
Updating Recursive XML Views of Relations

Byron Choi Gao Cong Wenfei Fan Stratis D. Viglas
School of Informatics, University of Edinburgh

{v1bchoi@inf,wenfei@inf,gao.cong@,sviglas@inf }.ed.ac.uk

Abstract
This paper investigates the view update problem forXML views
published from relational data. We considerXML views defined
in terms of mappings directed by possibly recursiveDTDs, com-
pressed intoDAGs and stored in relations. We provide new tech-
niques to efficiently supportXML view updates specified in terms of
XPath expressions with recursion and complex filters. The interac-
tion betweenXPath recursion andDAG compression ofXML views
makes the analysis ofXML view updates rather intriguing. In ad-
dition, many issues are still open even for relational view updates,
and need to be explored. In response to these, on theXML side, we
revise the notion of side effects and update semantics based on the
semantics ofXML views, and present efficient algorithms to trans-
lateXML updates to relational view updates. On the relational side,
we propose a mild condition onSPJ views, and show that under
this condition the analysis of deletions on relational views becomes
PTIME while the insertion analysis isNP-complete. We develop
an efficient algorithm to process relational view deletions, and a
heuristic algorithm to handle view insertions. Finally, we present
an experimental study to verify the effectiveness of our techniques.

1. Introduction
As a classical technical problem, view updates have been stud-

ied for relational databases for decades (see,e.g.,[9, 11, 17, 23]),
and techniques developed in that area have been introduced into
commercialDBMSs [16, 25, 28]. Recently, a number of systems
have been developed for publishing relational data toXML [1, 4,
12, 16, 25, 28]. The publishedXML documents can be seen asXML
viewsof the relational data. For all the reasons that updating data
through its relational views is needed, it is also important to update
relational databases through theirXML views.

In this paper we study theXML view update problem, which can
be stated as follows. Given anXML view defined as a mappingσ :
R → D from relations of a schemaR to XML documents (trees)
of a DTD D, a relational instanceI of R, theXML view T = σ(I),
andupdates∆X on theXML viewT , we want to computerelational
updates∆R such that∆X(T) = σ(∆R(I)). That is, the relational
updates∆R, when propagated toXML via the mappingσ, yield the
desiredXML updates∆X on the viewT .

While several commercial systems [16, 25, 28] allow users to
define XML views of relations, their support forXML view up-
dates is either very restricted or not yet available. Previous work

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

course

prereq

db
...

...

course

takenBy

namesidnamesid

student student

sid

cno title

course

...cno
name

course

prereq takenBy

student

name

titlecno

"Bill" "03""02" "Bill"

"Logic""CS320"

"01" "Joe" "02" "Tom"

1

1 1

1 2 2

1

1

2

student

"Complexity""CS560"
22 2

"CS320"

1 1

2

2

32

31
2sid

1 2

3

Figure 1: Example XML view

on XML view updates [2] has addressed the problem by translat-
ing XML view updates to relational view updates and delegate the
problem to the relationalDBMS; however, most commercialDBMSs
only have limited view-update capability [16, 25, 28]. The state of
the art inXML view updates research [30, 31, 32] solves the prob-
lem by explicitly focusing onnon-recursively definedXML views
andXML updates definedwithoutrecursiveXPath queries. Though
a complete solution, the restrictions posed in [32] are unfortunate
since the recent proposals onXML update languages [22, 29] em-
ploy recursiveXPath queries whileDTDs (and thusXML view def-
initions) found in practice are often recursive [6]. In accordance
to these requirements we advance the state of the art by supporting
recursively definedXML views and recursiveXPath update spec-
ifications. These requirements extend the side effects considered
in [32], which we identify and address. In doing so, we provide an
end-to-end (i.e., from XML views to the underlyingDBMS) solution
to the problem and advance the theory of relational view updates.

We consider more generalXML views and updates: possibly re-
cursiveXML view definitions andXML updates specified in terms
of XPath expressions with recursion (descendant-or-self ‘//’) and
complex filters, as illustrated by the example below.

Example 1.1: Consider aregistrar databaseI0, which maintains
student data,enrollment records,course data and a relationprereq.
It is specified by the relational schemaR0 (with keys underlined):

course(cno, title, dept), student(ssn, name),
enroll(ssn, cno), prereq(cno1, cno2),

where a tuple(c1, c2) in prereq indicates thatc2 is a prerequisite of
c1. That is,prereq gives the prerequisite hierarchy of courses.

As depicted in Fig. 1 (the dotted lines will be illustrated shortly),
from the relational database anXML viewT0 is published for theCS
department by extractingCScourse-registration data fromI0. The
view is required to conform to theDTD D0 below (the definition of
elements whose type isPCDATA is omitted):

<! ELEMENT db (course∗)>
<! ELEMENT course (cno, title, prereq, takenBy)>
<! ELEMENT prereq (course∗)>
<! ELEMENT takenBy (student∗)>
<! ELEMENT student (ssn, name)>

Note that the view is defined recursively since theDTD D0 is
recursive (course is defined indirectly in terms of itself viapre-
req). Now consider anXML update∆X = insert T ′ into P0

posed on theXML view T0, whereP0 is a (recursive)XPath query

1

course[cno=CS650]//course[cno=CS320]/prereq, andT ′ is the sub-
tree representing the courseCS240. It is to find all theCS320nodes
below CS650in T0 and for eachCS320nodev, insertT ′ as a pre-
requisite ofv. To carry out∆X , we need to find updates∆R on
the underlying databaseI0 such that∆X(T0) = σ0(∆R(I0)). 2

Already a hard problem for relational views, the view update
problem forXML views introduces several new challenges, which
previous work [2, 30, 32, 31] onXML view updates cannot handle.

First, the notion of updateside effectsand update semantics
should be revised in the context ofXML views of relations. Re-
ferring to the example above,∆X asks for insertingCS240as a
prereq of only thoseCS320nodes belowCS650, whereas in reality,
CS320has a uniqueprereq hierarchy (published from the same re-
lational records) and thus the insertion will result in side effects. In
order to be consistent with the semantics of theXML view, we re-
solve the side effect problem by revising the insert semantics such
that the insertion will be performed ateveryCS320node. The ef-
fect of side effects on deletions is even more subtle and calls for
a new semantics (see in Section 3.) Previous work [2, 30, 32, 31]
did not consider the new side-effect issues ofXML view updates on
possibly recursive views.

Second, theXML view σ(I0) may becompressedby storing each
subtree shared by multiple nodes in the treeonly once, as indicated
in Fig. 1 (replacing the subtrees in the dotted triangles by dotted
edges). The need for this is evident: the compressed view becomes
a directed acyclic graph (DAG), which is often significantly smaller
than the original tree and may even lead to exponential savings in
space. Furthermore, one may want to store the view (DAG) in re-
lations itself. This raises another question: how should one define
relational views that characterize the compressedXML view (DAG)?
If one is to reduce theXML view update problem to its relational
counterpart, this question has to be answered. However, this is non-
trivial: the XML view is recursively defined, and a naı̈ve relational
encoding may requireinfinitely manyrelational views. Previous
work [2, 30, 32, 31] did not consider the relational-view character-
ization of compressed and possibly recursively definedXML views.

Third, to locate where the updates take place, one has to evaluate
the (recursive)XPath queryP0 embedded in∆X , onDAGs instead
of XML trees. Added to the complication of the predefinedDTD

D0 (resp. theXML view definitionσ0) being recursive, the inter-
action between recursion inXPath and recursion in theXML view
definition makes it hard to translateXML view updates to relational
(view) updates. As observed in [21], translation from (recursive)
XPath queries (resp. updates) over recursiveXML views (stored
in relations) toSQL queries (resp. updates) is nontrivial. To our
knowledge, no efficient algorithm has been published for evaluat-
ing XPath queries withcomplex filterson DAGsstored in relations.

While these are new issues beyond what we have encountered
in relational view updates, automated processing of relational view
updates is already intricate, even under various restrictions on the
views [9, 11, 17]. In fact even the updatability problem,i.e., the
problem of determining whether a relational view is updatable
w.r.t. given updates, is mostly unsolved and few complexity results
are known about it [9, 3]. This tells us that it is unrealistic to reduce
theXML view update problem to its relational counterpart and then
rely on theDBMSs to do the rest.

Contributions. We propose new techniques for updatingcom-
pressedand possiblyrecursivelydefinedXML views viaschema-
directedXML publishing, in particularATGs [1] 1. We allow XML

1Our techniques are applicable toXML views published from relations via
other systems (e.g., SilkRoute,XPERANTO) as long as they represent the
XML views in terms ofSPJqueries.

updates specified in terms ofXPath expressions withrecursion
and complex filters. Given XML updates∆X on an XML view
T = σ(I), which is compressed into aDAG and stored in relations,
we do the following. (a) We define relational viewsV that char-
acterize the compressedXML view, such that the number of views
in V is bounded by the size ofσ even ifσ is recursively defined.
(b) We revise the notion of side effects of view updates based on
the semantics ofXML views, and provide an algorithm for translat-
ing ∆X to group updates∆V onV while capturing the side effects
of XML view updates. (c) We develop our own algorithms for pro-
cessing relational view updates, and translate∆V to updates∆R

on the underlying databaseI by means of our algorithms, such that
∆X(T) = σ(∆R(I)) under the new semantics ofXML view up-
dates. If∆V or ∆R does not exist, we detect and report it as early
as possible. More specifically, we make the following contributions
to the study of view updates in bothXML and relational settings.

• On theXML side. (a) We refine the notion of side effects and
the update semantics forXML views of relations, based on the se-
mantics ofXML views. (b) We develop an algorithm to translate
(recursive) updates∆X on a (possibly recursively defined) XML

view to updates∆V on the relational representationV of theXML

view. (c) To do the translation, we present an efficient algorithm
for evaluatingXPath queries withcomplex filterson DAGs, based
on a new indexing structure to handle recursion and a new tech-
nique for handling filters. (d) We also develop efficient algorithms
to incrementally maintain the indexing structure.

• On the relational side.(a) We identify akey-preservationcon-
dition on SPJ views, which is less restrictive than the conditions
imposed by previous work [9, 11, 17]. This condition does not
reduce the expressive power ofATGs. (b) We establish complex-
ity results for the updatability problem. We show that under key-
preservation onSPJviews, while the problem for tuple insertions
is NP-complete, it becomestractablefor groupdeletions (which is
NP-complete without key preservation). (c) We propose aPTIME
algorithm for processing group deletions onSPJviews. (d) To pro-
cess group insertions we give an efficient heuristic algorithm.

• Experimental study.Our experimental results verify the effec-
tiveness and efficiency of our techniques.

These techniques are the first for processingXML updates with
recursion and complex filterson compressed and possibly recur-
sively definedXML views, without relying on the high-end and
mostly unavailable view-update functionality of the underlying re-
lational DBMS. They provide the capability of supportingXML

view updates within the immediate reach of mostXML publishing
systems. On the relational side, our complexity results and algo-
rithms are a useful addition to the study of relational view updates.

Organization. Section 2 reviewsATGs andXML compression.
Section 3 introduces relational views, characterizesDAG compres-
sion ofXML views, definesXML updates, and refines the notion of
side effects forXML view updates. Section 4 develops our indexing
structure and algorithms for translatingXML updates to relational
view updates, and Section 5 presents our complexity results and
algorithms for handling relational view updates. An experimental
study is given in Section 6, followed by related work in Section 7
and future work in Section 8. Proofs are given in [13].

2. Schema-Directed XML View Definition
To studyXML view updates we first fix anXML view definition

language. We chooseATG [1] for its capability to recursively define
XML views of relations. In this section we first reviewATGs and
then present aDAG compression ofXML views.

2

2.1 Attribute Translation Grammar
An Attribute Translation Grammar (ATG) is defined by annotat-

ing aDTD with SPJqueries. To presentATGs, we first reviewDTDs.

DTDs. Without loss of generality, we formalize aDTD D to be a
triplet (E, P, r), whereE is a finite set ofelement types; r is in E
and is called theroot type; P defines the element types: for eachA
in E, P (A) is a regular expression of the form:

α ::= PCDATA | ε | B1, . . . , Bn | B1 + . . . + Bn | B∗

whereε is the empty word,B is a type inE (referred to as achild
typeof A), and ‘+’, ‘ ,’ and ‘∗’ denote disjunction, concatenation
and the Kleene star, respectively (we use ‘+’ instead of ‘|’ to avoid
confusion). We refer toA → P (A) as theproductionof A. A
DTD is recursiveif it has an element type that is defined (directly
or indirectly) in terms of itself. As shown in [1] allDTDs can be
converted to this form in linear time.

ATGs. We now briefly review the syntax and semantics ofATGs
(see [1] for details). AnATG σ : R→ D specifies a mapping from
instances of the source relational schemaR to documents of the
targetDTD D as follows. (a) For each element typeA of D, σ de-
fines a semantic attribute$A whose value is a single relational tuple
of a fixed arity and type; intuitively,$A controls the generation of
A elements in theXML view, and is used to pass data downwards
as the document is produced. (b) For each productionp = A→ α
in D and each typeB in α, σ specifies aSPJquery,rule(p), which
extracts data from a relational database; using the data and$A, it
generates theB children of anA element and their$B values.

