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Abstract

A fundamental concern of information integration
in an XML context is the ability toembedone or
more source documents in a target document so
that (a) the target document conforms to a tar-
get schema and (b) the information in the source
document(s) ispreserved. In this paper, informa-
tion preservation forXML is formally studied, and
the results of this study guide the definition of a
novel notion ofschema embeddingbetween two
XML DTD schemas represented as graphs. Schema
embedding generalizes the conventional notion of
graph similarity by allowing an edge in a source
DTD schema to be mapped to a path in the target
DTD. Instance-level embeddings can be defined
from the schema embedding in a straightforward
manner, such that conformance to a target schema
and information preservation are guaranteed. We
show that it is NP-complete to find an embedding
between twoDTD schemas. We also provide ef-
ficient heuristic algorithms to find candidate em-
beddings, along with experimental results to eval-
uate and compare the algorithms. These yield the
first systematic and effective approach to finding
information preservingXML mappings.

1 Introduction

A central technical issue for the exchange, migration and
integration ofXML data is to find mappings from docu-
ments of a sourceXML (DTD) schema to documents of a
target schema. While one can certainly defineXML map-
pings in a query language such asXQuery or XSLT, such
queries may be large and complex, and in practice it is of-
ten needed thatXML mappings (1) guaranteetype-safety
and (2)preserve information.
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It is clearly desirable that the document produced by an
XML mapping conforms to a target schema, guaranteeing
type safety. But this may be difficult to check for mappings
defined inXQuery or XSLT [4]. Further, since in many ap-
plications one does not want to lose the original informa-
tion of the source data, a mapping should also preserve in-
formation. Criteria forinformation preservationinclude:
(1) invertibility [16]: can one recover the source document
from the target? and (2)query preservation: for a particular
XML query language, can all queries on source documents
in that language be answered on target documents? We now
illustrate these concepts with an example.

Example 1.1: Consider two sourceDTDsS0, S1 and a tar-
get DTD S represented as graphs in Fig. 1 (we omit the
str–PCDATA– child undercno, credit, title, year, term, in-
structor, gpain Fig. 1(c)). A document ofS0 contains in-
formation ofclasses currently being taught at a school, and
a document ofS1 containsstudentdata of the school. The
user wants to map the document ofS0 and the document of
S1 to a single instance ofS, which is to collect data about
coursesand studentsof the school in the last five years.
Here we use edges of different types to represent different
constructs of aDTD, namely,solid edgesfor a concatena-
tion type (a unique occurrence of each child),dashed edges
for disjunction (one and only one child), andstar edges
(edge labeled ‘∗’) for Kleene star (zero or more child).2

In this example, invertibility asks for the ability to re-
construct the originalclassandstudentdocuments from an
integratedschooldocument, while query preservation re-
quires the ability to answerXML queries posed onclassand
studentdocuments using theschooldocument. Two natu-
ral questions are: (a) can one determine whether anXML

mapping is information preserving? (b) is there an efficient
method to find information-preservingXML mappings?

While type safety and information preservation are
clearly desirable, an additional feature is the ability to map
documents ofDTDs that havedifferent structures. A given
sourceDTD may differ in structure from a desired target
DTD. This is typical in data integration, where the target
DTD needs to accommodate data frommultiple sourcesand
thus cannot be similar to any of the sources; see, e.g., the
class, studentDTDs and theschoolDTD in Fig. 1.

Background. While information preservation has been
studied for traditional database transformations [3, 16, 27,
28], to our knowledge, no previous work has considered it
for XML mappings. In fact, a variety of tools and models
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havebeen proposed for findingXML mappings at schema-
or instance-level [13, 22, 24, 25, 26, 29]; however, none
has addressed invertibility and query preservation forXML .
Most tools either focus onhighly similar structures, or
adopt a strict graph similarity model like bisimulation (see,,
e.g., [1]) to match structures, which is incapable of map-
ping DTDs with different structuressuch as those shown in
Fig. 1, and can ensure neither invertibility nor query preser-
vation w.r.t.XML query languages. Another issue is that it
is unclear that mappings found by some of these tools guar-
antee type safety when it comes to complexXML DTD s.

Contribution. To this end we study information preserving
XML mappings, and make the following contributions.

First, as criteria for information preservation we revisit
the notions of invertibility and query preservation [3, 16,
27, 28] forXML mappings (Section 2). While the two no-
tions coincide for relational mappings w.r.t. relational cal-
culus [16], we show that they are in general different for
XML mappings w.r.t.XML query languages. Furthermore,
we show that it is undecidable to determine whether or not
an XML mapping defined in a simple fragment ofXQuery
(or XSLT) is information preserving (Section 3).

Second, to cope with the undecidability result, we intro-
duce anXML mapping framework based on a novel notion
of schema embeddings. Aschema embeddingis a natural
extension of graph similarity in which an edge in a source
DTD schema may be mapped to apath, rather than a single
edge, in a targetDTD. For example, the sourceDTDs S0

andS1 of Fig 1 can both be embedded inS, while there is
no sensible mapping from them toS based on graph sim-
ilarity. From a schema embedding, an instance-levelXML

mapping can be directly produced that has all the prop-
erties mentioned above. In particular, such mappings are
invertible, query preserving w.r.t. regular XPath (an exten-

sion of XPath introduced in [23]), and ensure type safety.
As with schema-mapping techniques for other data models,
by automatically producing this mapping the user is saved
from writing and type-checking a complex mapping query.
Moreover, we show that theinverseand query rewriting
functionsfor the mapping are efficient (Section 4).

Third, we provide algorithms to compute schema em-
beddings. We show that it is NP-complete to find an em-
bedding between twoDTDs, even when theDTDs are nonre-
cursive. Thus algorithms for finding embeddings are nec-
essarily heuristic. A building block of our algorithms is
an efficient algorithm to find alocal embeddingfor indi-
vidual productions in the source schema. Based on this,
we develop three heuristic algorithms to compute embed-
dings. The first two algorithms repeatedly attempt to as-
semble local embeddings into a schema embedding (using
a random or quality-specific order of the local embeddings,
respectively), and when conflicts arise, attempt to gener-
ate new, non-conflicting local embeddings. The third algo-
rithm generates a candidate pool of local embeddings, and
then uses a heuristic solution to Maximum-Independent-
Set to assemble a valid schema embedding (Section 5).

Finally, we have implemented our algorithms and con-
ducted an experimental study based on mapping schemas
taken from real-life and benchmark sources to copies of
these schemas with varying amounts of introduced noise.
These experiments verify the accuracy and efficiency of our
heuristics on schemas up to a few hundred nodes in size
(Section 6), and suggest that schema embeddings will lead
to a promising tool for automatically computing informa-
tion preservingXML mappings. We discuss related work in
Section 7. Proofs are in the full version [8] of this paper.

