:

R1 = (Arint, B: bool), Rz =(C.int, D: bool),
Q=7a,c (c=p(R1 X R2)).

Suppose that tuples, ¢) and(a, ¢’) are to be inserted int@ (7).
ThenX; contains a tuple template, z1) and X, contains(c, z2)
and(c’, x3), if no tuple bearing the key is already in/; and no
¢, ¢ tuples are inl,. For (a, c), (a, ¢') to be inserted into the view,
it is necessary thdt, z1) is inserted intd/; afterx; is instantiated
to a truth value, and thdt, z2), (¢, z3) are added td.. O

Second, we “evaluate” each view quepyon the databasgin-
cremented by adding; to I;. Due to lack of space we defer the
detail of the evaluation to [13]. In the evaluation we “instantiate”
variables in the tuple templates, as well as the selection (conjunc-
tive) condition in@. In Example 5.1, for instance, the evaluation
yields view tuplega, c) with conditionz, = x2, and(a, ¢’) with
conditionz; = x3. We then inspect the result ¢J to determine
whether or not tuple templates may yield side effects. Specifically,
for each tuple in the result, if it is in neither the view naky-, we
consider the following cases.

(a) If t is not associated with any conditidrg., it certainly has side
effect, then weejectthe view updatea\y, andA x immediately.

(b) If t has a condition in which at least one variable represents
an attribute with an infinite domain, we can always pick a distinct
value for the variable that makes the condition false. This elimi-
natest from the result and thusdoes not yield a side effect.

(c) If t has a conditionp; in which all variables correspond to
attributes with a finite domain, we add the negatiop; as a
conjunct to the logic formula that we are constructing.
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Figure 9: Description of the datasets

Furthermore, for eachthat is in Ay, we also add its associated
condition¢; as a conjunct t@. Observe that these conjuncts are
bounded byAy |, and those in case (c) involve only attributes with
a finite domain (with a fixed cardinality, @nstany.

Example 5.2: Referring to Example 5.1, the conjuncts added to
in the second step arg = z2 andz; = 3. ]

Third, to complete the construction gf, for each variabler
bounded to a finite domain, we add the following formula¢to
as aconjunctx = ¢ V...V x = ¢, Wherecy, ..., c, are all
the values in that domain. In Example 5.1, for instance, we add
x; = true V x; = false for ¢ € [1, 3].

Finally, we convertp to a propositional formulai.g., a SAT in-

a commerciabBmMs. TheCPUwas a 1.8Hz Pentium 4, while the
machine ha®GB of physical memory; of those,GB was used as

the buffer pool of theBms. The reported numbers are warm num-
bers and are the average of five runs per query. Reporting warm
numbers is reasonable in this application context, as we can expect
publishing systems to be continuously online and caching to take
place. The standard deviation of the reported numbers is 5%.

All experiments were conducted on a synthetic dataset. This al-
lows us to produce highly nestediL views with diverse structure
and to have more control over the experimental settings.The dataset
consists of four base relationgX(ci,--- ,ci6), F(f1, -+, fi6),
H(h1, h2) andCy(ch,- -+ ,cig), where underlined attributes in-
dicate keys. The domain of, is equal to the domain of; and
ci. The remainingC and F attributes were used to control how
many joiningC' and F tuples were filtered out. The domains of
h1 and hs are the same as the domain@f The generator en-
sured that (1) for each € C' U Cy there would be on average
three tuplesh € H, whereci=h1, and (2)hi<hsz, where @1,
h2) € H. The universe ot”, namelyCy, consisted of 100M°-
tuples, ensuring that whenevis joined with ¢; a C-tuple was
always output. The sizes df and H were proportional to the
size of C, which we use for reporting the size of the synthetic
database; specifically, the size we repofitdi$, which ranges from

stance). We use propositional variables and their negation to codeq 09 to 1.000.000 tuples, while”| = |C| and |H| ~ 3[C|.

variables introduced in the encodingfor z = ¢ andp for y # c.
We also add conjunct& V p’) to ensure thap andp’ cannot be
both true if,e.g.,p codes forr = ¢, p’ forz = ¢/, andc # ¢'.

The correctness of the reduction is ensured by the following.