Given a relational databaseI with schemaR, the ATG σ is
evaluated top-down starting at the rootr of D. A partial tree
T is initialized with a single node of typer, and this node is
marked as abud to be expanded. The treeT is then grown by
repeatedly selecting a budb of some element typeA and evaluating
the queries associated withA. More specifically, we find the
productionp = A → α in D, and generate the children ofb by
evaluatingrule(p) and using the value of the attribute$A of b.
Hererule(p)’s are defined and evaluated based on the form ofα:

(1) If α is B1, . . . , Bn, then a node taggedBi is created for each
i ∈ [1, n] as a child ofb. The tuple value of$Bi associated
with the new Bi child is determined by projection from$A,
i.e.,, $Bi = ($A.a1

i , . . . , $A.ak
i) is in rule(p) for i ∈ [1, n],

whereaj
i is a field of the tuple$A.

(2) If α is B1 + . . . + Bn, thenrule(p) is defined by
case f($A) of 1: $B1 := $A, . . . n:$Bn := $A,

wheref is a function that maps$A to natural numbers in[1, n].
That is, based on the conditional test, exactly one child,Bi, is
created. The value of the parent attribute$A is passed down to that
child. NoBj child is created ifi 6= j.

(3) If α is B∗, thenrule(p) is defined by$B ← Q($A), where
Q is a SPJquery overI, and it treats$A as a constant. For each
distincttuplet returned byQ($A), aB child is generated, carrying
t as the value of its$B attribute.

(4) If α is PCDATA, then the rule specifies formatting of the values
of $B for presentation (string/PCDATA).

(5) If α is ε, then norule(p) is defined and no action is taken.

The elementchildren of nodeb become new buds and are also
processed. The process proceeds until the partial tree cannot be
further expanded. The finalXML tree does not expose attribute
values$A, which are used in the relational storage of the tree.

Example 2.1:TheATG σ0 given in Fig. 2 defines theXML view de-
scribed in Example 1.1. Given aregistrar databaseI, σ0 computes
an XML view σ0(I) as follows. It first generates the root element

db→ course*
$course←Q1

Q1: select distinct c.cno, c.titlefrom course c
wherec.dept = “CS”

course→ cno, title, prereq, takenBy
$cno = $course.cno, $title = $course.title,
$prereq = $course.cno, $takenBy = $course.cno

prereq→ course*
$course←Q2($prereq)
Q2(c1): select distinct c.cno, c.title from prereq p, course c

wherep.cno1 =c1 and p.cno2 = c.cno

takenBy→ student*
$student←Q3($takenBy)
Q3(c): select distinct s.ssn, s.namefrom enroll e, student s

wheree.cno =c and e.ssn = s.ssn

Figure 2: Example ATG σ0

(with tag db), and then evaluates queryQ1 to extractCS courses
from I (case (3)). For each distinct tuplec in the output ofQ1, it
generates acourse child vc of db, which is a bud carryingc as the
value of its attribute$course. The subtree of the budvc is then
generated by usingc (case (1) above). Specifically, it creates the
cno, title, prereq and takenBy children ofvc, carrying the corre-
sponding fields ofc. It then creates a text node carryingc.cno as its
PCDATA, as the child of thecno node (case (4)); similarly fortitle.
It creates the children of theprereq node by evaluatingQ2 to find
prerequisites of the course, and again for each tuple in the output of
Q2 it generates acourse node; similarly it constructs thetakenBy
subtree by extractingstudent data viaQ3 (case (3)). Note thatQ2

andQ3 takec.cno as a constant. Sincecourse is recursively de-
fined, the process proceeds until it reaches courses that do not have
any prerequisites,i.e., whenQ2 returns empty at theprereq chil-
dren of those course nodes. When the computation terminates the
ATG generates anXML view as shown in Fig. 1, which conforms to
theDTD D0 of Example 1.1. 2

Observe that anATG σ : R → D defines arecursiveXML view
if its embeddedDTD D is recursive. As a result, given a databaseI
ofR, the depth of theXML view σ(I) is decided at run-time, rather
than statically, by the databaseI following a data-driven semantics.

2.2 DAG Compression of XML Views
We next describe theDAG compression ofXML views.

The subtree property. An XML view of a relational database is
determined by the underlying relational data. InATG this is refle-
cetd as thesubtree property. More specifically, consider anATG

σ : R → D. For any databaseI ofR and any typeA of D, anA-
element (subtree)TA in theXML view σ(I) is uniquely determined
by the value of the semantic attribute$A at the root ofTA. Thus,
the ATG in fact defines a functionST() such that, given an element
typeA and a valuet of $A, ST(A, t) returns a subtree rooted at a
node taggedA and carryingt as its attribute.

DAG compression. As noted in Section 1, a subtreeST(A, $A)
may appear at multiple places in theXML view σ(I). It is natural
and more efficient tocompressthe XML tree by storing asingle
copyof ST(A, $A) no matter how many times it occurs in theXML

view. This leads to aDAG representation of theXML view σ(I). In
Fig. 1, for example,course1 andstudent2 are shared subtrees (see
the dashed lines). Note that theDAG is rooted: the root ofσ(I) is
also the root of theDAG. This DAG compressionof σ(I) may be
exponentiallysmaller thanσ(I) stored as a tree. In this paper we
considerXML views compressed intoDAGs.

3. View Updates Revisited in the XML Setting

3

In this section we define theXML updates studied in this paper,
revise the notion of side effects ofXML view updates, and provide
relational views to characterizeDAG compression ofXML views.
Finally, we outline our approach to processingXML view updates.

3.1 XML View Updates: Side Effects and Semantics
We first defineXML view updates and their new semantics.

Syntax. Following [22, 29] we specifyXML updates in terms of
XPath expressions: (a)insert (A, t) into p, (b) delete p. Here
A is an element type, andt is a tuple value of the same type as
the semantic attribute$A of A. We use the valuet of the semantic
attribute$A of the root of a subtreeST(A, t) to uniquely identify
ST(A, t), based on the subtree property mentioned earlier. We de-
finep as anXPath expression:

p ::= ε | A | ∗ | // | p/p | p[q],

q ::= p | p = ‘s’ | label() = A | q ∧ q | q ∨ q | ¬q,

where ε, A, ∗ and ‘/’ denote theself-axis, a label (tag), a
wildcard and thechild-axis, and ’//’ stands for/descendant-or-
self::node()/, respectively;q in p[q] is called afilter, in which s
is a constant (string value), and ‘∧’, ‘∨’ and ‘¬’ denote conjunc-
tion, disjunction and negation, respectively. For//, we abbreviate
p1/ // asp1// and// /p2 as//p2.

Side effects.Before we define the semantics ofXML updates on
views, we first study the side effects onXML view updates. Recall
from Example 1.1 the update∆X , which is to change the subtrees
(prerequisite hierarchy) of only thoseCS320nodes belowCS650.
However, the subtree property of theXML view tells us that the
subtree of aCS320node isuniquely determinedby the value of its
semantic attribute$course, which is determined by the same set of
relational records forall CS320nodes. As a result,all CS320nodes
must have thesamesubtree. In other words, changes incurred to
the subtree of anyCS320node must also be reflected toall CS320
nodes, rather than only to those belowCS650.

The side-effect issue is more subtle for deletions. As an exam-
ple, considerdeletecourse[cno=CS650]/prereq/course[cno=CS320]
on theXML tree of Fig. 1. The deletion aims to remove course
CS320from the prerequisites of courseCS650. Again the subtree
property tells us that we should remove allCS320nodes, but not
only theCS320node under theCS650node. On the other hand, this
cannot be simply done by removing allCS320nodes physically as
done in previous work onXML view updates [2, 30, 31, 32]:CS320
is itself an independentCScourse and moreover, may be a prereq-
uisite of other courses. For thedelete operation to make sense,
we need first to find all theparentsof the nodes to be removed,
i.e., thoseprereq nodes underCS650nodes, and then removeCS320
from thechildren list of only thoseparentnodes.

These suggest that we have to refine the notion ofside effects
to capture the semantics and the hierarchical nature ofXML views.
More specifically, if a change is to be made to the subtreeST(A, t)
of anA element with the tuplet as its semantic attribute$A, the
same change has to be made to the subtrees ofall theA elements
with the same semantic attributet. While this is generally consid-
ered a “side effect” in the setting of relational view updates, it is
necessarily the semantics ofXML view updates.

The semantics ofXML view updates. The semantics ofXML

views call for a new semantics ofXML view updatesdifferentfrom
that of updates onXML data [22, 29]. The semantics of theinsert
operation onXML views is described as follows. Given anXML

view T with root r, (a) it finds the set of allelementsreachable
from r via p in T , denoted byr[[p]]; (b) for each elementv in r[[p]],
it adds the new subtreeST(A, t) as the rightmost child ofv; and

moreover, (c) for each elementu that has the same type and se-
mantic attribute value asv, it also addsST(A, t) as the rightmost
child of u as required by the semantics ofXML views.

The delete operation onXML views is carried out as follows:
(a) it computesr[[p]]; (b) for each nodev ∈ r[[p]], it removes the
subtreeST(A, t) from the children list of the parent nodeu of v,
whereA is the type ofv andt is the value of$A at v; and (c) for
any nodeu′ that has thesame type and semantic attribute valueas
theparentu of v, it removesST(A, t) from the children list ofu′.

Compared to the previous work [2, 30, 31, 32], we supportXML

view updates that (a) are defined with much richerXPath expres-
sions withrecursion and complex filters, (b) operates on (possibly)
recursively definedXML views, and (c) possess a new semantics
that captureside effectsof XML view updates. To avoid side effects
a brute-force solution is adopted in [2]: no elements are allowed to
appear more than once in anXML view; “conditional translatable
updates” address the issue in [32] albeit in a more restrictive set-
ting in terms of expressiveness (no recursively definedXML views
or recursiveXPath expressions).

3.2 Relational Coding of Recursively Defined XML Views
Consider anATG σ : R → D that definesXML views of re-

lational databases ofR. To reduce the update problem forXML

views defined byσ to its relational counterpart, we define relational
viewsVσ to characterizeσ. This is nontrivial: (a)σ is possibly re-
cursively defined; on such views the encoding methods of previous
work (e.g.,[2]) may lead toinfinitelymany relational views; (b) we
considerDAG compressedXML views,i.e.,a DAG representation of
σ(I) as opposed to treesassumed in previous work. To this end we
defineVσ by means of the edge relations ofσ(I) as follows.

(a) We assume a compact, unique value associated with each tu-
ple value of semantic attribute$A in σ(I). We abstract away the
implementation of this identity value by assuming w.l.o.g. the ex-
istence of a Skolem functiongen id that, given the tuple value of
$A, computesid A that is unique among all identities associated
with all semantic attributes. We usegen A to denote the set of the
identities of all$A tuples, which is computed once.

(b) We encode anXML view definition σ in terms ofVσ, a set
of SPJ queriesQedge A B coding the edge relations ofσ. More
specifically, for each productionA → P (A) in the DTD embed-
ded in σ, and for each child typeB in P (A), we create a rela-
tion edge A B with two columns,id A andid B. Consider pro-
ductions of the formA → B∗, where$B ← Q($A) is the as-
sociated query inσ. Thenedge A B is the set of pairs(ia, ib)
such thatia = gen id(a), ib = gen id(b), wherea ∈ gen A,
b ∈ Q(a). The definition ofQedge A B is similar for productions
of other forms. One example of an edge-relation query derived
from theσ0 ATG of Fig. 2 isQedge prereq course:

select gen id(gp),gen id(c.cno, c.title)
from genprereq gp, prereq p, course c
where p.cno1 = gp.cno and p.cno2 = c.cno

Observe the following aboutVσ. First,Vσ encodes theDAG com-
pressionof XML view σ(I). Indeed, for any subtreeST(A, $A) in
σ(I), each edge(ia, ib) in ST(A, $A) is storedonly oncein a rela-
tion edge A B no matter how many timesST(A, $A) (and thus the
edge) appears inσ(I). This is because the tuple(ia, ib) is uniquely
determined by the semantic-attribute values of the corresponding
nodes, which are the same in different occurrences ofST(A, $A).
Second, eachQedge A B in Vσ is defined by aSPJquery. ThusVσ

consists of onlySPJviews. Third, Vσ consists of aboundednum-
ber of relational viewseven if σ is recursivelydefined. Indeed,
eachedge A B relation codes edges fromA-nodes toB-nodes

4

XML update

relational view V
(compression)

XML view T
 (virtual)

! V

! R

! X

! X

! X ! V

! V ! R

reject reject

validation
DTD

translation:

translation:
to

RDB to

Figure 3: Overview of XML view updates

that may appear at an arbitrary depth of the tree, and the number of
edge relations inVσ is boundedby the size of theDTD D.

Updates on relational views.Given an update∆X on aDAG com-
pressedXML view σ(I), we propagate it to updates∆V on the re-
lational viewV = Vσ(I). The relational view updates∆V consist
of edge tuples of the formt = (ia, ib) to be inserted into or deleted
from an edge relationedge A B.