To the best of our knowledge, this work is the first to
study information preservation in theXML context, and it
yields a systematic and effective approach to defining and
finding information preservingXML mappings.

2 DTDs, XPath, Information Preservation

In this section we reviewDTDs and (regular) XPath, and
revisit information preservation [16, 28] forXML .

2.1 XPath and Regular XPath

We consider a class ofregularXPath queries proposed and
studied in [23], denoted byXR and defined as follows:

p ::= ǫ | A | p/text() | p/p | p ∪ p | p∗ | p[q],

q ::= p | p/text() = ‘c’ | position() = k

| ¬q | q ∧ q | q ∨ q.

whereǫ is the empty path (self), A is a label (element type),
‘∪’ is the unionoperator, ‘/’ is the child-axis, and∗ is the
Kleene star;p is anXR expressions,k is a natural number,
c is a string constant, and¬,∧,∨ are the Boolean negation,
conjunction and disjunction operators, respectively.

An XPath fragmentof XR, denoted byX , is defined by
replacingp∗ with p//p in the definition above, where// is
thedescendant-or-self axis.



A (regular) XPath queryp is evaluated at acontext node
v in an XML treeT , and its result is the set of nodes (ids)
of T reachable viap from v, denoted byv[[p]].

2.2 DTDs

We considerDTDs of the form(Ele, P, r), whereEle is a
finite set ofelement types; r is a distinguished type inEle,
called theroot type; P defines the element types: for each
A in Ele, P (A) is a regular expression of the form:

α ::= str | ǫ | B1, . . . , Bn | B1 + . . . + Bn | B∗

wherestr denotesPCDATA, ǫ is the empty word,B is a
type inEle (referred to as achild of A), and ‘+’, ‘ ,’ and
‘∗’ denotedisjunction(with n > 1), concatenationand
the Kleene star, respectively. We refer toA → P (A) as
theproductionof A. Note that this form ofDTDs does not
lose generality since anyDTDs S can be converted toS′

of this form (in linear time) by introducing new element
types, and (regular) XPath queries onS can be rewritten
into equivalent (regular) XPath queries onS′ in PTIME [7].

Schema Graphs. We represent aDTD S as a labeled graph
GS , referred to as thegraphof S. For each element type
A in S, there is a unique node labeledA in GS , referred to
as theA node. From theA-node there are edges to nodes
representing child types inP (A), determined by the pro-
ductionA → P (A) of A. There are three different types of
edges indicating differentDTD constructs. Specifically, if
P (A) is B1, . . . , Bn then there is asolid edgefrom theA
node to eachBi node; it is labeled with a positionk if Bi

is thek-th occurrence of a typeB in P (A) (the label can
be omitted ifBi’s are distinct). IfP (A) is B1 + . . . + Bn

then there is adashed edgefrom theA node to eachBi

node (w.l.o.g. assume thatBi’s are distinct in disjunction).
If P (A) is B∗, then there is asolid edge witha ‘∗’ label
from theA node to theB node. Note that aDTD is recur-
siveif its graph iscyclic. When it is clear from the context,
we shall use theDTD and its graph interchangeably, both
referred to asS; similarly for A element type andA node.

For example, Fig. 1 shows graphs representing three
DTDs, where Figs. 1(a) and 1(c) depict recursiveDTDs.

An XML instanceof a DTD S is a node-labeled tree that
conforms toS. We denote byI(S) the set of all instances
of S. A DTD S is consistentif it has no useless element
types, i.e., each type ofS has an instance. In the sequel
we only consider consistentDTDs, w.l.o.g. since anyDTD

S can be converted to a consistentS′ in O(|S|2) time such
thatI(S′) = I(S), by dropping all useless types fromS.

2.3 Invertibility and Query Preservation

For XML DTD s S1 and S2, a (data) instance mapping
σd : I(S1) → I(S2) is invertible if there exists an inverse
σ−1

d of σd such that for anyXML instanceT ∈ I(S1),
σ−1

d (σd(T )) = T , wheref(T ) denotes the result of apply-
ing a function (or mapping, query)f to T . In other words,
the compositionσ−1

d ◦ σd is equivalent to the identity map-
ping id, which maps anXML document to itself.

For anXML query languageL, a mappingσd is query
preserving w.r.t.L if there exists a computable functionF :
L → L such that for anyXML queryQ ∈ L and anyT ∈
I(S1), Q(T ) = F (Q)(σd(T )), i.e.,Q = F (Q) ◦ σd.

In a nutshell, invertibility is the ability that the origi-
nal sourceXML document can be recovered from the target
document; query preservation w.r.t.L indicates whether or
not all queries ofL on any sourceT of S1 can be effec-
tively answered overσd(T ), i.e., the mappingσd does not
lose information ofT whenL queries are concerned.

The notions of invertibility and query preservation are
inspired by (calculus)dominanceand query dominance
that were proposed in [16] for relational mappings and later
studied in [3, 27, 28]. In contrast to query dominance,
query preservation is defined w.r.t. a givenXML query lan-
guage that does not necessarily support query composition.
Invertibility is defined forXML mappings and it only re-
quiresσ−1

d to be a partial function defined onσd(I(S1)).
We say that a mappingσd : I(S1) → I(S2) is infor-

mation preservingw.r.t.L if it is both invertible and query
preserving w.r.t.L.

3 Information Preservation
In this section we establish basic results for separation
and equivalence of the invertibility and query preservation
of XML mappings, as well as complexity of determining
whether a givenXML mapping is information preserving.

Invertibility and Query Preservation. It was shown [16]
that calculus dominance and query dominance are equiva-
lent for relational mappings. In contrast, invertibility and
query preservation do not necessarily coincide forXML

mappings and query languages. Recall the classX of
XPath queriesdefined in Section 2, which supports neither
query composition, nor identify mapping, nor the ability to
navigate a recursiveDTD based on certain patterns that are
expressible in terms of the Kleen closurep∗.

Theorem 3.1: There exists an invertibleXML mapping
that is not query preserving w.r.t.X ; and there exists an
XML mapping that is not invertible but is query-preserving
w.r.t. the class ofX queries withoutposition()qualifier. 2

We identify sufficient conditions for the two to coincide:
the definability ofthe identity mapping, andquery com-
posibility (i.e., for anyQ1, Q2 in L, Q2 ◦ Q1 is inL).

Theorem 3.2: LetL be anyXML query language andσd

be a mapping fromI(S1) → I(S2).

• If the identity mappingid is definable inL andσd is
query preserving w.r.t.L, thenσd is invertible.

• If L is composable,σd is invertible andσ−1

d is ex-
pressible inL, thenσd is query preserving w.r.t.L. 2

Recall the classXR of regular XPath queries defined
in Section 2. Although the identity mappingid is not
definable inXR, we show below that query preservation
w.r.t. XR is a stronger property than invertibility: every
node in a source document can uniquely identified by an
XR query on the target document, and thus can be retracted.