Theorem 5.4: If Ay is not rejected during the coding, thehis
satisfiable iff there i\ g such thatA v (Q(1)) = Q(Ar(I)). O

Processingy. We invoke Walksat [27] withy as the input. Walk-
sat, an extension @bSAT, employs an efficient approximation al-
gorithm to solve the maximum satisfiability problem¢lfs satisfi-
able, it finds a truth assignmentfor ¢ above a certain percentage.

Computing Ag. If u is found, we derive\ g, i.e.,the set of tuples
to be inserted into each, by instantiating variables in the tuple
templates inX;'s based on and the interpretation of propositional
variables given above. More specifically, for each tuple template
in X;, we assign a value to each variablén ¢ based onu: if z is
bounded inp by (z = ¢) for some constant and(z = ¢) < z,
then we letz = cif p(z) is true. After this process if is not
assigned any value, then either gajanges over an infinite domain
and thus we can always pick a valtigor z that is not in the active
domain of the database, or (b) the valuezofloes not have any
impact on the satisfaction af; in both cases we can find a value
for z without violating¢. ThenAr consists of query templates
instantiated by these values.

If 1 is not found, we rejeciAy andA x. Note that Walksat [27]
may not find a truth assignment foreven if ¢ is satisfiable, since
SAT is intractable and so is the view insertion updatability prob-
lem (Theorem 5.2). However, this only happens within a certain
percentage given the excellent performance of Walksat [20].

Complexity. From the construction af one can see that its sizg|
depends ofAv |, R and|Q| only, whereas the size of the database
I is irrelevant. Our algorithm has a low (data) complexity, and is
effective in practice as verified by our experimental study.

6. Experimental Study

We conducted a preliminary experimental study of our proposed

view update mechanism in order to verify its effectiveness. Our

experiments were conducted on a Linux box running Redhat 9 and
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We defined amTG view of the relationsC, F' and H; as indi-
cated in Fig. 9(a), th€' nodes in the view were recursively de-
fined, and a recursion of’ in the view can be understood as
Tey,f1,h1,ho (Uclzfl/\flzhl/\hgzc’l/\c2:f2/\t:3=f3/\(:4=f4(C X F'x

H x Cy)). Recall that [2, 30] cannot handle recursiong’ofn
the view. Compression was achieved by sharihgubtrees, while
dataset subtree sharing accounted for nearly 31.4%iotances.
Figure 9(b) lists some statistics on the number of publishiexib-
trees, their compressaahGs, and the corresponding sizes of the
reachability matrix)\/ and topological ordek.

Varying database size.We generated two random update work-
loads over thexmL view, one for insertions, and one for deletions;
each workload consisted of three update classes, each class includ-
ing ten operations. The classes were characterized byrhth
queries used to define the updates. Specifically, dfdsgvolved
xPath queries using//’ and value-based filtersspath queries in
W> used /' and value-based filters; finallyy/s containedxprath
queries with /’, and both structural and value filters. The times we
report include the following: (a) the time to evaluateath queries
(Section 4.2); (b) the time to translat®x to Ay (Algorithms
Xinsert and Xdelete) and subsequentlAy to Ar (Section 5),
and the time to execute the update; and (c) the time to maintain
the auxiliary structures (Algorithma ,;, yinsert, which can be
found in [13], andA ,, ydelete). Note that (c) is executed in the
background

Figures 10(a), 10(b) and 10(c) show the performance of the dele-
tion algorithms folV;, W> andWs, respectively. We plot the run-
time of performing the updates broken into their (a), (b) and (c)
above constituents for various relational database sizes. Note that
both z- andy-axes use a logarithmic scale. As shown, the algo-
rithms scale linearly with the size of the relational database. It is
evident that deletion time is dominated kpath evaluation. Ob-
serve that although the cost for (c) is relatively high, it is performed
in the background¥1(b) is the highest reported time among the
three workloads since itsPath queries generate more edges. (
E,(r)), which are then examined by Algorithdelete.