The DAG compression ofXML views also complicates the pro-
cessing of view updates: (a) theXPath query embedded in anXML

update has to be evaluated on aDAG rather than a tree; (b) a shared
tree cannot be simply removed, as illustrated by the example below.

Consider again thedelete operation on theXML view of Fig. 1,
as described earlier. Suppose now theXML view is compressed into
a DAG. We cannot simply remove the subtree ofCS320physically
even if all CS320nodes are in theprereq subtree of someCS650
nodes. This is because some subtrees insideCS320(i.e., certain
students) may be shared and referenced by other nodes.

In response to this, we compute the relational view updates∆V

such that (a) a newly inserted subtree is only stored once inV no
matter how many times it appears in the updated view, and (b) a
deleted subtree is not physically removed: only the tuple(ia, ib)
in V representing the corresponding parent-child edge is deleted
from its edge relationedge A B. More specifically, the tuple cor-
responding toia is not removed fromgen A becauseia is a par-
ent nodev ∈ r[[p]] and needs to be kept in theXML view. To
cope with subtree sharing,ib is not removed fromgen B when the
edget is removed fromedge A B; instead, upon the completion
of processing∆V , our incremental maintainance algorithm runs in
thebackgroundto remove tuples fromgen B’s that are no longer
linked to any node; it is at the completion of∆V whengen B’s
are updated (similarly for insertions). Note thatgen B’s are not
defined as a view; they are derived fromV (i.e., the edge relations
Vσ) and maintained in the background.

3.3 Processing XML View Updates
We propose a framework for processingXML view updates, as

shown in Fig. 3. For eachATG (XML view definition)σ : R → D,
we maintain a relational databaseI of R, and the relational views
V that encode theDAG compression ofT = σ(I). The users pose
updates on (the virtual view)T . Given a singleXML update∆X on
T as input, we are to generate a group update∆R on I such that
∆X(T) = σ(∆R(I)) if such∆R exists; and otherwisereject ∆X

as early as possible. Specifically, the framework processes anXML

update∆X onT in three phases, namely,DTD validation, transla-
tion from∆X to ∆V , andtranslation from∆V to ∆R. The DTD

validation phase is simple and its discussion is deferred to [13].

From XML view updates to relational view updates.Given an
update (insertion or deletion)∆X on the (virtual)XML view T ,
this phase translates∆X to agroup relational view update∆V on
V (See Section 4).

From relational view updates to base relation updates.Given a
group update∆V on relational viewsV , this phase translates∆V

to a group update∆R on the databaseI, if ∆R exists; it rejects∆X

otherwise. Instead of relying on the limited support for relational

Input : the relational viewV and topological orderL.
Output : reachability matrixM .

1. M := ∅;
2. for(k := |L|; k > 0; k- -) /*processL from right to left */
3. d := L[k];
4. Ad := {a2| a2 ∈ anc(a1), a1 ∈ parent(d) };
5. insert (a, d) into M for eacha ∈ Ad;
6. return M

Figure 4: Algorithm Reach

view updates of commercialDBMSs, in Section 5 we present an
effective technique for processing relational view updates.

Conducting updates.After the relational update∆R is computed,
we update the underlying databaseI using∆R, update the rela-
tional viewsV using∆V , and finally, in the background, invoke
our incremental algorithm to maintain the indexing structures and
to remove fromgen A those node ids that are no longer reachable
from the root of theXML view T .

4. Mapping XML View Updates to Relations
In this section we present a technique for translatingXML up-

date∆X on anXML view T to updates∆V on relational viewsV ,
which represent theDAG compression ofT . The technique con-
sists of four parts: (a) indexing structures for checking ancestor-
descendant relationships (Section 4.1), (b) an efficient algorithm
for evaluatingXPath queries onDAGs (Section 4.2), (c) algorithms
to translate∆X to ∆V (Section 4.3), based on the indexing struc-
tures and the evaluation algorithm, and (d) incremental algorithms
for maintaining our indexing structures (Section 4.4).

4.1 Auxiliary Structures
To efficiently process ‘//’ and filters on aDAG, we introduce two

auxiliary structures: a topological order and a reachability matrix.

Topological order. Recall from Section 3 the functiongen id(),
which generates a unique id for each node based on its semantic-
attribute value. Given aDAG stored in relationsV , we create a list
L consisting of all the distinct node identities inV topologically
sorted such thatu precedesv in L only if u is not an ancestor ofv
in the DAG, i.e., there is no path fromu to v in the DAG. As will
be seen shortly, while based onL alone one cannot determine the
ancestor-descendant relation,L is useful in evaluatingXPath filters
as well as in computing and maintaining the reachability matrix.

The listL can be computed inO(|V |) time (see,e.g.,[8]), where
|V | is the size of the relational views. Its size,|L|, is the number of
distinct nodesin the DAG, denoted byn. Note thatL is computed
once whenV is created and it is maintained incrementally.

Reachability matrix . To identify the ancestor-descendant relation-
ship between a pair of nodes in aDAG, we use ann×n reachability
matrixM: a cell inM is a bit. Given a rowi denoting nodeni and
a columnj indicating nodenj , if cellMij is set,ni is an ancestor
of nj in theXML view (ornj is a descendant ofni).

To storeM, we conceptually need as many bits asn2. The cost
for that is prohibitive. To overcome this, we store only information
about the set bits of the reachability matrix. That is,M is physi-
cally stored as a tableM(anc, desc), whereancdenotes an ancestor
node, anddesca descendant. We usedesc(a) (resp.anc(a)) to de-
note the descendants (resp. ancestors) of nodea retrieved fromM .

TableM can be computed inO(|V |2log|V |) time fromV (see,
e.g., [8]). Capitalizing on the topological orderL we give Algo-
rithm Reach, shown in Fig. 4, that computesM in O(n |V |) time.
It is based on dynamic programming: it ensures that for a noded
the ancestors of the nodes in the set of parents ofd, denoted by
parent(d), are already known before we compute ancestorsAd,

5

such that we can computeAd by using those previously computed
ancestors (lines 4-5). This can be achieved by processing the nodes
in the order ofL from right to left (line 2). Note thatparent(d) can
be computed from the edge relations inV .

To see that AlgorithmReach is in O(n |V |) time, observe the
following: (a) for each node inL we visit its parents once and thus
any nodev is visitedin(v) times, wherein(v) is the in-degree ofv,
i.e., the number of incoming edges tov in theDAG; (b) the sum of
in(v)’s for all v is |V |; and (c) each visit takes at mostO(n) time.
In practice,|M | � n2 � |V |2, whereV is typically much smaller
than theXML treeT , even up to an exponential factor.

We remark thatL is very useful in maintainingM , and on the
other handM helps in maintainingL as to be shown in Section 4.4.

4.2 Evaluating XPath Queries on DAGs
To translate updates∆X on XML views to updates∆R on rela-

tional views, we have to evaluate theXPath expression embedded
in ∆X . TheDAG compression ofXML views introduces new chal-
lenges: previous work onXPath evaluation has mostly focused on
trees rather thanDAGs. While evaluation algorithms were devel-
oped for path queries onDAGs [5, 26], they cannot be applied here
because (a) they do not deal with complex filters which, as will be
seen shortly, require a separate pass of the inputDAG, and (b) they
do not address maintenance of the indexing structures the employ,
which is necessary when theDAG is updated. Path-query evaluation
algorithms were also developed for semi-structured data (general
graphs). However, these algorithms neither treatDAGs differently
from cyclic graphs (and thus may not be efficient when dealing with
DAGs), nor considerXPath queries used inXML view updates.

To this end we outline an efficient algorithm for evaluating an
XPath queryp on anXML treeT that is (a) compressed as aDAG,
and (b) stored in relationsV . The algorithm takes as input anXPath
queryp overT , the relational viewsV , and the reachability matrix
M . It computes (a) a setr[[p]] consisting of, for each node reached
by p, a pair(B, v), wherev is the id andB the type of the node
respectively; and (b) a setEp(r) consisting of, for eachv reached
by p, tuples of the form((C, u), v), whereu is the id of a parent of
v in theDAG (i.e., there is an edge fromu to v) such thatp reaches
v throughu, andC is the type ofu. We shall see that the setEp(r)
is needed for handling deletions. Note that for eachv there are
possibly multiple(C, u) pairs, since we are dealing with aDAG (in
which a node may have multiple parents) rather than a tree.

ForXML data stored as a treeT , [19] developed an algorithm that
evaluates anXPath queryp in two passes (linear scans) ofT . The
basic idea of [19] is to first convertT to a binary-tree representation
(before the two-pass process is invoked), and then run a bottom-up
tree automaton on the binary tree to evaluate filters, followed by
a run of a top-down tree automaton to identify nodes reached by
p. It has linear-time complexity, the ‘optimal’ one can expect [19].
We next show thata comparable complexitycan be achieved when
evaluatingXPath queries on aDAG stored in relations.

Our evaluation algorithm uses the following variables: (a) A list
Q of filters including all the sub-expressions of filters inp, topo-
logically sorted such that for anyq1, q2 in Q, q1 precedesq2 if q1 is
a sub-expression ofq2. (b) For eachq in Q and each nodev in L,
two Boolean variablesval(q, v) anddesc(q, v) to denote whether or
not the filterq holds atv and at any descendantu of v, respectively.

Using these variables, we present a two-pass algorithm to evalu-
atep on V : a bottom-up phase that evaluatesfilters in p and com-
putes the Boolean variables associated with each nodev in L, fol-
lowed by a top-down phase that computesr[[p]] andEp(r) using
the filters computed. Due to lack of space we only outline the algo-
rithm below.

Input : an insertion of the form∆X = insert (A, t) into p
overT , and the relational viewV .

Output : a group insertion∆V overV .

1. ∆V := ∅;
2. EA := { ((B, gen id($u)), (C, gen id($v))) | (u, v)

is an edge inST(A, t), u, v with typeB, C resp.};
3. rA := the id ofST(A, t)’s root as generated bygen id(t);
4. for each ((B, ui), (C, vi)) ∈ EA

5. ∆V := ∆V ∪ { insert (ui, vi) into edge B C};
6. for each (B, ui) ∈ r[[p]]
7. ∆V := ∆V ∪ { insert (ui, rA) into edge B A};
8. return ∆V ;

Figure 5: Algorithm Xinsert

Bottom-up. The key idea is based on dynamic programming. For
each nodev in the topological orderL, and for each sub-filterq
in the topological orderQ, we compute the values ofval(q, v) and
desc(q, v). This can be done by structural induction on the form
of q. For example, whenq is label() = A, val(q, v) is true if and
only if v is in gen A. Whenq is q1 ∨ q2, val(q, v) := val(q1, v)
∨ val(q2, v). Whenq is a path expressionp, p can be rewritten
into a “normal form”η1/ . . . /ηn, where eachηi is either (a)ε[qi],
(b) a labelA, (c) wildcard ‘∗’, or (d) ‘//’. The normal form can
be obtained inO(|p|) time by capitalizing on the following rewrite
rules: p[q] ≡ p/ε[q], andε[q1] . . . [qn] ≡ ε[q1 ∧ . . . ∧ qn]. For
example, ifq is rewritten as//η2/ . . . ηn with η1 = //, val(q, v)
is true if either val(η2/ . . . /ηn, v) or desc(η2/ . . . /ηn, u) is true
for some childu of v; correspondingly,desc(q, v) is true if either
val(q, v) or desc(q, u) holds. Note that the children ofv can be
efficiently identified by using the indexes onV . In addition, the
algorithm proceeds in the topological ordersL andQ. Therefore,
the truth values ofval(η2/ . . . /ηn, v) anddesc(η2/ . . . /ηn, u) are
already available before having to assign a value forval(q, v) and
desc(q, v). Similarly val(q, v) can be computed for all other possi-
ble rewrites ofq.

Top-down. Upon the completion of the bottom-up phase, we com-
pute r[[p]] andEp(r) as follows. As mentioned earlierp can be
normalized in the form ofη1/ . . . /ηn, in which all the filters have
already been evaluated to a truth value at each node satisfyingp.
Starting from the rootr, we find nodes reached after each stepηi.
These nodes can be easily found by using indexes on the edge rela-
tionsV whenηi is A or ∗, and by means of the reachability matrix
M whenηi is ‘//’. We now have all the information we need: upon
the very last stepηn we accumulate all nodes reachable in that step
into r[[p]], along with their types. Correspondingly, and whenever
the last step leads to a node to be inserted inr[[p]] we accumulate
the originating parent inEp(r) along with its type.

Complexity. In the bottom-up phase, each nodev is visited at most
in(v) times, wherein(v) is the in-degree ofv. In the top-down
phase, each node is visited only once, except the final step when
a nodeu may be included inEp(r) at mostout(u) times, where
out(u) is the out-degree ofu. Putting these together, the complex-
ity of the algorithm isO(|p| |V |) time.