Theorem 3.3: If an XML mappingσd is query preserving
w.r.t. XR, thenσd is invertible. Conversely, there existsσd

that is invertible but is not query preserving w.r.t.XR. 2

Complexity. It is common to findXML mappings defined
in XQuery or XSLT. A natural and important question is
to decide whether or not anXML mapping is invertible or
query preserving w.r.t. a query languageL. Unfortunately,
this is impossible forXML mappings defined in anyL that
subsumes first-order logic (FO, or relational algebra–RA),
e.g., XQuery, XSLT, even whenL consists of projection
queries only. Thus it is beyond reach to answer the question
for XQueryor XSLT mappings.

Theorem 3.4: It is undecidable to determine, given an
XML mappingσd defined in any language subsumingFO,
whether or not (a)σd is invertible; and (b)σd is query pre-
serving w.r.t. projection queries. 2

This can be verified by reduction from the equivalence
problem forRA queries. The undecidability suggests that
we start with languages simpler thanXQuery and XSLT
when studying information preservingXML mappings. In-
deed, understanding (regular) XPath query preservation is
a necessary step toward a full treatment ofXML mappings
defined inXQueryor XSLT, in which XPath is embedded.

4 Schema Embeddings for XML
The negative results in Section 3 tell us that it is already
hard to determine whether or not anXML mapping is infor-
mation preserving, not to mention finding one. This moti-
vates us to look for a class ofXML mappings that areguar-
anteedto be information preserving.

We approach this problem by specifyingXML mappings
at the schema level embeddings, and providing an auto-
mated derivation of instance-level mappings from these
embeddings. Our notion ofschema embeddingsis novel,
and extends the conventional notion of graph similarity by
allowing edges in a sourceDTD schema to be mapped to a
path in a targetDTD with a “larger information capacity”.
For example, aSTAR edge can only be mapped to a path
with at least oneSTAR edge.

In this section we defineXML schema embeddings,
present an algorithm for deriving an instance-level map-
ping from a schema embedding, and verify that the result-
ing mappings ensure information preservation.

4.1 Schema Level Embeddings

Consider a sourceXML DTD schemaS1 = (E1, P1, r1)
and a targetDTD S2 = (E2, P2, r2). In a nutshell, a schema
embeddingσ is a pair of functions(λ, path) that maps each
A type inE1 to aλ(A) type inE2, and each edge(A, B)
in S1 to a uniquepath(A, B) from λ(A) to λ(B) in S2,
such that theS2 paths mapped from sibling edges inS1 are
sufficiently distinct to allow information to be preserved.
To defineλ andpath we first introduce a few notations.

XR Paths. An XR path over aDTD S = (E, P, r) is an
XR query of the formρ = η1/ . . . /ηk, wherek ≥ 1, ηi is
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Figure 2: Path mappings for DTDs

of the formA[q], andq is eithertrue or a position()qual-
ifier, such thatρ is a path inS and it carries all the posi-
tion labels on the path. AnXR path is called anAND path
(resp.OR path, andSTAR path) if it is nonempty and con-
sists of only solid or star edges (resp. of solid edges and
at least one dashed edge, and of solid edges and at least
one edge labeled∗). Referring to Fig. 1(c), for example,
basic/class/semester/titleis anAND path as well as aSTAR

path, andmandatory/regularis anOR path.

Name Similarity. A similarity matrix for S1 andS2 is an
|E1| × |E2| matrix att of numbers in the range[0, 1]. For
anyA ∈ E1 andB ∈ E2, att(A, B) indicates the suitabil-
ity of mappingA toB, as determined by human domain ex-
perts or computed by an existing algorithm, e.g., [5, 13, 21].

Type Mapping. A type mappingλ fromS1 toS2 is a (total)
function fromE1 to E2; it maps the root ofS1 to the root
of S2, i.e.,λ(r1) = r2. A type mappingλ is valid w.r.t. a
similarity matrixatt if for any A ∈ E1, att(A, λ(A)) > 0.

Path Mapping. A path mappingfromS1 toS2, denoted by
σ : S1 → S2, is a pair(λ, path), whereλ is a type mapping
andpath is a function that maps each edge(A, B) in S1 to
anXR pathpath(A, B) that is fromλ(A) to λ(B) in S2.

For a particular element typeA in E1, we say thatσ is
valid for A if the following conditions hold, based on the
productionA → P1(A) in S1:

• if P1(A) = B1, . . . , Bl, then for eachi, path(A, Bi) is
an AND path fromλ(A) to λ(Bi) that is not a prefix
of path(A, Bj) for anyj 6= i;

• if P1(A) = B1 + . . .+Bl, then for eachi, path(A, Bi)
is anOR path fromλ(A) to λ(Bi) that is not a prefix
of path(A, Bj) for anyj 6= i 1;

• if P1(A) = B∗, thenpath(A, Bi) is aSTAR path;

• if P1(A) = str, thenpath(A, str) is anAND path end-
ing with text().

The validity requires apath typecondition and aprefix-free
condition, which, as will be seen shortly, are important for
deriving the instance-level mapping fromσ.

Example 4.1: Consider pairs of source (on the left) and
target (on the right)DTDs depicted in Fig. 2, for which
a type mappingλ is defined asλ(X) = X ′ for X in
{A, B, C}, except in Fig. 2(c) where bothλ(C) = B′

andλ(B) = B′. Observe the following. For Fig. 2(a),
there is no valid path embedding from the sourceDTD to
the target; intuitively,B andC must coexist in a source
document while only one ofB′ andC′ exists in the target.

1Abusing our normal form ofDTDs, an optional typeB can be spec-
ified as, e.g.,A → B + ǫ; herepath(A, Bi) simply needs to be anOR

path sinceǫ is not an element type and thuspath(A, ǫ) is undefined.



For Fig. 2(b), the source cannot be mapped to the target
since there are possibly multipleB elements in the source,
which cannot be accommodated by the target. For Fig. 2(c),
a valid embedding ispath(A, B) = B′[position() = 1]
and path(A, C) = B′[position() = 2]. For Fig. 2(d),
there is no valid embedding sincepath(A, B) is a pre-
fix of path(A, C), violating the prefix-free condition. For
Fig. 2(e), a valid embedding ispath(A, B) = A′/B′ (by
unfolding the cycle once) andpath(A, C) = B′/C′. 2

Finally, we defineXML schema embeddings as follows.

Schema Embedding. A schema embeddingfrom S1 to S2

valid w.r.t. a similarity matrixatt is a path mappingσ =
(λ, path) from S1 to S2 such thatλ is valid w.r.t.att, and
σ is valid for every elementA in E1.