Similar results are reported for insertions, as shown in Fig-
ures 10(d), 10(e) and 10(f) foW,, W> and W3, respectively
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(again, using logarithmic scales). The size of the inserted subtree |C| || Insertion | Deletion || L | M
was fixed. ThesAT solver [27] we used returned a truth assign- 1K 1.0 1.0 6.3 9.8
ment in 78% of the cases and we only report the time for insertions 11000KK ;2-67 13619 g??l 32230
where thesAT solver successfully returned a truth assignment. As M 84.0 615 8611 14,000

in the case of deletions, our insertion algorithms also scale linearly

. . Table 1: 1 tal mai fL M vs. tati
with the size of the database. able ncremental maintenance ofL and Vs.recomputation

Varying update size. We then fixed C| to be 100K tuples. Fig- The time for recomputing each structure is shown in the last two
ure 10(g) shows the performance of each algorithm as we varied columns. As expected, the advantages of incremental maintenance
|Ep(r)| (see Section 4.2) for deletions afefp]| for insertions, become more prominent as the size of the data increases.

while keepingst(A, t) a constant singl€’-subtree. The runtimes
for AlgorithmsXinsert, Xdelete, delete andinsert are measured on
the lefty-axis, while the runtimes for algorithms,,, 7,insert and 7. Related Work

A (a1, delete are measured on the rightaxis. As expected, the Commercial database systems [16, 25, 28] provide support for
translation time fromA x to Ay for Algorithm Xinsert (resp. Al- definingXmL views of relations and restricted view updatezm
gorithm Xdelete) increases slightly a&[p]| (resp.|E,(r)|) in- DB2 XML Extender [16] supports only propagation of updates from

creases. The slope of the curve for Algoritdetete is large, asthe ~ relations toxmL but not vice-versa. OraclEML DB [25] does
increase of E, ()| involves more database queries to determine the NOt allow updates oxmL (XMLType) views. InsoL Server [28],

source tuples to be deleted. The performance of Algoritizert, users are allowed to specify the “before” and “aftemiL views
which models the translation ¢f- to A i for insertion workloads, using updategram instead of update statements; the system then
is dominated by the coding time. AS/| is far larger thansT(A, t)| computes the difference and generaes update statements. The

and|r[p]|, and the number of database queries required remainedVi€Ws supported are very restricted: only key-foreign key joins are
fixed, the coding time remains roughly constant, though the size allowed; neither recursive views nor updates defined in terms of
of the resulting coding increases; however, that only results in a "ecursivexpath expressions are supported.

non-observable increase in tisaT solver's runtime keeping the There have been recent studies on updating views published
curve relatively flat. The performance of Algorithia s, z)insert from relational data [2, 30, 32]. In [2kmL views are defined as
(See [13]) and AlgorithmA 5, 1 delete is almost unaffected by ~ query trees and are mapped to rglatlonal viewavL view updates
Ir[p]| (resp.|E,(r)|) since|ST(A, t)| is fixed. are translated to relations onlyxML views are well-nested.g.,

Similar results are shown in Fig. 10(h) where we varied the size key-foreign key joins), and if the query tree is restricted to avoid
of |sT(A, t)| while fixing |E,(r)| = 1 and|r[p]| = 1. The per- dupln_:atlon. [_30] requires aound-trip mapping that shredsmL
formance of AlgorithmXdelete remains unchanged and its run- data into relations in order to ensure tatL views are always up-

time is negligible as it nearly overlaps with theaxis for a fixed datable. A det_ailed analysis on deciding whether or not an_update
|E,(r)|. Algorithm Xinsert scales linearly with the update size ~ON XML views is translatable to relational updates, along with de-
|ST(A,t)| as it needs to processT(A,t) to generateAy. Al- tection algorithms, are provided in [32]. A framework for [32] is

gorithmsA (s, yinsert and A . 1) delete evidently scale linearly prese_nted in [3_1]. Th(_e limitations of previous work [2, 30, 31, 32]
w.r.t. the update size for reasons similar to the ones outlined earlier. ar?rg'SCUESEdb'“ Sethllontl.f K (9, 10, 11, 16, 17, 23, 25, 28]
) ) ] . ere has been a host of wor , 10, 11, 16, 17, 23, 25,
tEflerctlvgnte§s_ of |:1hcremenhtalbnl1_?lntertl%zceTzir(]:o?t of ||ncr_err|1en- on relational view updates. [11] provides algorithms for translating
dfzryLm;sl,noép‘)ISg;ge d teorre:é:oripUti);lgq?h:am ?snshosvnoi?lo'l?agtllcg 10r-The restricted view updates to base-table updates without side effects
. . ! ’ in the presence of certain functional dependencies. The algorithm
first column presents the size of the relational datasets. The total. : R :
time needed F;or incrementally maintaining both auxiliary structures in [17] handles translation (with side effects) for a restricted class of
o ; y 9 . yst SPJview: base tables may only be joined on keys and must satisfy
is given in the second column for Algorithiy,, ;insert (given