Compared to the algorithm of [19], observe the following.
(a) When theDAG is a tree, our algorithm visits each node at most
twice, i.e., it has the same complexity as that of [19]. When dealing
with DAGs that do not have a tree structure, it is necessary to visit
all the edges in theDAGs in the worst case and thus our algorithm is
optimal. (b) In contrast to [19], our algorithm does not require the
conversion to binary trees and the construction of tree automata,
which are potentially very large. (c) Our algorithm works onDAGs
including but not limited to trees while [19] cannot work onDAGs.

4.3 Translating Updates from XML to Relations

6

On account of the relational representation (DAG) of XML views,
a singleXML update may be mapped to multiple relational updates
(a group update) over the edge tablesV . We next give two algo-
rithms, Xinsert andXdelete, for translatingXML view insertions
and deletions to relational view updates∆V , respectively.

Insertion. Algorithm Xinsert is presented in Fig. 5. Given∆X =
insert (A, t) into p on theXML view T , the objective is to return
the group of insertions∆V overV (which will then be tested for
acceptance). The first step is to find the set of edges in the newly
inserted subtreeST(A, t) with the rootrA, which is computed by
the algorithm of [1] and the functiongen id() (lines 2-3). We then
generate the relational view updates: for each edge(ui, vi) in the
newly inserted subtree, we add(ui, vi) to ∆V (lines 4-5); more-
over, for each(B, ui) ∈ r[[p]], we add(ui, rA) as a new edge
to ∆V (lines 6-7). The setr[[p]] of nodes (pairs(B, ui) of node
ids along with their types) reached byXPathp from the root ofT
(line 6) is computed using the evaluation algorithm of Section 4.2.

Deletion. Algorithm Xdelete is shown in Fig. 6. Given∆X =
delete p, it returns the group of relation view deletions∆V over
V , which will be passed to subsequent steps for acceptance test
(Section 5.2). For each nodevi in r[[p]] and each parentui of vi in
Ep(r), it removes the edge(ui, vi) from V (lines 2-3). Here the
parent-child relation is computed by using the setEp(r), whose
computation is coupled with that ofr[[p]] (See Section 4.2).

Observe that these algorithms implementthe new semanticsof
XML view updates given in Section 3. This is achieved by leverag-
ing the characterization of theXML view T in terms of relational
viewsV . Indeed, for two edges(u, v), (u′, v) in T , if two parents
u andu′ of the same nodev have the same element typeA and
the same value of the semantic attribute$A, the two edges are rep-
resented by asingletuple in some edge relationedge A B. Thus
there is no need to searchV to find different nodes sharing(A, t),
i.e.,XML side effects described in Section 3 do not incur extra cost.
Furthermore, the set semantics ofV ensures that a newly inserted
subtree is storedonly once. In addition, AlgorithmXdelete does
not physically remove a deleted subtree; instead, only the corre-
sponding parent-child edge is removed. These naturally comply to
the requirements ofDAG update semantics given in Section 3.

Example 4.1: Consider theXML update∆X1 = delete //course
[cno=CS320]//student[sid=S02] on theXML tree in Fig. 1, which
is to delete studentS02 from theCS320subtree. Given this as in-
put, Algorithm Xdelete yields ∆V1 = {(takeBy1, student2)}. As
another example, given∆X2 = delete //student[sid=S02] , we get
∆V2 ={(takeBy1, student2), (takeBy2, student2)}. 2

Complexity. Algorithm Xinsert takesO(|EA| + |r[[p]]|) time at
most, which is the cost of inserting the “inner” connections of
ST(A, t) into V and connectingST(A, t) to the rest ofV , where
|EA| is the number of edges inST(A, t). Algorithm Xdelete takes
O(|Ep(r)|) time. Together with the complexityO(|p| |V |) of eval-
uatingp, this is the cost of generating∆V from ∆X .

4.4 Maintenance of Auxiliary Structures
We next outline how to maintain the reachability matrixM and

the topological orderL in response to updates overV . We should
remark that the maintenance ofM andL is computed in theback-
ground in parallel with the processing of relational updates∆R;
as a result, in our framework (Fig. 3), maintenance does not slow
down the process of carrying outXML view updates.

The maintenance is nontrivial, as illustrated by the next example.

Example 4.2: Recall theXML update∆X1 from Example 4.1
This entails that all reachability information toS02be deleted from

Input : a deletion∆X = delete p overT and the rel. viewV .
Output : a group deletion∆V overV

1. ∆V := ∅;
2. for each ((C, ui), vi) ∈ Ep(r), where(B, vi) ∈ r[[p]]
3. ∆V := ∆V ∪ { delete (ui, vi) from edge C B};
4. return ∆V ;

Figure 6: Algorithm Xdelete

the root of theCS320subtree and fromall nodeson the path to
S02. Moreover, this course may be a prerequisite of other courses,
e.g.,CS650; sinceCS320’s subtree is shared, the reachability infor-
mation fromCS650to S02should be updated. 2

RecomputingM from the updatedV bears a prohibitive cost.
What we ideally would like is toincrementallyupdateM . Ex-
isting incremental techniques [15, 18] for updading reachability
information are not applicable since they rely on special auxil-
iary structures which are themselves expensive to construct and
maintain (e.g., [15] requires the computation of a spanning tree,
taking O(n |V |) time for each node insertion). On the other
hand, incremental algorithms of updating topologically ordered
lists (e.g.,[24]) takeO(|V |) time per edge insertion. Given these
high individual complexities we follow a hybrid approach by main-
taining both auxiliary structures at once.

Maitenance of auxiliary structures in response toXML view dele-
tions takes place in the form of Algorithm∆(M,L)delete, shown in
Fig. 7. Due to space constraints we omit the maintenance algorithm
∆(M,L)insert for insertions, which can be found in [13]. The algo-
rithm efficiently produces the following by scanning the elements
of anXML deletion∆X : (a) deletions∆M overM , (b) an updated
L, and (c) as an added bonus, the set of edges∆′

V in the deleted
subtree that are no longer connected to any nodes in theDAG and
are to be passed to the garbage collector forbackgroundprocess-
ing (see Section 3.) The set∆′

V is a direct consequence of deletions
∆V computed by AlgorithmXdelete. The need arises when a node
d ∈ ∆V is to be completely removed from the subtree. This hap-
pens when either all its incoming edges are inEp(r) (described in
Section 4.2), or all its parent nodes are deleted.

The algorithm progresses by populating deletions∆M while, at
the same time and whenever applicable, removing elements from
L and populating∆′

V . The first step is arranging all nodes in
all deleted subtrees in a listLR (line 2). To do so, we compute
desc(r[[p]]), i.e., the descendants of all nodes inr[[p]]; we then sort
LR according toL; this is always possible sinceLR ⊆ L. For each
noded in T we associate a statekeep(d), initialized to true, and
keeping track of whether the node should be ultimately deleted or
not (line 3).LR is then traversed backwards (line 4); this process-
ing order ofLR ensures that eachd in LR is processed after its an-
cestors thus guaranteeing correct deletion semantics. For eachd in
LR we compute its undeleted parents (lines 6-8)Pd (i.e.,any node
a in its parent set for whichkeep(a) is true) and then itsnewances-
torsAd (line 9). If there is a node ind’s current ancestorsanc(d)
that is not inAd, it should be removed fromM (lines 10-11). If
d does not have any parents (i.e., Pd = ∅) we set itskeep state to
false and delete it fromL (lines 13-14). Observe that according to
the semantics ofL, an element removal does not affect the topolog-
ical order of the rest of its elements. In addition, all outgoing edges
from a deleted noded are deleted fromV (lines 15-16); chidlrend′

of d can be readily identified fromd’s type.

Example 4.3: Recall∆X1 from Example 4.1. Given∆X1 , Al-
gorithm∆M,Ldelete returns (1)∆′

V1 = ∅, (2) unchangedL, and
(3) ∆M1 = {(prereq2, student2), (prereq2, sid2), (prereq2, name2),
...}, i.e., the reachability information from nodes prereq2, course1
and takenBy1 to nodes in theS02 subtree,i.e., nodes student2,

7

Input : a deletion of the form∆X = delete p overT , the rel.
view V , reachability matrixM and topological orderL.

Output : deletions∆′
V overV , ∆M overM , and updated listL.

1. ∆′
V := ∅; ∆M := ∅;

2. LR := the sorted listdesc(r[[p]]) according to topological orderL;
3. keep(d) := true for eachd ∈ T ; /*initialize state */
4. for eachd in LR traversed backwards
5. Pd := ∅;
6. for eacha ∈ parent(d)
7. if ((C, a), d) /∈ Ep(r) andkeep(a) = true
8. then Pd := Pd ∪{a};
9. Ad := {a2 | a2 ∈ anc(a1), a1 ∈ Pd};
10. for eacha ∈ anc(d) \Ad

11. ∆M := ∆M ∪ { delete (a, d) from M};
12. if Pd = ∅ /*compute∆′

V and updateL*/
13. then keep(d) := false;
14. deleted from list L;
15. for any childd′ (of typeH) of d (of type G)
16. ∆′

V := ∆′
V ∪ { delete (d, d′) from edge G H};

17. return (∆′
V , ∆M , L)

Figure 7: Maintenance algorithm ∆(M,L)delete for deletions

sid2 and name2. Note that{ (takeBy2, student2), (takeBy2, sid2),
(takeBy2, name2), ...}, i.e., the connection between node takeBy2

(and thus course2) and theS02subtree still holds and is not included
in ∆M1 . Given∆X2 in Example 4.1, Algorithm∆M,Ldelete re-
turns (1)∆′

V2 ={(student2, sid2), (student2, name2)}, (2) the new
L by removing student2, sid2 and name2 from the old L, and
(3) ∆M2 composed of the connections between nodes in theS02
subtree and all its ancestor nodes including db, course1, takenBy1,
course2, takenBy2 and prereq2. 2

Complexity. The worst-case time complexity of the algorithm is
O(n |V |), which is the cost of computing new ancestors for nodes
in LR. For each node inLR we visit its parents once, which in total
takes at mostO(|V |) time (in practice it is much smaller than|V |);
at each visit, the algorithm takes at mostO(n) time.

Observe the following: (a) The analysis given above is the worst-
case complexity. In practice the updatedXML view ∆X(T) differs
only slightly from the old viewT , and the cost of maintainingM
andL is much smaller than what worst-case complexity indicates.
(b) As remarked earlier, all maintenance is conductedin the back-
groundand thus does not become a bottleneck. (c) As will be seen
in Section 6, our experimental study verifies that the incremental
approach is far more efficient than its batch counterpart.

5. Updating Relational Views
In this section we extend the study of relational view updates

by providing complexity results (Proofs in [13]) and techniques for
processingSPJview updates under key preservation. These results
are not only important for updatingXML views defined in terms of
ATGs, but are also useful for studying relational view updates.

5.1 Key Preservation and Relational View Updates
We propose a mild condition onSPJviews, and show that this

condition simplifies the analysis of relational view updates.

Key preservation. Consider aSPJqueryQ(R1, . . . , Rk) that takes
base relationsR1, . . . , Rk of R as input, and returns tuples of the
schemaR(~a). We say thatQ is key preservingif for each Ri,
the primary key ofRi is included in~a (with possible renaming).
That is, the primary keys of all the base relations involved inQ are
included in the projection fields of (theSPJquery)Q.

Observe the following. First, key preservation is far less restric-
tive than other conditions proposed in earlier work for handling re-
lational view updates (e.g.,[11, 17]; see Section 7). Second, every

SPJ query in the definition of anATG view σ can be made key-
preserving by extending its projection-attribute list to include the
primary keys. The extension does not affect the expressive power of
ATGs. For example,Q3 in σ0 of Fig. 2 can be made key-preserving
by addinge.cno to its select clause. Thus, in the sequel we assume
w.l.o.g. that all the queries inATGs are key-preserving.

Analysis. We consider the following decision problem:

PROBLEM: SPJView Updatability Problem
INPUT: A collection of viewsV defined asSPJqueries

under key preservation, a relational databaseI
of schemaR, and a group view update∆V .

QUESTION: Is there a group update∆R on the databaseI
such that∆V (V(I)) = V(∆R(I))?

Here∆V consists of either only tuple deletions or only tuple inser-
tions, as produced by the translation algorithm of the last section.
These deletions and insertions in∆V are translated to deletions and
insertions in∆R, respectively. We useV to denote the viewV(I).

It is known [3] that without key preservation, the updatability
problem is alreadyNP-hard for a single deletion and a singlePJ
view, i.e., when∆V consists of a single deletion andV is a view
defined with projection and join operators only. In contrast, we
show that key preservation simplifies the updatability analysis for
a collection ofSPJviews and group deletions.

Theorem 5.1: For group view deletions∆V , theSPJview updata-
bility problem is inPTIME. 2

However, the problem is intractable for insertions under key
preservation; the lower bound can be verified by reduction from
the non-tautology problem, which isNP-complete (cf. [14]).

Theorem 5.2: TheSPJview updatability problem isNP-complete
even when∆V has a single insertion andV has a single view. 2

These are thefirst complexity results for relational view updates
under key preservation. In Section 5.2 we present aPTIME algo-
rithm for computing database deletions∆R from view deletions
∆V , which suffices to prove Theorem 5.1. In light of Theorem 5.2,
we present a heuristic algorithm for computing database insertions
∆R from view insertions∆V in Section 5.3.