Example 4.2: Assume a similarity matrixatt such that
att(A, A′) = 1 for all A in the DTD S0 of Fig. 1(a) and
A′ in S of Fig. 1(c). The sourceDTD S0 can be embedded
in the targetS via σ1 = (λ1, path1) defined as follows:

λ1(db) = school, λ1(class) = course, λ1(type) = category,
λ1(A) = A /* A: cno, title, regular, project, prereq,str */

path
1
(db, class) = courses/current/course

path
1
(class, cno) = basic/cno

path
1
(class, title) = basic/class/semester/title

path
1
(class, type) = category

path
1
(type, regular) = mandatory/regular

path
1
(type, project) = advanced/project

path
1
(regular, prereq) = required/prereq

path
1
(prereq, class) = course

path
1
(A, str) = text() /* A for cno, title */

Note thatpath1(A, B) is a path inS denoting how to
reachλ1(B) from λ1(A), i.e., the path isrelative toλ1(A).
For example,path1(type, project)indicates how to reach
projectfrom acategorycontext node inS, wherecategory
is mapped fromtype in S0 by λ1. Here the similarity ma-
trix att imposes no restrictions: any name in the source can
be mapped to any name in the target; thus the embedding
here is decided solely on theDTD structures.

In contrast, onecannotmapS0 to S by graph similarity,
which requires that nodeA in the source is mapped (simi-
lar) to B in the target only if allchildrenof A are mapped
(similar) tochildrenof B. In other words, graph similarity
maps an edge in the source to an edge in the target.2

The definition of schema embedding can be extended to
support further restructuring “across hierarchies” such that
a childB of a source typeA is not necessarily mapped to a
descendant ofλ(A) in the target; this can be achieved via,
e.g., upward modality inpath(A, B). It is also possible that
an AND edge does not have to be mapped to anAND path.
We focus on the main idea of schema embeddings in this
paper and defer the full treatment to the full version.

Embedding Quality. There are many possible metrics. In
this paper we consider only a simple one: the quality of a
schema embeddingσ = (λ, path) w.r.t. att is the sum of
att(A, λ(A)) for A ∈ E1, and we say thatσ is invalid if λ
is invalid w.r.t.att. We refer to this metric asqual(σ, att).

4.2 Instance Level Mapping

For a valid schema embeddingσ = (λ, path) from S1 to
S2, we give its semantics by defining a (data) instance-level
mappingσd : I(S1) → I(S2), referred to as theXML

mapping ofσ.
We defineσd by presenting an algorithm that, given an

instanceT1 of S1, computes an instanceT2 = σd(T1) of
S2. In a nutshell,σd constructsT2 top down starting from
the rootr2 of T2, mapped from the rootr1 of T1 (recall
λ(r1) = r2). Inductively, for eachλ(A) elementu in T2

that is mapped from anA elementv in T , σd generates a
distinctλ(B) nodeu′ in T2 for each distinctB child v′ of
v in T1, such thatu′ is reached fromu via path(A, B) in
T2, i.e., u′ is uniquely identified by theXR path fromu.
More specifically, the construction is based on the produc-
tion A → P1(A) in S1 as follows.

(1)PA(A) is B1, . . . , Bn. For each childvi of v, σd creates
a nodeui bearing the same id asvi. These nodes are added
to T2 as follows. For eachi ∈ [1, n], ui is added toT2

by creatingpath(A, Bi) emanating fromu to ui, such that
the path shares any prefix already inT2 which were created
for, e.g.,path(A, Bj) for j < i. The definition ofpath()
ensures thatui anduj are not the same node inT2, since
path(A, Bi) is not a prefix ofpath(A, Bj) and vice versa.

(2) P1(A) is B1 + . . . + Bn. Herev in T1 must have a
unique childvi. For vi, σd creates a nodeui bearing the
same id asvi, and addsui to T2 via path(A, Bi) as above.

(3) P1(A) is B∗. By the definition of validpath function,
path(A, B) is of the formpath(A, A1)/B1/path(B1, B),
whereA1 is the first type defined in terms of Kleene star in
P2, i.e.,P2(A1) = B∗

1 . Let [v1, . . . , vk] be the list of all the
children ofv. Thenσd createsu1, . . . , uk bearing the same
id’s asv1, . . . , vk, and adds these nodes toT2 as follows. It
first generates a singlepath(A, A1) from u to anA′ node
u′ if it does not already exist inT2, and for eachi ∈ [1, k],
it creates a distincti-th B1 child if it is not already inT2.
From thei-th Bi node it generatespath(B1, B) leading to
ui, in the same way as in (1) above. Note that the order of
the children ofv is preserved byσd.

(4) P1(A) is str. The treatment is the same as (1) except
the last node ofpath(A, str) in T2 is a text node holding
the same value as the text node inT1.

We repeat the process until all nodes inT1 are mapped
to nodes inT2. We finally completeσd(T ) by addingnec-
essarydefault elements such thatσd(T ) conforms toS2.
Recall from Section 2 that we can assume w.l.o.g. consis-
tentDTDs. Thus for each element typeA in S2, we can pick
a fixed instanceIA of A and use it asA’s defaultelement.
The choice of default elements is arbitrary since as will be
seen shortly, the inverseσ−1

d of σd exists and it can distin-
guishT2 nodes mapped fromT1 from default elements.

Example 4.3: Consider theXML mappingσd of the em-
bedding defined in Example 4.2. Given an instanceT1 of
S0 of Fig. 1(a),σd generates a treeT2 of S of Fig. 1(c)
as follows: σd first creates the rootschoolof T2, bearing
the node id of the rootdb of T1. Then,σd creates a sin-



gle courseschild x of school, a singlecurrentchild y of x,
and for eachclasschild c of db, σd creates a distinctcourse
child z of y bearing the id ofc, such that thecoursechildren
of y are in the same order as theclasschildren ofdb. It then
maps thecno, title, typechildren ofc to cno, title, category
descendants ofz in T2, based onpath1. In particular, to
maptitle in S0, it creates a singleclasschild xc of theba-
sic element, asinglesemesterchild xs underxc (although
classis defined with a Kleene star), and then atitle child
underxs. For thecategoryelementw mapped from the
typechild t of c, σd creates a distinct pathadvanced/project
underw if t has aproject child, or a mandatory/regular
path otherwise, but not both. The process proceeds until
all nodes inT1 are mapped toT2. Finally, default elements
of history, credit, year, term, instructorandgpaare added
to T2 such thatT2 conforms toS. At the last stage, no chil-
dren of disjunctive typescategory, mandatoryor advanced
are added, and no children are created underhistory. That
is, default elements are added onlywhen necessary. 2

We next show thatσd is well defined. That is, given any
T1 in I(S1), σd(T1) is an XML tree that conforms toS2.
This is nontrivial due to the interaction between different
paths defined for disjunction types in the schema mapping
σ, among other things. Consider, for example,path(type,
regular)in Example 4.2. The path requires the existence of
a regularchild under amandatoryelementm, which is in
turn a child under acategoryelementc in an instance of
S. Thus it rules out the possibility of adding anadvanced
child underc or alabchild underm, perhaps requested by a
conflicting pathin σ. However, Theorem 4.1 below shows
that theprefix-freecondition in the definition of validpath
functions ensures that conflicting paths do not exist.