. i . A foreign keys; a join view corresponds to a single tree where each
in [13]) and in the third column for AlgorithmA s, )delete. node refers to a relation; join attributes must be preserved; and
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Appendix
DTD validation

Given XML updatesA x, we first perform static optimization by
validating the predefinedTp D with respect toAx, and reject

the updates ifA x (7") does not conform td as required by the
schema-directed definition ef.

The validation is conducted at the schema level by leveraging
the DTD normalization given in Section 2, as follows. LAty be
defined in terms of ampPath queryp. We first “evaluate’p on the
DTD D to find the types of the elements reached wiaWe then
check whether the insertion or deletion of subtrees of these ele-
ments (types) violates their productions in thed D. Note that
an insertion (resp. deletion) of & child under anA element does
not violate D only if the production ofA is of the formA — B*.

Thus updates of other forms can be immediately rejected. This can
be checked irO(|p| | D|?) time, wherelp| and|D| are the sizes of

the xpPath queryp and theDTD D respectively. We omit the details

of the validation algorithm due to lack of space. Compared to pre-
vious work on incrementaTD validation €.g.,[?]) our algorithm

is capable of handlingML updates defined in terms &Path ex-

Input: an insertion of the forn\ x = insert (A, t) into p overT, the
rel. view V', reachability matrix\/ and topological ordeL.
Output: insertionsA 5, over M, and updated lisL.

1. computeN 4 andr 4, as lines 2-4 in AlgorithnXinsert;

2. L4 :=the topological order of nodes 8T(A, t);

3. Ay :=reachability matrix foisT(A, t); /*using AlgorithmReach*/
4. foreacha € anc(r[p]) andeachd € N4 /* computingA s */
5 Apnr = Apg U {linsert (a, d) into M};

6

7

8

. N¢ :=the set of common nodes in lisisand L 4;
. Ly, :=the topological order of nodes iN¢;
. for (k= |Ln,|;k > 1;k——) [*align L4 andL with L */
9. u:=Lchlc]; v:= Ly, [k —1];
10. ifordp , (u) < ordp ,(v) thenswap(La,u,v);
11.  if ordp(u) < ordp(v) thenswap(L,u,v);
12.if r4 € L then for eachw in r[p]
13.  ifordp(u) < ordr(ra) thenswap(L,u,r4);
14.L :=mergeL 4 into L;
15.return (Ayy, L);

[*update L*/

Figure 11: Maintenance algorithm A yinsert for insertions

of N¢ ineitherT orsT(A, t) (line 7), and then aligi. and L 4 with
L, to make their positions consistent withy,, (lines 8-11). One
subtlety is worth mentioning: when performing the alignment we
follow the order ofL n from the right to the left. This processing

pressions rather than a single subtree insertion (or deletion) definedyrger ensures that the position of aligned nodes will not be changed

in terms of an absolute node-id path.

Maintenance of Auxiliary Structures

We give the incremental maintenance algorithm in responseito
view insertion.

Insertion. Algorithm Ay )insert is shown in Fig. 11. Given
Ax = insert (A,t) into p, it finds theAy; over M to maintain

the reachability information, and moreover, updates the topologi-
cal orderL in response to the insertion sf( A, t).

Itis simple to computé\ »s, which consists of two parts: (a) the
reachability matrix for the newly insertenlac ST(A,¢) is com-
puted by invoking AlgorithmReach (line 3); (b) for eacha €
anc(r[p]) (ancestors of nodes in[p]) and eachd € ST(A,t),
we add(a, d) to A (lines 4-5).