5.2 Handling Group Deletions
We give aPTIME algorithm for computing database tuple dele-

tions∆R from a group of view deletions∆V . Consider an instance
of the view-tuple deletion problem: multiple viewsV defined in
terms ofSPJqueries under key preservation, a databaseI of schema
R, and a group view deletion∆V consisting of pairs(Q, t), which
denote that the view tuplet is to be deleted from the viewQ(I)
for someQ in V (note that the output of the algorithms in the last
section can be expressed in this format). Assume thatR consists
of relation schemasR1, . . . , Rk, andI is I1, . . . , Ik. Each viewQ
in V is of the formπ~a(σC(S1 × . . . × Sl)), where~a is a list of
columns ofR, C is aconjunctive condition, andSj is (a renaming
of) someRi. Note that the key preservation condition assures that
~a contains the primary key ofSj for j ∈ [1, l]. Given these, the
algorithm is to find a collection∆R of tuples to be deleted from
I such that∆V (V(I)) = V(∆R(I)) if ∆R exists; otherwise it
rejects∆V , where∆V (V(I)) denotesV(I) \∆V .

Let VQ be the viewQ(I), and consider a tuplet in ∆V that is
to be deleted fromVQ. The key preservation condition allows us
to identify, for eachSj , a unique tuple tj via its key in t, such
that t1, . . . , tl producet via Q. Let us useSr(Q, t) to denote the
set consisting of all the pairs(Sj , tj), referred to as thedeletable
sourceof t in VQ. Observe the following. (a) Deleting anytj from

8

Input : a view definitionsV, a relational databaseI, the view
VQ = Q(I) for eachQ ∈ V, and a group deletion∆V .

Output : a group update∆R onI if it exists.

1. ∆R := ∅;
2. for each (Q, t) in ∆V

3. computeSr(Q, t), the deletable source oft in VQ;
4. for eachQ′ in V andeacht in VQ′ but not in∆V

5. computeSr(Q′, t′);
6. for each (Q, t) in ∆V

7. if there exists(Sj , tj) in Sr(Q, t) such that(Sj , tj) is not in
Sr(Q′, t′) for anyQ′ in V and anyt′ in VQ′ but not in∆V

8. then ∆R := ∆R ∪ {(Sj , tj)};
9. elsereject∆V andexit;
10. return ∆R

Figure 8: Algorithm delete

Sj suffices to removet from VQ. (b) Deletion of a source tuple
tj from VQ is side effect freeif and only if (Sj , tj) is not in the
deletable source of any tuplet′ ∈ V(I) \ ∆V that is to remain in
the view after∆V is carried out. From these one can see thatt can
be deleted fromVQ if and only if there exists(Sj , tj) ∈ Sr(Q, t)
such that for allQ′ ∈ V and allt′ that are inQ′(I) but not in∆V ,
(Sj , tj) is not inSr(Q′, t′). Note that whenonly the updatability
problemis concerned, deleting any of suchtj suffices,i.e.,one can
choose an arbitrarytj from Sr(Q, t) satisfying the condition (b)
given above, if there exists any.

Based on this we give Algorithmdelete in Fig. 8. It first com-
putes the deletable sourceSr(Q, t) for each view tuplet in ∆V and
each tuple that is inV(I) but not in∆V (lines 2-5). It then checks,
for each(Q, t) in ∆V , whether or not there is a source tuple in
Sr(Q, t) that can be deleted without violating condition (b) given
above, and if so it updates∆R; it rejects∆V otherwise (lines 6-9).
It returns∆R if all view tuples in∆V can be deleted without side
effects (line 10). One can verify that the viewV can be updated by
∆V if and only if such a∆R exists.

Complexity. Observe thatSr(Q, t) can be computed inO(|Q|)
time; the size ofSr(Q, t) is bounded byO(|Q|). Checking the
side-effect free condition (line 7) takes at mostO(|V(I)| − |∆V |)
time even if no indexes onI are used, while the worst-case data
complexity of Algorithmdelete is in O(|∆V |(|V(I)| − |∆V |))
time. Note that we focus on data complexity in this section (i.e.,
ignoring the view size), since the evaluation of aSPJqueryQ(I)
may already take exponential time when the combined complexity
is considered,e.g.,whenQ = R×. . .×R for n Cartesian products.

Minimal deletions. The focus of Algorithmdelete is to solve the
updatability problem,i.e.,whether or not there exists∆R such that
∆V (V(I)) = V(∆R(I)). It does not address, however, which∆R

to select if multiple valid∆R’s exist. In the presence of multiple
∆R’s it is natural for one to choose thesmallestset∆R of tuples to
delete,i.e., a set∆R such that|∆R| is the smallest. Theminimal
view deletion problemis thus to find, given a collectionV of view
definitions, a databaseI and view deletions∆V , the smallest set of
tuple deletions∆R such that∆V (V(I)) = V(∆R(I)).

However desirable, the minimal view deletion problem is in-
tractable, even under the key preservation condition. The lower
bound can be verified by reduction from the minimal set cover
problem, which is known to be NP-complete (cf. [14]).

Theorem 5.3: For SPJviews under key preservation, the minimal
view deletion problem is NP-complete. 2

5.3 Processing Group Insertions
Theorem 5.2 tells us that any practical algorithm for handling

group view insertions is necessarily heuristic. We approach this by
reducing theSPJview insertion problem toSAT, one of the most

studiedNP-complete problems. This allows us to leverage a well-
developedSAT solver [27] to efficiently compute∆R if it exists.

An instance ofSAT (cf. [14]) is φ =
∧

i∈[1,n] Ci, whereCi is a
disjunction of literals,i.e.,propositional variables or their negation.
It is to find a truth assignmentµ that satisfiesφ, if such aµ exists.

Below we outline our heuristic algorithm, referred to as Algo-
rithm insert. The algorithm takes the same input as that of Al-
gorithm delete given in Fig. 8, namely,V, I, VQ(I) for each
Q ∈ V, and ∆V , except that tuples in∆V are to be inserted
into the views. It either finds a set of insertionsDR such that
∆V (V(I)) = V(∆R(I)), or it rejects∆V . It does the following:

• Compute a propositional logic formulaφ (i.e., a SAT instance)
from V, I, VQ(I)’s, and∆V , such thatφ is satisfiable if and only
if there existsDR such that∆V (V(I)) = V(∆R(I)).

• Utilize an existing heuristic tool [27] forSAT to processφ.

• If the tool returns a truth assignmentµ that satisfiesφ, compute
∆R from µ; otherwise reject the view updates∆V as well as∆X .

We next illustrate each of the three steps.

Deriving φ. The encoding is a little involved. It takes four steps.
First, we derive tuples that have to be present in base relations

so that∆V can be computed through queries inV. Consider(Q, t)
in ∆V , which indicates that tuplet is to be inserted into the view
Q(I), as illustrated in Section 5.2. For eacht and each relation
Ri involved inQ, we derive anRi tuple templateti = (~ai, ~bi, ~zi)

from t andQ, where~ai corresponds to the (primary) key ofRi, ~bi

to the other columns ofRi whose values can be determined from
t, and ~zi to variables whose values are unknown. Note that~ai is
known due to the key preservation condition. If there is no tuplet′

in the instanceIi of Ri with the key~ai, we addti to a setXi. Note
that no more than|Q| |∆V |many tuple templates are in theseXi’s.

Example 5.1: Consider two relationsR1, R2 and aSPJ view Q
given below, where keys are underlined:

R1 = (A: int, B: bool), R2 = (C: int, D: bool),
Q = πA,C (σB=D(R1 ×R2)).

Suppose that tuples(a, c) and(a, c′) are to be inserted intoQ(I).
ThenX1 contains a tuple template(a, x1) andX2 contains(c, x2)
and(c′, x3), if no tuple bearing the keya is already inI1 and no
c, c′ tuples are inI2. For(a, c), (a, c′) to be inserted into the view,
it is necessary that(a, x1) is inserted intoI1 afterx1 is instantiated
to a truth value, and that(c, x2), (c

′, x3) are added toI2. 2

Second, we “evaluate” each view queryQ on the databaseI in-
cremented by addingXi to Ii. Due to lack of space we defer the
detail of the evaluation to [13]. In the evaluation we “instantiate”
variables in the tuple templates, as well as the selection (conjunc-
tive) condition inQ. In Example 5.1, for instance, the evaluation
yields view tuples(a, c) with conditionx1 = x2, and(a, c′) with
conditionx1 = x3. We then inspect the result ofQ to determine
whether or not tuple templates may yield side effects. Specifically,
for each tuplet in the result, if it is in neither the view nor∆V , we
consider the following cases.

(a) If t is not associated with any condition,i.e., it certainly has side
effect, then werejectthe view updates∆V and∆X immediately.

(b) If t has a condition in which at least one variable represents
an attribute with an infinite domain, we can always pick a distinct
value for the variable that makes the condition false. This elimi-
natest from the result and thust does not yield a side effect.

(c) If t has a conditionφt in which all variables correspond to
attributes with a finite domain, we add the negation¬φt as a
conjunct to the logic formulaφ that we are constructing.

9

db

C
F H

C C C

F H

C C C

... ...

*

avg. 3 shared
C children

max. 8
recursion levels

(a) XML view

|C| DAG Tree |L| |M |
1K 25K 36.6K 25K 88K
10K 251K 366K 251K 900K
100K 2.5M 3.7M 2.5M 9.64M
1M 25.1M 36.6M 25.1M 102M

(b) Statistics of the datasets

Figure 9: Description of the datasets

Furthermore, for eacht that is in∆V , we also add its associated
conditionφt as a conjunct toφ. Observe that these conjuncts are
bounded by|∆V |, and those in case (c) involve only attributes with
a finite domain (with a fixed cardinality, aconstant).

Example 5.2: Referring to Example 5.1, the conjuncts added toφ
in the second step arex1 = x2 andx1 = x3. 2

Third, to complete the construction ofφ, for each variablex
bounded to a finite domain, we add the following formula toφ
as a conjunct:x = c1 ∨ . . . ∨ x = ck, wherec1, . . . , ck are all
the values in that domain. In Example 5.1, for instance, we add
xi = true ∨ xi = false for i ∈ [1, 3].

Finally, we convertφ to a propositional formula (i.e., a SAT in-
stance). We use propositional variables and their negation to code
variables introduced in the encoding:p for x = c andp̄ for y 6= c.
We also add conjuncts(p̄ ∨ p̄′) to ensure thatp andp′ cannot be
both true if,e.g.,p codes forx = c, p′ for x = c′, andc 6= c′.

The correctness of the reduction is ensured by the following.

Theorem 5.4: If ∆V is not rejected during the coding, thenφ is
satisfiable iff there is∆R such that∆V (Q(I)) = Q(∆R(I)). 2

Processingφ. We invoke Walksat [27] withφ as the input. Walk-
sat, an extension ofGSAT, employs an efficient approximation al-
gorithm to solve the maximum satisfiability problem. Ifφ is satisfi-
able, it finds a truth assignmentµ for φ above a certain percentage.

Computing ∆R. If µ is found, we derive∆R, i.e., the set of tuples
to be inserted into eachIi, by instantiating variables in the tuple
templates inXi’s based onµ and the interpretation of propositional
variables given above. More specifically, for each tuple templatet
in Xi, we assign a value to each variablez in t based onµ: if z is
bounded inφ by (z = c) for some constantc and(z = c) ↔ x,
then we letz = c if µ(x) is true. After this process ifz is not
assigned any value, then either (a)z ranges over an infinite domain
and thus we can always pick a valuec′ for z that is not in the active
domain of the database, or (b) the value ofz does not have any
impact on the satisfaction ofφ; in both cases we can find a value
for z without violatingφ. Then∆R consists of query templates
instantiated by these values.

If µ is not found, we reject∆V and∆X . Note that Walksat [27]
may not find a truth assignment forφ even ifφ is satisfiable, since
SAT is intractable and so is the view insertion updatability prob-
lem (Theorem 5.2). However, this only happens within a certain
percentage given the excellent performance of Walksat [20].

Complexity. From the construction ofφ one can see that its size|φ|
depends on|∆V |,R and|Q| only, whereas the size of the database
I is irrelevant. Our algorithm has a low (data) complexity, and is
effective in practice as verified by our experimental study.

6. Experimental Study
We conducted a preliminary experimental study of our proposed

view update mechanism in order to verify its effectiveness. Our
experiments were conducted on a Linux box running Redhat 9 and

a commercialDBMS. TheCPU was a 1.8Hz Pentium 4, while the
machine had2GB of physical memory; of those,1GB was used as
the buffer pool of theDBMS. The reported numbers are warm num-
bers and are the average of five runs per query. Reporting warm
numbers is reasonable in this application context, as we can expect
publishing systems to be continuously online and caching to take
place. The standard deviation of the reported numbers is 5%.