Theorem 4.1 also shows thatσd is injective: it maps
distinct nodes inT1 to distinct nodes inσd(T1), a prop-
erty necessary for information preservation. Indeed,σ de-
termines an injectivepath-mappingfunction δ such that,
for eachXR pathρ = A1[q1]/ . . . /Ak[qk] in S1 from r1,
δ(ρ) is path(r1, A1)[q1]/ . . . /path(Ak−1, Ak)[qk], anXR

path inS2 from r2, by substitutingpath(Ai, Ai+1) for each
Ai+1 in ρ. Since each node inT1 is uniquely determined
by anXR path from the root, it follows thatσd is injective.

Theorem 4.1: The XML mappingσd of a valid schema
embeddingσ : S1 → S2 is well defined and injective. 2

4.3 Properties of Schema Embeddings

We have shown that theXML mappingσd of a valid schema
embeddingσ is guaranteed to type check. We next show
thatσd andσ also have all the other desired properties.

Information Preservation. In contrast to Theorem 3.4,
information preservation is guaranteed by schema embed-
dings. Recall regular XPathXR from Section 2.

Theorem 4.2: TheXML mappingσd of a valid schema em-
beddingσ : S1 → S2 is invertible and is query preserving
w.r.t.XR. More precisely, (a) there exists an inverseσ−1

d of
σd that, given anyσd(T ), recoversT in O(|σd(T )|2) time;

and (b) there is a query translation functionF that given
any XR queryQ over S1, computes anXR queryF (Q)
equivalent w.r.t.σd overS2 in O(|Q| |σ| |S1|) time. 2

Example 4.4: TheXR queryQ below, overS0 of Fig. 1(a),
is to find all the classes that are (direct or indirect) prereq-
uisites ofCS331. It is translated to anXR queryQ′ overS
of Fig. 1(c), which is equivalent w.r.t. the mappingσd given
in Example 4.3, i.e.Q(T ) = Q′(σd(T )) for anyT ∈ I(S0),
when evaluated onT with the root as the context node.

Q: class[cno/text()=‘CS331’]/(type/regular/prereq/class)∗.

Q′: courses/current/course[basic/cno/text()=‘CS331’]/
(category/mandatory/regular/required/prereq/course)∗ . 2

In contrast, the notion of graph similarity ensures neither
invertibility nor query preservation w.r.t.XR. As a sim-
ple example, the source and target schemas in Fig. 2(a) are
bisimilar by the conventional definition of graph similarity,
which does not consider cardinality constraints of differ-
entDTD constructs. However, there exists no instance-level
mapping from the source to the target, not to mention in-
verse mappings and query translation.

Multiple sources. In contrast to graph similarity, it is pos-
sible to embed multiple sourceDTD schemas to a single
targetDTD, as illustrated by the example below. This prop-
erty is particularly useful in data integration.

Example 4.5: The embeddingσ2 = (λ2, path2) below
mapsS1 of Fig. 1(b) to the targetDTD S of Fig. 1(c).

λ2(db) = school
λ2(A) = A /* A: student, ssn, name, taking, cno */

path
2
(db, student) = students/student

path
2
(student,B) = B /* B: ssn, name, taking */

path
2
(taking, cno) = cno

path
2
(C, str) = text() /* C: ssn, name, cno */

Taken together withσ1 of Example 4.2, this allows us to
integrate acoursedocument ofS0 and astudentdocument
of S1 into a singleschoolinstance of the targetDTD S. 2

In general, given multiple sourceDTDs S1, . . . , Sn and
a single targetDTD S, one can define schema embeddings
σi : Si → S to simultaneously mapSi to S. Their XML

mappingsσ1
d, . . . , σn

d are invertible and query preserving
w.r.t. XR as long asδi, δj arepairwise disjoint, whereδi

is the path mapping function derived fromσi to mapXR

paths from root inSi to XR paths from root inS. The
instance-levelXML mappingσd is a composition of indi-
vidualσ1

d, . . . , σn
d . Hereσi

d increments the document con-
structed byσj

d’s for j < i by modifying default elements
or introducing new elements, instead of constructing a new
document ofS constructed starting from scratch.

Small model property. The result below gives us an upper
bound on the length|path(A, B)|, and allows us to reduce
the search space when defining or finding an embedding.

Theorem 4.3: If there exists a valid schema embedding
σ : S1 → S2, then there exists one such that for any edge
(A, B) in S1, |path(A, B)| ≤ (k + 1) |E2|, whereS2 =
(E2, P2, r2), andk is the size of the productionP2(A). 2



5 Computing Schema Embeddings
In this section we address the computation ofXML schema
embeddings as defined by the following problem, stated in
terms of twoXML DTD schemasS1 = (E1, P1, r1) and
S2 = (E2, P2, r2), and a similarity matrixatt:

PROBLEM: Schema-Embedding
INPUT: Two DTDsS1 andS2 and matrixatt.
OUTPUT: A schema embeddingσ : S1 → S2 valid

w.r.t. att if one exists.

In practice, a reasonable goal is to find an embeddingσ :
S1 → S2 with as high a value forqual(σ, att) as possible.
The ability to efficiently find good solutions to this problem
will lead to an automated tool that, given twoDTD schemas,
compute candidate embeddings to recommend to users.

However desirable, this problem is intractable. Worse,
it remains NP-hard for nonrecursiveDTDs even when they
are defined in terms of concatenation types only.

Theorem 5.1: The Schema-Embedding problem is NP-
complete. It remains NP-hard for nonrecursiveDTDs. 2

In light of the intractable results we develop two ef-
ficient yet accurate heuristic algorithms for computing
schema embedding candidates in the rest of the section.

Notations. Recall that a schema embedding is a path map-
pingσ that is valid for each element typeA in S1. Since the
validity conditions forA involve onlyA’s immediate chil-
dren, it is useful to talk about mappings local toA. A local
mappingfor A is simply apartial path mapping(λ0, path0)
such that (a)λ0 andpath0 are defined exactly on all the el-
ement types appearing inA’s productionA → P1(A), in-
cludingA itself; and (b) it isvalid, i.e., it satisfies the path
type and prefix-free conditions given in the last section.

Consider two partial mappings,σ0 = (λ0, path0) and
σ1 = (λ1, path1). We say thatλ0 andλ1 conflict onA if
both λ0(A) andλ1(A) are defined, butλ0(A) 6= λ1(A),
and similarly forpath0 andpath1. We sayσ0 andσ1 are
consistentif they do not conflict, either onλ or path. The
union of consistent partial mappings, denoted byσ0 ⊕ σ1,
is a partial embedding(λ1 ⊕ λ2, path1 ⊕ path2), where

λ1(A) ⊕ λ2(A) =

8

<

:

λ1(A) if λ2(A) is ⊥ (undefined)
λ2(A) if λ1(A) is ⊥
λ1(A) otherwise

similarly for path1(A, B) ⊕ path2(A, B).