MaintainingL is a bit cumbersome. As will be showh{ is use-
ful in maintainingL. Before considering to inserttanG (st(A, t)),
we first consider how to maintaib when one edge is inserted. For
an edge insertiotu, v), if v is already in front ok in L, L remains
valid without any change; otherwise, special care is needed to up-
date node positions ifh. We illustrate this by an example. Con-
sider part ofL: (... ,du,u, Gu,,01,dv,, Quy, U, . ..), Wherea,,
anda,,, are ancestors of, d,, is a descendant ef, d,, is a descen-
dant ofu, anda; is neither an ancestor efnor a descendant af
After (u,v) is inserted, we can obtain a correct topological order
by movingv and its descendantd.( ) betweenu andv such that
they precede:. This yields(...,du,dv,, v, U, Qu;, 01, 0ug, - - -).
Note thatd,, must be neither an ancestorw{otherwise there is a
cycle) nor an ancestor af,. To formalize this, we denote the nodes
betweenu andv in L asL[u : v]. Given an edge insertiofu, v),
the correct topological order can be obtained by moving nodes in
L[u : v] N desc(v) to beimmediately in front of v in L. The pro-
cedure of changind. to reflect the insertiorfu, v) is denoted as
swap(L, u, v), whereu precede® in L before the move.

We next explain the algorithm for updating when inserting
ST(A, t) (lines 6-14). LetL 4 be the topological order f&T(A, t)

(line 2) andN¢ be the set of common nodes inand L 4. The
basic idea of the algorithm is to make the relative orders of nodes
in N consistent in listd, and L 4 before we mergd andL 4 to
obtain the updated. To do this, we compute the topological oders
Ly, for nodes inN¢ by considering the edges that connect nodes
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by subsequent alignment. To be specific, the aligned nodes are not
descendants of nodes to be aligned and thus will not be moved any
more whenswap(L, u,v) is called in subsequent alignment (they
are not descendants of. Furthermore, if the root a$T(A, ¢) is
already inT", we may need to change the orderloin response to

the inserted edgéu, r4), whereu € r[p](u ¢ La) (lines 12-13).
After we obtain two consistent lists and L 4, we can mergd. 4

into L to generate the updatdd (line 14). This can be done by
regarding the nodes iV as “pivots” and inserting the new nodes
(i.e. La \ N¢)into L before their respective “pivots”.

Complexity. The worst-case time complexity of Algo-
rithm A pyinsert is O(|Ea| + |Eng| + (|[Ne| + |r[p]]) n +
INa||Ea| + |Na| n), where (a)|Na| is the number of distinct
nodes, andE4| is the number of edges in the inserted subtree
ST(A,t), (b) |N¢| is the number of common nodes Inand L 4,
|En | is the number of those edges that connect nodeS®fn
eitherT" or sT(A, t), and (c)n is the number of distinct nodes i

In practice|N¢| < |Na| < |Ea| < n < |V]. The first and sec-
ond factors are the cost of computiigy and Ly, , respectively,
and the third factor is the cost of maintainidg whereswap() is
called at mos2|N¢| + |r[p]| times and each takes at ma@3tn)
time. Note thaswap(L,u,v) is in O(|L[u : v]|) time, which is
usually much smaller than. The fourth factor is the cost of com-
puting the reachability matrix fosT(A, ¢), while the last factor is
the cost of maintaining the reachability between nodesTi, t)
and the nodes iff.

Observe the following. (a) The analysis given above is the worst-
case complexity. While it seems no better than the complexity of
re-computingM and L from scratch, in practice the updatgsiL
view Ax (T') typically differs slightly from the old viewI", and
|r[p]| and|anc(r[p])| are often far smaller tham. (b) L4 andLr
are typically much smaller thah; this makes the fourth factor of
the complexity ofA v )insert and the complexity of () delete
much smaller tham |V in practice. (c) As mentioned earlier, the
computation ofA ,; and updating of_ is in fact conducted in the
background.

Proof of Theorem 5.2

A NP algorithm for checkingcQ view updatability works as fol-
lows: it first guesses a group insertidr and then checks whether



V(Ar(I)) = Av(V), which can be done in PTIME (data com-
plexity).

We next show the problem is NP-hard, by reduction from the
non-tautology problem. Consider an instance of the problgm:
C1 V...V Cy,where all the variables ih arex, . .., zy, C; is of
the forml;, A lj, Alj,, andiy; is eitherzs or 5, s € [1, k]. The

consists of a collectiod’ of subsets of a finite seff; it is to find a
subset”” C C such that every element i$1belongs to at least one
member ofC’ and moreover,C’| is minimal.