All experiments were conducted on a synthetic dataset. This al-
lows us to produce highly nestedXML views with diverse structure
and to have more control over the experimental settings.The dataset
consists of four base relations:C(c1, · · · , c16), F (f1, · · · , f16),
H(h1, h2) andCU (c′1, · · · , c′16), where underlined attributes in-
dicate keys. The domain off1 is equal to the domain ofc1 and
c′1. The remainingC andF attributes were used to control how
many joiningC andF tuples were filtered out. The domains of
h1 andh2 are the same as the domain ofc1. The generator en-
sured that (1) for eachc ∈ C ∪ CU there would be on average
three tuplesh ∈ H, wherec1=h1, and (2)h1<h2, where (h1,
h2) ∈ H. The universe ofC, namelyCU , consisted of 100MC-
tuples, ensuring that wheneverh2 joined with c1 a C-tuple was
always output. The sizes ofF and H were proportional to the
size of C, which we use for reporting the size of the synthetic
database; specifically, the size we report is|C|, which ranges from
1,000 to 1,000,000 tuples, while|F | = |C| and |H| ' 3|C|.
We defined anATG view of the relationsC, F and H; as indi-
cated in Fig. 9(a), theC nodes in the view were recursively de-
fined, and a recursion ofC in the view can be understood as
πc1,f1,h1,h2(σc1=f1∧f1=h1∧h2=c′

1∧c2=f2∧c3=f3∧c4=f4(C ×F ×
H × CU)). Recall that [2, 30] cannot handle recursions ofC in
the view. Compression was achieved by sharingC subtrees, while
dataset subtree sharing accounted for nearly 31.4% ofC instances.
Figure 9(b) lists some statistics on the number of publishedC sub-
trees, their compressedDAGs, and the corresponding sizes of the
reachability matrixM and topological orderL.

Varying database size.We generated two random update work-
loads over theXML view, one for insertions, and one for deletions;
each workload consisted of three update classes, each class includ-
ing ten operations. The classes were characterized by theXPath
queries used to define the updates. Specifically, classW1 involved
XPath queries using ‘//’ and value-based filters;XPath queries in
W2 used ‘/’ and value-based filters; finally,W3 containedXPath
queries with ‘/’, and both structural and value filters. The times we
report include the following: (a) the time to evaluateXPath queries
(Section 4.2); (b) the time to translate∆X to ∆V (Algorithms
Xinsert and Xdelete) and subsequently∆V to ∆R (Section 5),
and the time to execute the update; and (c) the time to maintain
the auxiliary structures (Algorithms∆(M,L)insert, which can be
found in [13], and∆(M,L)delete). Note that (c) is executed in the
background.

Figures 10(a), 10(b) and 10(c) show the performance of the dele-
tion algorithms forW1, W2 andW3, respectively. We plot the run-
time of performing the updates broken into their (a), (b) and (c)
above constituents for various relational database sizes. Note that
both x- andy-axes use a logarithmic scale. As shown, the algo-
rithms scale linearly with the size of the relational database. It is
evident that deletion time is dominated byXPath evaluation. Ob-
serve that although the cost for (c) is relatively high, it is performed
in the background.W1(b) is the highest reported time among the
three workloads since itsXPath queries generate more edges (i.e.,
Ep(r)), which are then examined by Algorithmdelete.

Similar results are reported for insertions, as shown in Fig-
ures 10(d), 10(e) and 10(f) forW1, W2 and W3, respectively

10

 0.1

 1

 10

 100

 1000 10000 100000 1e+006

Ru
nt

im
e

(s
ec

)

Relation size |C| (tuples)

W1(a)
W1(b)

W1(a+b)
W1(c)

(a)W1 deletion performance

 0.1

 1

 10

 100

 1000 10000 100000 1e+006

Ru
nt

im
e

(s
ec

)

Relation size |C| (tuples)

W2(a)
W2(b)

W2(a+b)
W2(c)

(b) W2 deletion performance

 0.1

 1

 10

 100

 1000 10000 100000 1e+006

Ru
nt

im
e

(s
ec

)

Relation size |C| (tuples)

W3(a)
W3(b)

W3(a+b)
W3(c)

(c) W3 deletion performance

 0.1

 1

 10

 100

 1000 10000 100000 1e+006

Ru
nt

im
e

(s
ec

)

Relation size |C| (tuples)

W1(a)
W1(b)

W1(a+b)
W1(c)

(d) W1 insertion performance

 0.1

 1

 10

 100

 1000 10000 100000 1e+006

Ru
nt

im
e

(s
ec

)

Relation size |C| (tuples)

W2(a)
W2(b)

W2(a+b)
W2(c)

(e)W2 insertion performance

 0.1

 1

 10

 100

 1000 10000 100000 1e+006

Ru
nt

im
e

(s
ec

)

Relation size |C| (tuples)

W3(a)
W3(b)

W3(a+b)
W3(c)

(f) W3 insertion performance

 0
 1
 2
 3
 4
 5
 6
 7
 8

 1 2 3 4 5 6 7 8 9 10
 0
 5
 10
 15
 20
 25
 30
 35
 40
 45

Ra
w

da
ta

 p
ro

ce
ss

in
g

(s
ec

)

Au
xil

ia
ry

 s
tru

ct
ur

e
m

ai
nt

en
an

ce
 (s

ec
)

|E_p(r)| (deletions) or |r[|p|]| (insertions)

Xdelete
Xinsert
delete
insert

M/L delete
M/L insert

(g) Varying |r[[p]]| or |EP (r)|

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5
 0

 10

 20

 30

 40

 50

 60

 70

Ra
w

da
ta

 p
ro

ce
ss

in
g

(s
ec

)

Au
xil

ia
ry

 s
tru

ct
ur

e
m

ai
nt

en
an

ce
 (s

ec
)

|ST(A,t)| (in terms of C-subtrees)

Xdelete
Xinsert
delete
insert

M/L delete
M/L insert

(h) Varying |ST(A, t)|

Figure 10: Update performance as a function of the size of the underlying relational database and the view update size

(again, using logarithmic scales). The size of the inserted subtree
was fixed. TheSAT solver [27] we used returned a truth assign-
ment in 78% of the cases and we only report the time for insertions
where theSAT solver successfully returned a truth assignment. As
in the case of deletions, our insertion algorithms also scale linearly
with the size of the database.

Varying update size. We then fixed|C| to be 100K tuples. Fig-
ure 10(g) shows the performance of each algorithm as we varied
|Ep(r)| (see Section 4.2) for deletions and|r[[p]]| for insertions,
while keepingst(A, t) a constant singleC-subtree. The runtimes
for AlgorithmsXinsert, Xdelete, delete andinsert are measured on
the lefty-axis, while the runtimes for algorithms∆(M,L)insert and
∆(M,L)delete are measured on the righty-axis. As expected, the
translation time from∆X to ∆V for Algorithm Xinsert (resp. Al-
gorithm Xdelete) increases slightly as|r[[p]]| (resp. |Ep(r)|) in-
creases. The slope of the curve for Algorithmdelete is large, as the
increase of|Ep(r)| involves more database queries to determine the
source tuples to be deleted. The performance of Algorithminsert,
which models the translation of∆V to∆R for insertion workloads,
is dominated by the coding time. As|C| is far larger than|ST(A, t)|
and|r[[p]]|, and the number of database queries required remained
fixed, the coding time remains roughly constant, though the size
of the resulting coding increases; however, that only results in a
non-observable increase in theSAT solver’s runtime keeping the
curve relatively flat. The performance of Algorithm∆(M,L)insert
(See [13]) and Algorithm∆(M,L)delete is almost unaffected by
|r[[p]]| (resp.|Ep(r)|) since|ST(A, t)| is fixed.

Similar results are shown in Fig. 10(h) where we varied the size
of |ST(A, t)| while fixing |Ep(r)| = 1 and |r[[p]]| = 1. The per-
formance of AlgorithmXdelete remains unchanged and its run-
time is negligible as it nearly overlaps with thex-axis for a fixed
|Ep(r)|. Algorithm Xinsert scales linearly with the update size
|ST(A, t)| as it needs to processST(A, t) to generate∆V . Al-
gorithms∆(M,L)insert and∆(M,L)delete evidently scale linearly
w.r.t. the update size for reasons similar to the ones outlined earlier.

Effectiveness of incremental maintenance. The cost of incremen-
tally maintaining the reachability matrixM and the topological or-
der L as opposed to recomputing them is shown in Table 1. The
first column presents the size of the relational datasets. The total
time needed for incrementally maintaining both auxiliary structures
is given in the second column for Algorithm∆(M,L)insert (given
in [13]) and in the third column for Algorithm∆(M,L)delete.

Sizes Incremental (Sec.) Recomputation (Sec.)
|C| Insertion Deletion L M

1K 1.0 1.0 6.3 9.8
10K 4.6 3.1 86 288
100K 22.7 16.9 631 3,600
1M 84.2 61.5 8611 14,000

Table 1: Incremental maintenance ofL and M vs. recomputation

The time for recomputing each structure is shown in the last two
columns. As expected, the advantages of incremental maintenance
become more prominent as the size of the data increases.

7. Related Work
Commercial database systems [16, 25, 28] provide support for

definingXML views of relations and restricted view updates.IBM
DB2 XML Extender [16] supports only propagation of updates from
relations toXML but not vice-versa. OracleXML DB [25] does
not allow updates onXML (XMLType) views. In SQL Server [28],
users are allowed to specify the “before” and “after”XML views
using updategram instead of update statements; the system then
computes the difference and generatesSQL update statements. The
views supported are very restricted: only key-foreign key joins are
allowed; neither recursive views nor updates defined in terms of
recursiveXPath expressions are supported.

There have been recent studies on updatingXML views published
from relational data [2, 30, 32]. In [2],XML views are defined as
query trees and are mapped to relational views.XML view updates
are translated to relations only ifXML views are well-nested (i.e.,
key-foreign key joins), and if the query tree is restricted to avoid
duplication. [30] requires around-trip mapping that shredsXML

data into relations in order to ensure thatXML views are always up-
datable. A detailed analysis on deciding whether or not an update
on XML views is translatable to relational updates, along with de-
tection algorithms, are provided in [32]. A framework for [32] is
presented in [31]. The limitations of previous work [2, 30, 31, 32]
are discussed in Section 1.

There has been a host of work ([9, 10, 11, 16, 17, 23, 25, 28])
on relational view updates. [11] provides algorithms for translating
restricted view updates to base-table updates without side effects
in the presence of certain functional dependencies. The algorithm
in [17] handles translation (with side effects) for a restricted class of
SPJview: base tables may only be joined on keys and must satisfy
foreign keys; a join view corresponds to a single tree where each
node refers to a relation; join attributes must be preserved; and

11

comparisons between two attributes are not allowed in selection
conditions. Our key preservation condition is less restrictive than
those in [11, 17]. There has also been work ([9, 23]) on relational
view complements. However, finding a minimal view complement
is NP-complete [9]. An algorithm for deletion translation is given
in [10], which is very different from Algorithmdelete of Fig. 8.
CommercialDBMSs [16, 25, 28] allow updates on very restricted
views (while users may specify updates manually withINSTEAD

OF triggers). For example, for views to be deletableIBM DB 2 [16]
restricts theFROM clause to reference only one base table.

Few complexity bounds are known for (relational) view updates.
The complexity of view complement computation is analyzed in [9,
23], and the complexity of deletion on views is given in [3]. To our
knowledge, our work is the first to establish complexity bounds for
both deletion and insertion on views under key preservation.

A number ofXPath evaluation algorithms have been proposed
(e.g., [7, 19, 5, 26]). Except [5, 26], these techniques, however,
are developed for trees and cannot answerXPath queries onDAGs.
As mentioned in Section 4, our evaluation algorithm is inspired
by [19], but differs from it in that we use dynamic programming
based on indexing structures instead of convertingXML data to bi-
nary trees and constructing (potentially expensive) tree automata.
Path query evaluation has been studied in [5, 26] forDAGs. [5]
extends stack-based algorithms to evaluate path-pattern queries on
DAGs. Their algorithms cannot be directly used in the context of
XML view updates because (a) pattern queries of [5] do not allow
complex filters (e.g.,Boolean operations and nested filters) and thus
cannot expressXPath expressions embedded inXML updates con-
sidered here; (b) the maintenance method for their indexing struc-
tures is not yet in place, which is necessary in the study ofXML up-
dates. [26] explores the use of reachability information by means
of a 2-hop cover index to process ‘//’ on arbitrary graphs. How-
ever, the path queries of [26] do not allow filters, and moreover,
more expensive queries are employed to search for ancestors and
descendants (i.e.,2-hop joins instead of single scans/index lookups
used in our approach). To our knowledge, our update translation
algorithm is among the first solutions for both (a) processingXPath
queries with complex filters onDAGs stored in relations, and (b) in-
crementally maintaining indexing structures in response to updates.

8. Conclusions
We have proposed new techniques for updatingXML views pub-

lished from relational data. The novelty of our technique consists of
(a) the ability to handleXML updates defined withrecursiveXPath
queries over (possibly)recursively definedXML views; (b) the first
method to rewriteXML updates into group updates on relational
views that represent aDAG compressionof anXML view, capturing
XML view-update side effects; (c) a key-preservation condition on
SPJviews that is less restrictive than constraints imposed by previ-
ous work but simplifies the analysis of relational view updates; and
(d) efficient (heuristic) algorithms for handlingrelational SPJview
updates under key preservation, along with complexity results. Our
results contribute to the study of view updates inbothanXML and
a relational setting. On theXML side, these yield an effective ap-
proach to dealing withXML view updates without relying on the
limited view-update support of relationalDBMSs. On the relational
side, our complexity results and algorithms extend the line of re-
search for processing relational view updates.