Outline. In the rest of the section we first present a tech-
nique for finding local embeddings, already a nontrivial
yet interesting problem. Making use of this algorithm, we
then provide three heuristics for finding embedding can-
didates. The first two are based on randomized program-
ming and the last is by reduction from our problem to the
Max-Weight-Independent-Set problem for which a well-
developed heuristic tool [10] is available.

5.1 Finding Valid Local Mappings

We start by giving an algorithm to find a local embed-
ding σ0 = (λ0, path0) when the partial type mappingλ0

Algorithm findPathsDAG (G, s, Ltar)

Input: Directed Acyclic GraphG, source nodes,
a bag of target nodesLtar = {|t1, . . . , tk|}.

Output: Pathsρ1, . . . , ρk satisfying the prefix-free condition.

1. pathρ := <empty>;
2. P = ∅;
3. marked (n) := false for all n ;
4. traverse (G, s, ρ, Ltar,P);
5. if Ltar is nonempty
6. return ∅;
7. else return P ;

Figure 3: AlgorithmfindPathsDAG

is fixed, as this is a key building block of our schema-
embedding algorithms. We then extend the algorithm to
handle the general case whenλ0 is not given. To simplify
the presentation we focus on nonrecursiveDTDs, i.e.,DTDs
with adirected acyclic graph (DAG)structure, but we show
that our technique also works on recursive (cyclic)DTDs.

Finding Valid Paths. LetA ∈ E1 be a source element type
with productionA → P1(A), in which the element types
appearing inP1(A) areB1, . . . , Bk. Assume that the type
mappingλ0 is already given as a partial function fromE1 to
E2 that is defined onB1, . . . , Bk andA. The Valid-Paths
problem is to find pathspath0(A, B1), . . . , path0(A, Bk)
such that(λ0, path0) is a valid local mapping forA.

The validity conditions stated for embeddings in Sec-
tion 4.1 require that (a) target paths for each edge are of the
appropriatetype(AND, OR, or STAR path), and (b) that the
target path for an edge isnot a prefixof a sibling’s target
path. We abstract the second condition as a directed-graph
problem: Given a directed graphG = (V, E), a source ver-
tex s and abagof target verticesLtar = {|t1 . . . tk|}, find
pathsρ1, . . . , ρk such that no path is the prefix of another.
That is, for alli 6= j, ρj 6= ρi/ρij for anyρij including the
empty path. In contrast to most sub-problems of Schema-
Embedding, this can be solved inPTIME. We introduce our
solution by giving an algorithm that works only on aDAG

and discuss extending it to handle cycles below.
We present our algorithm,findPathsDAG, in Fig. 3, for

finding prefix-free paths in aDAG. The algorithm depends
on the recursive proceduretraverse, shown in Fig. 4. The
intuition of this algorithm is to modify a simple (but expo-
nential) algorithm to recursively enumerate all paths in a
DAG in such a way that prefix-free paths are found, but ex-
cessive running time is avoided. In a nutshell,traverse con-
ducts a depth-first-search on the input graphG, enumerat-
ing paths from the source nodes to target nodes inLtar, and
identifies prefix-free ones. It uses a (global) boolean array
marked (n) to keep track of whether the subgraph rooted
at a noden has been searched and yielded no matches for
nodes inLtar, and if so, it does not re-enter the subgraph.
A (local) variableret is used to indicate whether the search
of a subgraph finds any matches to nodes inLtar.

To see thattraverse is correct, consider removing line 5
in which the algorithm returns early, and line 11 in which
nodes are marked to avoid revisiting them. It is clear that
the resulting algorithm considers every possible path lead-



Algorithm traverse (G, n, ρ, Ltar,P)

Input: Directed Acyclic GraphG, noden,
a bag of target nodesLtar = {|t1, . . . , tk|},
ρ, the current path to the root,
andP , the output set of prefix-free paths.

Global variables: marked: maps nodes to{true,false }
Output: a list of paths.

1. if (marked (n)) return false;
2. if (n ∈ Ltar)
3. removen from Ltar;
4. addρ toP
5. return true;
6. else ret = false;
7. for each edgee = (n, m) outgoing fromn
8. appende to ρ;
9. ret := retor traverse (G, m, ρ,Ltar,P);
10. removee from ρ;
11. if (not ret)marked (n):=true;
12. return ret;

Figure 4: Algorithmtraverse

ing to nodes inLtar, and assigns one path to eachn ∈ Ltar,
but it does not avoid assigning one node the prefix of an-
other path. However, the prefix-free condition is assured
by the return at line 5without affecting correctness, since a
suffix of the path assigned ton could only be generated by
continuing the recursion from this node. Thus it remains to
argue that the algorithm is still correct if line 11 is in place.
The intuition of line 11 is simple: if no new target nodes
were found in the subtree of a node when it was explored
by the recursive calls of lines 7-10, then the current node
will not be on any path to anyn′ remaining inLtar.

Example 5.1: Consider the schema embedding problem
shown in Fig. 1. Assume thatatt (regular, seminar), and
att (project, advanced) in S0 are 0.75. This means that the
bag of possible target matchings for source tags{regular,
project} in S0 can be{|seminar, advanced|} from S. We
then invoketraverse with S, category, ρ (which is empty),
andLtar as{|seminar, advanced|}. The first call totraverse
would result in all edges fromcategoryto be recursed. Say,
our algorithm first picks the edge toadvanced. Line 2 of
traverse would checkadvancedto be inLtar and add the
path toadvancedinto P . It would then return back from
the recursion and try the other edges fromcategoryin lines
7 though 10. This would result in a prefix-free pathmanda-
tory/seminarwhich would also be added toP . 2

To analyze the performance offindPathsDAG, consider
traverse as a sequence of forward and backward traversals
of edges in the graph. A forward traversal occurs at line 9
and a backward traversal at lines 1, 5 and 12. Clearly, the
number of forward traversals and backward traversals in a
run are the same. Further, observe that one returns from an
un-marked node at line 5 only on the pathbackfrom some
node newly removed fromLtar. Thus, there can be at most
|Ltar| |V | such backward steps, and at most|E| other back-
ward steps (which mark the child of the edge traversed).
SinceG is aDAG, the algorithm is inO(|Ltar| |V |) time.

To usefindPathsDAG in our algorithms for schema em-
bedding, we must further ensure that the paths returned

match the types needed forn ∈ Ltar. That is easy to ac-
complish, as the type of a path can be maintained incremen-
tally as it is lengthened and shortended (by storing counts
of nodes of each type), and be checked at line 2.