GivenS andC, we define an instance of the minimal view dele-
tion problem. LetS = {x; |« € [1,n]}. We constructC| many
base tables; cq views and a group view deletion, as follows.

problem is to determine whether there is a truth assignment such 1. For eachS; € C, we define a base relatidR; consisting of

that ¢ is false, i.e.,¢ is not valid. This problem is known to be
NP-complete.

Given ¢, we define a relational databagea singlecqQ view
V under key preservation, and a single view ins&it on V' =
V(I), such thatp is not valid iff there existé\ g andV(Ar(I)) =
Ay (V).

Relational databasel. The database consists of three base rela-
tions,R, Ry and R, defined as follows.

e R(A,B), where A is the key of the relation an® is a

boolean. Intuitively,A is to hold a number infl, k] encoding
a variable, and3 is a truth value{ or F'). Thatis,R(A, B)
is a truth assignment fap. Initially R(A, B) consists of a
single special tupl€0, T').

o Ry(7,71,X1,j2, X2, j3, X3), wherej is the key of the re-
lation. Initially, for eachC; = 1;, A 1, A l;,;, there is a
tuple (], Ly, X1, 1,5, Xo, lj,, X3) in Ry such thatljl. is s if
l.ji = xs Or l]L = Ty, X; isT if lji = x4, andX; is F
if {;, = .. Intuitively, each of these tuples iRy codes a
clause ing. A special tupl€(0,0,7',0,7,0,T) is also inR.

e Rg(e1,ea,...,er), Whereey, ..., ex are the key. Intuitively
e; is to codes in [1,k]. Initially, R consists of a single
special tupl€0, . .., 0).

View. We define a single view = V; x V4, in terms of conjunctive
gueries and under key-preservation as follows:

o V] = ﬂj,jl,j2yj3ac(R1 X Ro X R3 X R¢), WhereRl, Ro, R3
are renaming oR?, andC' is a boolean conditio; A c2 A c3,
in which ¢; is Rl(A) = R¢(‘]1) A Rl(B) = R¢(X7,) (Z =
1,2, 3). Intuitively, C holds if and only if one of the”; s is

true.
] Vz = 71'«31,52,4.4,ekUD(RE X R1 X R2 X ... X Rk), where
Ri1, Rs, ..., Ry are renamings oR, andD is a boolean con-

dition A¥_, Ri(A) = Rg(e:).
Initially V' = V(I) has a single tupléo, . .., 0) (k+4 0's).

View insert. We define Ay to insert a single tuple
(0,0,0,0,1,...,k)into V.

We next verify thatAy is side-effect free iffp is not a tautology.
Indeed, if¢ is not a tautology, then there is a truth assignment
such thaty is false, and thug’; is false w.r.t... We defineAr
based onu as follows: insert tuples t&®( A, B) such that(s, T) is
inserted intoR(A, B) iff p(xz;) = T, and (i, F) is inserted into
R(A, B) iff u(xz;) = F; furthermore, inserfl,...,k) into Rg.
Then obviouslyAy is side-effect free. Conversely, suppose that
there isAy that is side-effect free. Thefl, ..., k) needs to be
inserted intoRg, and a unique tuple of the forifi, X) needs to
be inserted into the base relatidhfor eachi € [1, k] due to the
key constraint ok, such thatAy is indeed an update on the view
V. Here X is eitherT or I, and thus after the insertion dfy,
R(A, B) contains a valid truth assignment fpr SinceAy is side-
effect free,V1 will remain (0, 0, 0, 0) after Ay is performed. That
is, C; remains false. Thug is not a tautology. m|

Proof of Theorem 5.3

a single column.

Let I;, the instance of?;, be {j}, and let the database in-
stancel be the collection of all;'s defined above.

2. For eachx;, letT; be the collection of all the subsets@hthat
containz;. Enumerate the elements’Bfas(S;1, ..., S ).
DefineV; = Rj x ... x Rm;. Note thatV;(I)
(i*,...,i"). LetV be the collection o¥/;’s for i € [1,n].
Obviously, the views defined as above are key-preserving.

3. The group deletiom\y is to remove all tuples from all the
views.

Note that the tuple is removed frol) without side effect if
and only if the tuple from anyz,; is removed.