We plan to extend our techniques to handle more generalXML

updates such as those proposed in [22, 29]. We are also investi-
gating the problem of finding minimal, side-effect-free relational
updates in response toXML view updates.

9. References
[1] P. Bohannon, B. Choi, and W. Fan. Incremental evaluation of schema-

directed XML publishing. InSIGMOD, 2004.
[2] V. P. Braganholo, S. B. Davidson, and C. A. Heuser. From XML view

updates to relational view updates: old solutions to a new problem. In
VLDB, 2004.

[3] P. Buneman, S. Khanna, and W. Tan. On propagation of deletions and
annotations through views. InPODS, 2002.

[4] M. J. Carey, J. Kiernan, J. Shanmugasundaram, E. J. Shekita, and
S. N. Subramanian. XPERANTO: Middleware for publishing object-
relational data as XML documents. InVLDB, 2000.

[5] L. Chen, A. Gupta, and M. E. Kurul. Stack-based algorithms for pat-
tern matching on dags. InVLDB, 2005.

[6] B. Choi. What are real DTDs like. InWebDB, 2002.
[7] E. Colen, H. Kaplan, and T. Milo. Labeling dynamic XML tree. In

PODS, 2002.
[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction

to algorithms. McGraw-Hill, 2001.
[9] S. S. Cosmadakis and C. H. Papadimitriou. Updates of relational

views. InPODS, 1983.
[10] Y. Cui and J. Widom. Run-time translation of view tuple deletions

using data lineage.Technical Report, Standford University, 2001.
[11] U. Dayal and P. A. Bernstein. On the correct translation of update

operations on relational views.TODS, 7(3), 1982.
[12] M. F. Fernandez, A. Morishima, and D. Suciu. Efficient evaluation of

XML middleware queries. InSIGMOD, 2001.
[13] full paper. Updating recursive XML views of relations.

http://homepages.inf.ed.ac.uk/wenfei/papers/viewfull.pdf.
[14] M. Garey and D. Johnson.Computers and Intractability: A Guide to

the Theory of NP-Completeness. WH Freeman and Co., 1979.
[15] G.F.Italiano. Finding paths and deleting edges in directed acyclic

graphs.Inf. Process. Lett., 28, 1988.
[16] IBM. IBM DB2 Universal Database SQL Reference.

http://www.ibm.com/software/data/db2/ .
[17] A. Keller. Algorithms for translating view updates to database updates

for views involving selections, projections, and joins. InPODS, 1985.
[18] V. King and G. Sagert. A fully dynamic algorithm for maintaining the

transitive closure. InACM Symposium on Theory of Computing, 1999.
[19] C. Koch. Efficient processing of expressive node-selecting queries on

XML data in secondary storage: A tree automata-based approach. In
VLDB, 2003.

[20] E. Koutsoupias and C. H. Papadimitriou. On the greedy algorithm for
satisfiability.Inf. Process. Lett., 43(1), 1992.

[21] R. Krishnamurthy, R. Kaushik, and J. Naughton. XML-SQL query
translation literature: The state of the art and open problems. InXsym,
2003.

[22] A. Laux and L. Martin. XUpdate - XML Update Language, 2000.
http://www.xmldb.org /xupdate/xupdate-wd.html.

[23] J. Lechtenborger and G. Vossen. On the computation of relational
view complements.TODS, 28(2):175–208, 2003.

[24] A. Marchetti-Spaccamela, U. Nanni, and H. Rohnert. Maintaining
a topological order under edge insertions.Inf. Process. Lett., 59(1),
1996.

[25] Oracle.SQL Reference.
http://www.oracle.com/technology/documentation/database10g.html.

[26] R. Schenkel, A. Theobald, and G. Weikum. Efficient creation and in-
cremental maintenance of the HOPI index for complex XML docu-
ment collections. InICDE, 2005.

[27] B. Selman and H. Kautz. Walksat home page, 2004.
http://www.cs.washington.edu/homes/kautz/walksat/.

[28] SQL server.MSDN Library. http://msdn.microsoft.com/library.
[29] G. Sur, J. Hammer, and J. Siméon. An XQuery-based language for

processing updates in XML. InPLAN-X, 2004.
[30] L. Wang, M. Mulchandani, and E. Rundensteiner. Updating XQuery

Views Published over Relational Data: A Round-trip Case Study. In
Xsym, 2003.

[31] L. Wang, E. A. Rundensteiner, and M. Mani. Ufilter: A lightweight
xml view update checker. InICDE, 2006.

[32] L. Wang, E. A. Rundensteiner, and M. Mani. Updating XML views
published over relational databases: Towards the existence of a correct
update mapping.DKE, to appear.

12

Appendix

DTD validation
Given XML updates∆X , we first perform static optimization by
validating the predefinedDTD D with respect to∆X , and reject
the updates if∆X(T) does not conform toD as required by the
schema-directed definition ofσ.

The validation is conducted at the schema level by leveraging
the DTD normalization given in Section 2, as follows. Let∆X be
defined in terms of anXPath queryp. We first “evaluate”p on the
DTD D to find the types of the elements reached viap. We then
check whether the insertion or deletion of subtrees of these ele-
ments (types) violates their productions in theDTD D. Note that
an insertion (resp. deletion) of aB child under anA element does
not violateD only if the production ofA is of the formA → B∗.
Thus updates of other forms can be immediately rejected. This can
be checked inO(|p| |D|2) time, where|p| and|D| are the sizes of
theXPath queryp and theDTD D respectively. We omit the details
of the validation algorithm due to lack of space. Compared to pre-
vious work on incrementalDTD validation (e.g.,[?]) our algorithm
is capable of handlingXML updates defined in terms ofXPath ex-
pressions rather than a single subtree insertion (or deletion) defined
in terms of an absolute node-id path.

Maintenance of Auxiliary Structures
We give the incremental maintenance algorithm in response toXML

view insertion.

Insertion. Algorithm ∆(M,L)insert is shown in Fig. 11. Given
∆X = insert (A, t) into p, it finds the∆M over M to maintain
the reachability information, and moreover, updates the topologi-
cal orderL in response to the insertion ofst(A, t).

It is simple to compute∆M , which consists of two parts: (a) the
reachability matrix for the newly insertedDAG ST(A, t) is com-
puted by invoking AlgorithmReach (line 3); (b) for eacha ∈
anc(r[[p]]) (ancestors of nodes inr[[p]]) and eachd ∈ ST(A, t),
we add(a, d) to ∆M (lines 4-5).

MaintainingL is a bit cumbersome. As will be shown,M is use-
ful in maintainingL. Before considering to insert aDAG (st(A, t)),
we first consider how to maintainL when one edge is inserted. For
an edge insertion(u, v), if v is already in front ofu in L, L remains
valid without any change; otherwise, special care is needed to up-
date node positions inL. We illustrate this by an example. Con-
sider part ofL: 〈. . . , du, u, au1 , a1, dv1 , au2 , v, . . .〉, whereau1

andau2 are ancestors ofu, dv1 is a descendant ofv, du is a descen-
dant ofu, anda1 is neither an ancestor ofu nor a descendant ofv.
After (u, v) is inserted, we can obtain a correct topological order
by movingv and its descendants (dv1) betweenu andv such that
they precedeu. This yields〈. . . , du, dv1 , v, u, au1 , a1, au2 , . . .〉.
Note thatdv1 must be neither an ancestor ofu (otherwise there is a
cycle) nor an ancestor ofa1. To formalize this, we denote the nodes
betweenu andv in L asL[u : v]. Given an edge insertion(u, v),
the correct topological order can be obtained by moving nodes in
L[u : v] ∩ desc(v) to beimmediately in front of u in L. The pro-
cedure of changingL to reflect the insertion(u, v) is denoted as
swap(L, u, v), whereu precedesv in L before the move.

We next explain the algorithm for updatingL when inserting
ST(A, t) (lines 6-14). LetLA be the topological order forST(A, t)
(line 2) andNC be the set of common nodes inL andLA. The
basic idea of the algorithm is to make the relative orders of nodes
in NC consistent in listsL andLA before we mergeL andLA to
obtain the updatedL. To do this, we compute the topological oders
LNC for nodes inNC by considering the edges that connect nodes

Input : an insertion of the form∆X = insert (A, t) into p overT , the
rel. viewV , reachability matrixM and topological orderL.

Output : insertions∆M overM , and updated listL.

1. computeNA andrA, as lines 2-4 in AlgorithmXinsert;
2. LA := the topological order of nodes inST(A, t);
3. ∆M := reachability matrix forST(A, t); /*using AlgorithmReach*/
4. for eacha ∈ anc(r[[p]]) andeachd ∈ NA /* computing∆M */
5. ∆M := ∆M ∪ { insert (a, d) into M};
6. NC := the set of common nodes in listsL andLA; /*updateL*/
7. LNC

:= the topological order of nodes inNC ;
8. for (k = |LNC

|; k > 1; k −−) /*align LA andL with LNC
*/

9. u := LNC
[k]; v := LNC

[k − 1];
10. if ordLA

(u) < ordLA
(v) then swap(LA, u, v);

11. if ordL(u) < ordL(v) then swap(L, u, v);
12. if rA ∈ L then for eachu in r[[p]]
13. if ordL(u) < ordL(rA) then swap(L, u, rA);
14.L := mergeLA into L;
15. return (∆M , L);

Figure 11: Maintenance algorithm∆(M,L)insert for insertions

of NC in eitherT or ST(A, t) (line 7), and then alignL andLA with
LNC to make their positions consistent withLNC (lines 8-11). One
subtlety is worth mentioning: when performing the alignment we
follow the order ofLNC from the right to the left. This processing
order ensures that the position of aligned nodes will not be changed
by subsequent alignment. To be specific, the aligned nodes are not
descendants of nodes to be aligned and thus will not be moved any
more whenswap(L, u, v) is called in subsequent alignment (they
are not descendants ofv). Furthermore, if the root ofST(A, t) is
already inT , we may need to change the order ofL in response to
the inserted edge(u, rA), whereu ∈ r[[p]](u /∈ LA) (lines 12-13).
After we obtain two consistent listsL andLA, we can mergeLA

into L to generate the updatedL (line 14). This can be done by
regarding the nodes inNC as “pivots” and inserting the new nodes
(i.e. LA \NC) into L before their respective “pivots”.

Complexity. The worst-case time complexity of Algo-
rithm ∆(M,L)insert is O(|EA| + |ENC | + (|NC | + |r[[p]]|) n +
|NA||EA| + |NA| n), where (a)|NA| is the number of distinct
nodes, and|EA| is the number of edges in the inserted subtree
ST(A, t), (b) |NC | is the number of common nodes inL andLA,
|ENC | is the number of those edges that connect nodes ofNC in
eitherT or ST(A, t), and (c)n is the number of distinct nodes inT .
In practice|NC | < |NA| < |EA| � n � |V |. The first and sec-
ond factors are the cost of computingLA andLNC , respectively,
and the third factor is the cost of maintainingL, whereswap() is
called at most2|NC | + |r[[p]]| times and each takes at mostO(n)
time. Note thatswap(L, u, v) is in O(|L[u : v]|) time, which is
usually much smaller thann. The fourth factor is the cost of com-
puting the reachability matrix forST(A, t), while the last factor is
the cost of maintaining the reachability between nodes inST(A, t)
and the nodes inT .

Observe the following. (a) The analysis given above is the worst-
case complexity. While it seems no better than the complexity of
re-computingM andL from scratch, in practice the updatedXML

view ∆X(T) typically differs slightly from the old viewT , and
|r[[p]]| and|anc(r[[p]])| are often far smaller thann. (b) LA andLR

are typically much smaller thanL; this makes the fourth factor of
the complexity of∆(M,L)insert and the complexity of∆(M,L)delete
much smaller thann |V | in practice. (c) As mentioned earlier, the
computation of∆M and updating ofL is in fact conducted in the
background.

Proof of Theorem 5.2
A NP algorithm for checkingCQ view updatability works as fol-
lows: it first guesses a group insertion∆R and then checks whether

13

V(∆R(I)) = ∆V (V), which can be done in PTIME (data com-
plexity).

We next show the problem is NP-hard, by reduction from the
non-tautology problem. Consider an instance of the problem:φ =
C1 ∨ . . .∨Cn, where all the variables inφ arex1, . . . , xk, Cj is of
the formlj1 ∧ lj2 ∧ lj3 , andlij is eitherxs or x̄s, s ∈ [1, k]. The
problem is to determine whether there is a truth assignment such
that φ is false, i.e.,φ is not valid. This problem is known to be
NP-complete.

Given φ, we define a relational databaseI, a singleCQ view
V under key preservation, and a single view insert∆V on V =
V(I), such thatφ is not valid iff there exists∆R andV(∆R(I)) =
∆V (V).