Schema Embeddings with a Given λ. This algorithm can
be used to directly find a schema embeddingσ = (λ, path)
from S1 to S2 when the type mappingλ is a given total
function fromE1 to E2. As remarked earlier, the validity
conditions for anyA in E1 involve onlyA’s children; thus
to findpath we only need to find valid paths for eachA in
E1 and take the union of these valid local embeddings. This
yields anO(|S1| |S2|) algorithm to find embeddings in this
special setting, which is not so uncommon since one may
know in advance which target type a source type should
map to, based on,e.g.,machine-learning techniques [13].

Handling Multiple Targets. However, to find valid local
mappings whenλ is not given, we must consider that there
are multiple possible target nodes for each source node.
The general Local-Embedding problem is to find a local
embedding(λ0, path0) whenλ0 may not be fixed. This
problem is no longer tractable as shown below.

Theorem 5.2: The Local-Embedding problem is NP-
complete for nonrecursiveDTDs. 2

One heuristic approach to finding local embeddings is
to extendfindPathsDAG as follows. We compute the set
of all pairings of source nodesA and possible matches for
A from att and pass it asLtar. We also modify line 3 of
traverse to (a) pick an arbitrary pair with the current node
as the target fromLtar at line 2 and (b) remove all pairs as-
sociated with source nodeA from Ltar at line 3. While this
may work, it is essentially a greedy algorithm and may not
find a solution if one exists. To compensate for this, we ac-
tually use a randomized variantfindPathsRand (not shown)
which (a) picks a random source node associated withn at
line 2 of traverse, and (b) tries outgoing edges fromn at
line 7 in random order. The ability offindPathsRand to
find embeddings varies with the size ofLtar, and will be
investigated in Section 6.

Handling Cycles. Of course, schemas are frequently cyclic
(recursive), and the algorithms as presented so far only
handleDAGs. In fact, handling cycles generally is some-
what more complicated, but not hard – it is easy to see that
an arbitrary number of paths can be generated by repeated
loops around some cycle on the path to a target, and care-
ful use of these paths can guarantee the prefix-free prop-
erty (Figure 2(e) gives such an example, in which the cycle
is unfolded once to get a prefix-free path, in contrast to
Fig. 2(d)). While we present this full algorithm in [8], the
complication is not warranted here since long cyclic paths
are almost certainly semantically uninteresting. In prac-
tice, we have extendedfindPathsDAG once again to allow
limited exploration of cycles limited by (a) no more than
k trips through visited nodes and (b) no more thanl total
path length. A bound onk and l is given in Theorem 4.3
and usuallyk andl are set to small numbers.



Algorithm Ordered (S1, S2, O, C)

Input: SchemasS1 andS2, an ordered set of source tagsO,
andC, a set of local embeddings for each source tag.

Output: a schema embedding fromS1 to S2 if one is found.

1. σ := empty solution(∅, ∅);
2. for A in O
3. for σA in C(A)
4. c := conflict betweenσ andσA;
5. if c is null
6. σ = σ ⊕ σA; break;
7. if c is not null
8. findPathsRand (G, A, Ltar(A) − c);
9. if c is not nullreturn ∅;
10. return σ;

Figure 5: AlgorithmOrdered

5.2 Three Methods for Finding Schema Embeddings

We next give three heuristic embedding-search algorithms:
QualityOrdered, RandomOrdered andRandomMaxInd.

Finding Solutions with Ordered Algorithms. Our first
two heuristics are based on a common subroutineOrdered,
shown in Fig. 5. A key data structure is a table,C, where
C(A) is a set of known local embeddings for a source node
A. The initialization of this table is discussed later. Given
C and an ordered setO of source types,Ordered tries to
assemble a consistent mappingσ by considering eachA in
O order (line 2), and trying to find a local embeddingσA

in C(A) which can be merged with the existingσ without
a conflict (lines 3-8). If a conflict occurs it finds new local
embeddings forA by invokingfindPathsRand (lines 7-8).

Our first Ordered-based algorithm,QualityOrdered, is
shown in Fig. 6. HereC(A) is initialized with a single
randomly chosen local embedding for each source nodeA,
andO is sorted by thequalityof the local embedding.

In our second algorithmRandomOrdered (not shown),
C is the complete set of local embeddings discovered so far
for each source node (lines 4 and 5 in Fig. 6), whileO is a
random ordering of source nodes (line 6 in Fig. 6).

A Reduction Approach. We now discuss our third heuris-
tic, RandomMaxInd. To understand this heuristic, consider
the following problem defined on the tableC of local map-
pings defined above:

PROBLEM: Assemble-Embedding
INPUT: Two DTDs S1 andS2, a similarity matrix

att, and a tableC.
OUTPUT: A schema embeddingσ : S1 → S2, valid

w.r.t. att, formed as the union of a subset
of embeddings inC if one exists.

Composingσ from local embeddings inC is nontrivial:

Theorem 5.3: The Assemble-Embedding problem is NP-
complete for nonrecursiveDTDs. 2

To cope with this, theRandomMaxInd heuristic takes the
approach of reducing the Assemble-Embeddings problem
to the problem of finding high-weight independent sets in a
graph. It uses an existing heuristic solution [10] to produce

Algorithm QualityOrdered (S1, S2)

Input: SchemasS1 andS2.
Output: a schema embedding fromS1 to S2 if one is found.

1. count := 0;
2. while (count< MAX TRIES) do
3. count++;
4. for each source nodeA
5. C(A) := {a local embedding,σA for A

as found byfindPathsRand };
6. O := All source nodes, ordered byqual(σA, att);
7. σ := Ordered (S1, S2, O, C);
8. if σ 6= ∅
9. return σ;
10. return ∅;

Figure 6: AlgorithmQualityOrdered

partial or complete solutions to this problem, which can be
used to create partial or complete embeddings.

Before describing our reduction, we review the defini-
tion of Max-Weight-Independent-Set. That problem is de-
fined on an undirected graphG = (V, E) (not to be con-
fused with a schema graph) with node weightsw[v], v ∈ V .
The goal is to find a subsetV ′ of V such that forvi andvj

in V ′, there is no edge fromvi to vj ; i.e.,(vi, vj) 6∈ E and
the weight ofV ′, defined as

∑
v∈V ′ w[v], is maximized.

Given an instance of the Assemble-Embedding prob-
lem, it is straightforward to construct an instance of Max-
Weight-Independent-Set. First, for each local mapping
σa ∈ C(A) for any A ∈ E1, we construct a vertexvσa

in V . Second, for each pairσa, σb of such mappings, we
construct an edge betweenvσa

andvσb
if σa andσb con-

flict. The weight ofvσa
is given asqual(σa, att).