The minimum view deletion problem is to find a smallest set of the
base relationg?s, . . . , R ¢| from which tuples are removed, while
ensuring that the view tuples frofv; for ¢ € [1,n| are deleted
without side effect.

We next verify that the construction above is indeed a reduction
from the minimum set cover problem. First suppose thais a
minimal cover ofS. We defineA g such that it consists of dele-
tion of tuple from each base relation {tR; | S; € C'}. Clearly,
V(Ar(I)) = Av(V(I)) = 0 sinceC’ is a cover ofS. Further-
more, A is minimal sinceC’ is minimal. Conversely, suppose
that A r is a solution to the minimal view deletion problem. Then
let C' be the subset of' such that an elemerft; of C is in C’
if and only if Ar involves deletion of the tuple from the corre-
sponding relationk?;. To see thaC’ is a cover ofS, note that
V(Agr(I)) = Av(V(I)) = 0, and thus for each € [1, n], some
setR;; isin C’. Moreover,C’ is minimal sinceA g is minimal. O

Proof of Theorem 5.4

We verify that if Ay is not rejected during the coding of an instance
Q, Ay and[ of thecq view insertion problem, then there exists a
truth assignmeng that satisfieg) if and only if there exists\ r
such thatAv (Q(I)) = Q(Ar(I)).

Assume that there exists a truth assignmetitat satisfiespq.
Then we defineAr as follows. For eaclX; and each tuple tem-
platet in X;, we assign a value to each variablén ¢ based on
u. If z is bounded ingg by (2 = ¢) for some constant and
(z = ¢) < =z, then we let: = cif p(z) is true; after this process
if z is not assigned any value must be a free variable that ranges
over an infinite domaim; and thus we can always pick a valtigor
z without violating¢. Indeed, our coding distinguishes (bounded)
variables with a finite domain from those (free) variables with an
infinite domain, and encodes possible value selections of those vari-
ables having a finite domain in terms of additional clauses; the cod-
ing ensures that the value efcan be picked without causing side
effects. For each relatioh, let A% consist of all these instantiated
tuple templates from alk ;'s that are a renaming &®;. Let A be
the collection ofA%’s for i € k. ThenAy (Q(I)) = Q(Ag(I)).
Indeed, these newly inserted tuples do not produce view tuples that
have a key ofR; that is not already im\y,, since otherwise this
had been caught in the coding process and would have been
rejected. Furthermore, these newly insertions do not yield tuples

We show the problem is NP-hard by reduction from the minimal that are not inAy but share keys o\, as ensured by the coding
set cover problem. An instance of the minimal set cover problem ¢¢. Finally, all the tuples im\y- are coded irp and are guaran-
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teed to be produced bz (I). ThusAg carries out the desired
view insertions without side effects.

Conversely, assume that there exists a group upati 7 such
thatAv (Q(I)) = Q(Ar(I)). Then by reversing the derivation of
Ar given above we can define a truth assignmetat propositional
variables ingq; indeed, we lej(x) be true iff (z = ¢) and(z =
c) « x are ingg, if z has the value in Ag. Itis easy to verify
that . satisfies the formula,. |

Evaluation of query on database with variables

Given the original databask (i = 1,...,n), the set of relational
tuples to be inserteX; (i = 1,...,n) and the conjunctive query
Q=np(oc(T1,...,Tn)), whereC' is a conjunction of equalities and

P is a set of projected attributes, the problem is how to evaluate
query@ on databasé; incremented byX; that contains variables

to capture whether insertions; will yield side effects. The chal-
lenge here is that the selection conditiongfannot be evaluated
on tuples with variables and the®L queries cannot work directly

on tuples enriched with variables.

Before analyzing how side-effects are generated and discussing
how to evaluat&) to capture side-effects, we will do some prepro-
cessing in order to (1) guarantee tha can be generated from
the conjunctive query (view) o; U X; for any instantiation of
the variables inX;; and (2) reduce the number of variables. The
preprocessing consists of several steps: (1) If there is a selection
condition such that:, = zj, zix € %i, 2 € Z;, We use one
variable to rename;;, andz;;; (2) If a variable is not involved in
selection conditions, it can be filled with a dummy value because
the instantiation of the variable is not relevant to side-effects; and
(3)If there already exits a base tuplesharing key withr in X;,
we fill the missing values in according ta~’.