Relational databaseI. The database consists of three base rela-
tions,R, Rφ andRE , defined as follows.
• R(A, B), whereA is the key of the relation andB is a

boolean. Intuitively,A is to hold a number in[1, k] encoding
a variable, andB is a truth value (T or F). That is,R(A, B)
is a truth assignment forφ. Initially R(A, B) consists of a
single special tuple(0, T).
• Rφ(j, j1, X1, j2, X2, j3, X3), wherej is the key of the re-

lation. Initially, for eachCj = lj1 ∧ lj2 ∧ lj3 , there is a
tuple (j, lj1 , X1, lj2 , X2, lj3 , X3) in Rφ such thatlji is s if
lji = xs or lji = x̄s, Xi is T if lji = xs, andXi is F
if lji = x̄s. Intuitively, each of these tuples inRφ codes a
clause inφ. A special tuple(0, 0, T, 0, T, 0, T) is also inRφ.

• RE(e1, e2, . . . , ek), wheree1, . . . , ek are the key. Intuitively
ei is to codei in [1, k]. Initially, RE consists of a single
special tuple(0, . . . , 0).

View. We define a single viewV = V1×V2 in terms of conjunctive
queries and under key-preservation as follows:
• V1 = πj,j1,j2,j3σC(R1×R2×R3×Rφ), whereR1, R2, R3

are renaming ofR, andC is a boolean conditionc1 ∧ c2 ∧ c3,
in which ci is Ri(A) = Rφ(ji) ∧ Ri(B) = Rφ(Xi) (i =
1, 2, 3). Intuitively, C holds if and only if one of theCj ’s is
true.
• V2 = πe1,e2,...,ekσD(RE × R1 × R2 × . . . × Rk), where

R1, R2, . . . , Rk are renamings ofR, andD is a boolean con-
dition

∧k
i=1Ri(A) = RE(ei).

Initially V = V(I) has a single tuple(0, . . . , 0) (k+4 0’s).

View insert. We define ∆V to insert a single tuple
(0, 0, 0, 0, 1, . . . , k) into V .

We next verify that∆V is side-effect free iffφ is not a tautology.
Indeed, ifφ is not a tautology, then there is a truth assignmentµ
such thatφ is false, and thusCj is false w.r.t.µ. We define∆R

based onµ as follows: insert tuples toR(A, B) such that(i, T) is
inserted intoR(A, B) iff µ(xi) = T , and(i, F) is inserted into
R(A, B) iff µ(xi) = F ; furthermore, insert(1, . . . , k) into RE .
Then obviously∆V is side-effect free. Conversely, suppose that
there is∆V that is side-effect free. Then(1, . . . , k) needs to be
inserted intoRE , and a unique tuple of the form(i, X) needs to
be inserted into the base relationR for eachi ∈ [1, k] due to the
key constraint onR, such that∆V is indeed an update on the view
V . HereX is eitherT or F , and thus after the insertion of∆V ,
R(A, B) contains a valid truth assignment forφ. Since∆V is side-
effect free,V1 will remain (0, 0, 0, 0) after∆V is performed. That
is, Cj remains false. Thusφ is not a tautology. 2

Proof of Theorem 5.3
We show the problem is NP-hard by reduction from the minimal
set cover problem. An instance of the minimal set cover problem

consists of a collectionC of subsets of a finite setS; it is to find a
subsetC′ ⊆ C such that every element inS belongs to at least one
member ofC′ and moreover,|C′| is minimal.

GivenS andC, we define an instance of the minimal view dele-
tion problem. LetS = {xi | i ∈ [1, n]}. We construct|C| many
base tables,n CQ views and a group view deletion, as follows.

1. For eachSj ∈ C, we define a base relationRj consisting of
a single column.
Let Ij , the instance ofRj , be {j}, and let the database in-
stanceI be the collection of allIj ’s defined above.

2. For eachxi, letTi be the collection of all the subsets inC that
containxi. Enumerate the elements ofTi as(Si1 , . . . , Sini).
Define Vi = Ri1 × . . . × Rini . Note that Vi(I) =
(i1, . . . , ini). LetV be the collection ofVi’s for i ∈ [1, n].
Obviously, the views defined as above are key-preserving.

3. The group deletion∆V is to remove all tuples from all the
views.
Note that the tuple is removed fromVi without side effect if
and only if the tuple from anyRij is removed.

The minimum view deletion problem is to find a smallest set of the
base relationsR1, . . . , R|C| from which tuples are removed, while
ensuring that the view tuples fromVi for i ∈ [1, n] are deleted
without side effect.

We next verify that the construction above is indeed a reduction
from the minimum set cover problem. First suppose thatC′ is a
minimal cover ofS. We define∆R such that it consists of dele-
tion of tuple from each base relation in{Rj | Sj ∈ C′}. Clearly,
V(∆R(I)) = ∆V (V(I)) = ∅ sinceC′ is a cover ofS. Further-
more,∆R is minimal sinceC′ is minimal. Conversely, suppose
that∆R is a solution to the minimal view deletion problem. Then
let C′ be the subset ofC such that an elementSj of C is in C′

if and only if ∆R involves deletion of the tuple from the corre-
sponding relationRj . To see thatC′ is a cover ofS, note that
V(∆R(I)) = ∆V (V(I)) = ∅, and thus for eachi ∈ [1, n], some
setRij is in C′. Moreover,C′ is minimal since∆R is minimal.2

Proof of Theorem 5.4
We verify that if∆V is not rejected during the coding of an instance
Q, ∆V andI of theCQ view insertion problem, then there exists a
truth assignmentµ that satisfiesφQ if and only if there exists∆R

such that∆V (Q(I)) = Q(∆R(I)).
Assume that there exists a truth assignmentµ that satisfiesφQ.

Then we define∆R as follows. For eachXj and each tuple tem-
platet in Xj , we assign a value to each variablez in t based on
µ. If z is bounded inφQ by (z = c) for some constantc and
(z = c) ↔ x, then we letz = c if µ(x) is true; after this process
if z is not assigned any value,z must be a free variable that ranges
over an infinite domainτi and thus we can always pick a valuec′ for
z without violatingφ. Indeed, our coding distinguishes (bounded)
variables with a finite domain from those (free) variables with an
infinite domain, and encodes possible value selections of those vari-
ables having a finite domain in terms of additional clauses; the cod-
ing ensures that the value ofz can be picked without causing side
effects. For each relationIi, let∆i

R consist of all these instantiated
tuple templates from allXj ’s that are a renaming ofRi. Let∆R be
the collection of∆i

R’s for i ∈ k. Then∆V (Q(I)) = Q(∆R(I)).
Indeed, these newly inserted tuples do not produce view tuples that
have a key ofRi that is not already in∆V , since otherwise this
had been caught in the coding process and∆V would have been
rejected. Furthermore, these newly insertions do not yield tuples
that are not in∆V but share keys of∆v, as ensured by the coding
φQ. Finally, all the tuples in∆V are coded inφQ and are guaran-

14

teed to be produced by∆R(I). Thus∆R carries out the desired
view insertions without side effects.

Conversely, assume that there exists a group update∆R to I such
that∆V (Q(I)) = Q(∆R(I)). Then by reversing the derivation of
∆R given above we can define a truth assignmentµ to propositional
variables inφQ; indeed, we letµ(x) be true iff(z = c) and(z =
c) ↔ x are inφQ, if z has the valuec in ∆R. It is easy to verify
thatµ satisfies the formulaφQ. 2

Evaluation of query on database with variables
Given the original databaseIi (i = 1, ..., n), the set of relational
tuples to be insertedXi (i = 1, ..., n) and the conjunctive query
Q=πP (σC(T1, ..., Tn)), whereC is a conjunction of equalities and
P is a set of projected attributes, the problem is how to evaluate
queryQ on databaseIi incremented byXi that contains variables
to capture whether insertionsXi will yield side effects. The chal-
lenge here is that the selection conditions ofQ cannot be evaluated
on tuples with variables and thusSQL queries cannot work directly
on tuples enriched with variables.

Before analyzing how side-effects are generated and discussing
how to evaluateQ to capture side-effects, we will do some prepro-
cessing in order to (1) guarantee that∆R can be generated from
the conjunctive query (view) onIi ∪ Xi for any instantiation of
the variables inXi; and (2) reduce the number of variables. The
preprocessing consists of several steps: (1) If there is a selection
condition such thatzik = zjl, zik ∈ ~zi, zjl ∈ ~zj , we use one
variable to renamezik andzjl; (2) If a variable is not involved in
selection conditions, it can be filled with a dummy value because
the instantiation of the variable is not relevant to side-effects; and
(3)If there already exits a base tupler′ sharing key withr in Xi,
we fill the missing values inr according tor′.

We observe that there are only two types of side-effects.

1. A view tuple is a side effect if it contains at least one key from
Ii \Xi and at least one key fromXj \ Ij .

2. A view tuple is a side effect if it is generated fromXi (i =
1, ..., n), but is not a tuple in∆R ∪Q(I1 ∩X1, ..., In ∩Xn)

The above two kinds of side effects cover all possible side ef-
fects raised by the insertion of∆R while other possibility, such as
Q(I1, ..., In), will not generate any side effect tuples. For conve-
nience of presentation, we divideIi∪Xi into three non-overlapping
subsets for eachi ∈ [1, n]:

• Ui = Xi \ Ii, i ∈ [1, n]

• Ai = Ii \Xi, i ∈ [1, n]

• Bi = Xi ∩ Ii, i ∈ [1, n]

To capture the first kind of side effect, for all possibilities of
T1, ..., Tn, whereTi ∈ {Ui, Ai, Bi}, such that there exist an
i, j ∈ [1, n], Ti = Ui and Tj = Ai, we rewriteQ to accom-
modate the variables inUi and thus to capture side effects. More
specifically, we rewrite the selection conditions and projected at-
tributes. We illustrate the rewriting using an example: givenQ :=
πP (σC(R1, R2, R3)) and one combination (U1, U2, A3), to cap-
ture the side effects from the combination we rewrite theQ into
Q′=πP1(σC2(U1, U2, A3)). The selection conditionsC in Q are
discomposed intoC1 andC2, whereC1 only contains equality con-
ditions involving variables (must be inU1 andU2 in this example)
while C2 contains the other selection conditions.P1 contains only
the attributes contained inC2. Observe that (1) the selection con-
ditions in C2 that do not contain variable can be imposed onQ′,
and (2) the projection onP1 ensures that any two of generated side

Input : relationsI1, ..., In, view V , a group insertion∆R,
the view definitionπP (σC(R1 × ...×Rn)),
Output : side-effect encode or reject (exception)

1. ComputeXi from ∆R w.r.t Ri, for i ∈ [1, n];
2. PreprocessXi;
3. Θ := ∅ /* SAT instance */
4. Ui := Xi \ Ii, i ∈ [1, n]
5. Ai := Ii \Xi, i ∈ [1, n]
6. Bi := Xi ∩ Ii, i ∈ [1, n]

/* detect the first type of side-effect */
7. for eachcombination ofT1, ...Tn, s.t.∃i ∃j [Ti = Ui ∧ Tj = Aj],

∧ ∀ k [(k 6= i ∧ k 6= j)→ (Tk = Uk ∨ Tk = Rk)]
8. C1 := selection conditions involving variables inTi

9. C2 := C \ C1

10. P1: = attributes involved in conditions inC1

11. ∆V1 := πP1 (σC2 (T1, ..., Tk))
12. for each t′ ∈∆V1

13. if t′ does not contain variablethen reject∆R return
14. elseΘ := Θ ∧ (

∨
cj∈C1

((xkj
6= zkj

)))
15. endfor
16. endfor

/* detect the second type of side-effect */
17. for eachcombination ofT1, ...Tn, s.t.∃i [Ti = Ui]

∧ ∀ k [(k 6= i)→ (Tk = Xk)]
18. C1 := selection conditions involving variables inTi

19. C2 := C \ C1

20. ∆V2 := σC2 (T1, ..., Tk)
21. for each t′ ∈∆V2 ∧ t′ /∈ U
22. if t′ does not contain variablethen reject∆R return
23. elseΘ := Θ ∧ (

∨
cj∈C1

(xkj
6= zkj

))
24. endfor
25. endfor
26. returnΘ

Figure 12: The insert algorithm

effect tuples produce different encoding. The second kind of side
effect is captured similarly.

The algorithm is given in Fig. 12. Its input consists of (1) a set of
base relations{I1, ...In}, (2) a viewV defined in terms of conjunc-
tive queryV = πP (σC(R1× ...×Rn)), and (3) a group insertion
∆R = {t1, ..., tk} againstV . The first kind of side-effect is encoded
in lines 7-16. If a returned tuple does not contain any variable, it is
a side-effect tuple(line 13); If it contains some variables, we need
to instantiate the variables such that the selection conditions inC1

are not satisfied in order to avoid side-effect. More specifically, for
each return tupletk containing variable, we construct for each con-
dition cj in C1 one inequalityxkj 6= zkj , wherexkj is a variable
andzkj can be either a constant or a variable. Side-effect tupletk

can be avoided only if at least one of the above inequalities holds.
Similarly we encode the second kind of side-effect (lines 17-25).

15