We observe that there are only two types of side-effects.

1. Aviewtuple is a side effect if it contains at least one key from
I; \ X; and at least one key frot; \ I;.

2. Aview tuple is a side effect if it is generated fraky (: =
1,...,,n), butisnotatuple MMz U Q(I1 N X1, ..., [, N X,,)

The above two kinds of side effects cover all possible side ef-
fects raised by the insertion df z while other possibility, such as
Q(I1, ..., I,), will not generate any side effect tuples. For conve-
nience of presentation, we dividgJ X; into three non-overlapping
subsets for eache [1,n]:

.UlzXl\Iz,ZG[l,n]
oAZ:L\XZ,'LG[l,n]
e Bi=X;NI,ie [1,7@

To capture the first kind of side effect, for all possibilities of
T\,....,Tn, whereT; € {U;, A;, B;}, such that there exist an
i,j € [1,n], T; = U; andT; = A;, we rewrite@ to accom-
modate the variables it; and thus to capture side effects. More
specifically, we rewrite the selection conditions and projected at-
tributes. We illustrate the rewriting using an example: giggrn=
wp(oc(R1, Rz, R3)) and one combinationf;, U2, As), to cap-
ture the side effects from the combination we rewrite ¢hénto
Q'=rp, (0c, (U, Us, A3)). The selection condition€' in Q are
discomposed int¢’; andC>, whereC'; only contains equality con-
ditions involving variables (must be iti; andU in this example)
while C> contains the other selection conditiorf3. contains only
the attributes contained ifi.. Observe that (1) the selection con-
ditions in C> that do not contain variable can be imposed@h
and (2) the projection o, ensures that any two of generated side
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Input: relationsIy, ..., I,, view V', a group insertiom\ g,
the view definitionrp (¢ (R1 X ... X Ry)),
Output: side-effect encode or reject (exception)

1. ComputeX; from A w.r.t R;, fori € [1,n];
. PreprocesX;;
3. ©:= 0 /* sATinstance */
4. Ul = Xi\li,ie [l,n}
5 A= [i\Xi,iG [1,71]
6. B;:=X;NI;,ice [1,77,]
/* detect the first type of side-effect */
7. for eachcombination ofly, ...Ty, s.t.3i 35 [T; = U; AT = Aj],

AVE[(kFiNk #§) — (T = Up VT = Ry)]

8. C = selection conditions involving variablest

9. CQ =C \ Cl

10. P : = attributes involved in conditions i@y

11. AVy ::WPl(O'Cz(leu-,Tk))

12. for eacht’ € AV;

13. if ¢’ does not contain variabtben rejectA g return
14. else® := O A (checl ((xkj #* 2k )

15. endfor

16. endfor

/* detect the second type of side-effect */
17. for each combination ofI, ... Ty, s.t. 3¢ [T; = U;]
AV E[(k # i) — (T = Xi)]

18. C, = selection conditions involving variables i
19. Co:=C\Cy

20. AVy Z:ch(Tl,...,Tk)

21. foreacht’ e AVo At ¢ U

22. if ¢’ does not contain variabtben rejectA g return
23. else® := O A (checl (xk]. #* 2k )

24, endfor

25. endfor

26. return©

Figure 12: Theinsert  algorithm

effect tuples produce different encoding. The second kind of side
effect is captured similarly.

The algorithm is given in Fig. 12. Its input consists of (1) a set of
base relation$I,, ...I,, }, (2) a viewV defined in terms of conjunc-
tive queryV = wp(oc(R1 X ... X Ry)), and (3) a group insertion
Agr={t1,..., tx } against/. The firstkind of side-effect is encoded
in lines 7-16. If a returned tuple does not contain any variable, it is
a side-effect tuple(line 13); If it contains some variables, we need
to instantiate the variables such that the selection conditio6§ in
are not satisfied in order to avoid side-effect. More specifically, for
each return tuplé, containing variable, we construct for each con-
dition ¢; in Cy one inequalityxk,j #* 2kj s Wherexkj is a variable
andzy; can be either a constant or a variable. Side-effect typle
can be avoided only if at least one of the above inequalities holds.
Similarly we encode the second kind of side-effect (lines 17-25).