To complete the algorithm on the resulting graph, we use
an existing heuristic tool for Max-Weight-Independent-Set,
which returns a subsetV ′ of V . Finally, we construct an
embeddingσ by adding local embeddingσa to σ for each
vσa

∈ V ′. The quality ofσ is warranted by the heuristic
tool used, and its correctness is verified below.

Theorem 5.4: If |V ′| = |E1|, σ constructed as above is a
schema embedding fromS1 to S2. 2

If σ is not a full embedding, we usefindPathsRand to
generate new local mappings, if any are available, for tags
A not mapped byσ, and repeating the process until either
it finds a valid embedding or it reaches a threshold of tries.

6 Experimental Study

In this section, we present an experimental evaluation of
our schema embedding algorithms. Our approach is to vary
the difficulty of the matching task by introducing artificial
noise into a target schema, and measuring the ability of our
algorithms to find an embedding.

Our experiments are based on real-worldDTDs taken
from a publicly available repository [30], plus theDTD

of the XMark benchmark [33]. EachDTD was normal-
ized into our graph representation. The XMark schema is
the largest, with 57 productions after normalization. The
XMark schema is apparently the most involved schema
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as the others scale better (see Fig. 10), and accordingly,
we evaluate our algorithms for all the schemas but use the
XMark schema for more detailed experiments.

Generating Target Schemas. Target schemas are gen-
erated from source schemas with added complexity and
noise. As we introduce noise, we take care to preserve
this matching, but make it harder to find in a number of
ways, so as to attribute any failure to find a matching to the
algorithm rather than the data. Particular target schemas
are generated according to a probabilitynoise in two steps:
First, for each edge in the schema, with probabilitynoise,
the edge in the target is replaced with a path of between 1
and 5 nodes. When new nodes are added, with probability
.5, the name of the node is formed as a small mutation of
an existing name. Also, the type of the deleted edge (AND,
OR, STAR) is used as the type of the first introduced edge to
ensure that the original mapping is still possible.

In the second step, each node in the target (including
newly-added nodes) are visited again, and with probability
noise, a new subtree is added under it. The new subtree
adds between 1 and 10 nodes. After each subtree addition,
each leaf in the new subtree is visited, and with probability
.5, an edge is added to an existing leaf outside the newly-
added subtree. (This leaf may later have a subtree added
under it.) The intuition for this last step is that confusion
between different parts of the tree is more likely to arise if
the same “attributes” (leaf nodes) appear in multiple places.

Generating the att. The similarity array,att, is initial-
ized by computing pairwise string-edit distances between
source and target tags (string edit distance with unit cost
is also known as Damerau-Levenshtein distance). Further-
more, if a minimum threshold,sel, of similarity is not met
by a pair, the similarity of that pair is set to 0, and as a
result the tags cannot be matched. Note that the “simi-
lar names” introduced above range in similarity from .5
for short strings to over .8 for longer strings, and will be
counted as potential matches in many experiments. There
are also similar names in the schemas themselves, caused
by the conversion of the schema to our graph format.

Clearly, sel, referred to as theselectivityof att, is an
important parameter, as it directly determines the size of
the candidate pool of target tags matching each source tag.
Larger selectivities make the problem easier, and for our
experimental data ifsel is 1.0 (exact matches only), finding
a schema embedding reduces to finding valid prefix-free
paths for each local embedding in the source schema.

A second important parameter is theaccuracyof att.
This matters greatly for heuristic algorithms, since the valid

embedding in our generated data always has the highest
average quality. Accuracy is implemented with a parameter
c, which varies between 0 and 1. Each entrym in att is
replaced bycm+(1−c)rnd, wherernd is a random number
from 0 to 1. A low accuracy tends to mislead heuristics that
rely heavily onatt. Combining a low accuracy with a very
low selectivity makes the problem very difficult to solve.

Experimental Setting. Experiments are conducted by
copying the source schema, adding some amount of
noise based on the parameternoise, and adjusting the
att according tosel and c. Then the three algorithms
given in Section 5 (RandomOrdered, QualityOrdered and
RandomMaxInd) are used to try to find embeddings. For
the ordered algorithms, the setC is initialized by finding3
random mappings for eachA , and discarding the two with
the lowestqual ratings. When not otherwise stated, exper-
iments are run withsel = 0.6, c = 0.75 (accuracy) and
noise = 0.25. Since all algorithms (and the noise introduc-
tion) have a random component, they are repeated with 40
different random seeds, and an average is used.

The software is written in Java, except for the external
heuristic for maximum independent sets [9], which is an
optimized C program. Experiments are run on a variety
of machines with Pentium III processors running at either
933MHZ or 1.0GHZ, with 256MB of RAM.

Accuracy Results. Figure 7 shows how the three algo-
rithms perform while varying accuracy, withnoise = 0.25.
The y axis shows the percentages of runs for which a suc-
cessful embedding is found. For this noise amount, the
target schema is approximately three times as large as the
source schema. This graph shows thatQualityOrdered is
extremely sensitive to the quality of theatt values. It uses
att extensively in its search pattern, and thus cannot find
solutions unlessatt is accurate. Figure 7 also shows that
RandomOrdered finds correct solutions more frequently
thanRandomMaxInd. While RandomOrdered takes into
accountatt when it is seeking its solution set, it tries to
find alternative solutions based on the conflicts it detects,
independent of theatt values.RandomMaxInd seeks alter-
native solutions for nodes based solely on their weights, as
defined byatt. It does not use conflicts to guide its search.

Varying Target Schema Size. We also consider tar-
get schemas with different numbers of erroneous nodes
and edges introduced. These results are shown in
Fig. 8. Because this graph shows results when accuracy
is 0.75, QualityOrdered does not do well, as expected.
RandomOrdered andRandomMaxInd both find the correct
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Figure 10: Time required for different source schemas

solution the majority of the time, decreasing somewhat as
noise increases. The running times are shown in Fig. 9.

Different Source Schemas. We also run tests with dif-
ferent source schemas. We varynoise over five differ-
ent source schemas, usingRandomOrdered and accuracy=
0.75. Figure 10 shows the running times for the various
source schemas. For all runs across the different schemas, a
solution was found more than 90% of the time (not shown).

Varying Selectivity. We also run experiments with dif-
ferent values of selectivity. BothRandomOrdered and
RandomMaxInd find solutions less frequently as selectiv-
ity decreases (not shown).QualityOrdered is relatively in-
different to the selectivity level, finding approximately the
same number of solutions atsel = 0.3 as atsel = 0.7. The
running time increases dramatically, however, oncesel falls
below0.4. The results are shown in Fig. 11.

Discussion. Our experimental results show that, when a
feasible matching exists, it is likely to be almost com-
pletely found for schema sizes of up to a few hundred
nodes. While this does not demonstrate that similar results
can be obtained with differing target schemas and the use
of real-world tools to produceatt, it is certainly promis-
ing. Further, we found that the randomized algorithm
RandomOrdered performs better thanRandomMaxInd,
and thatQualityOrdered only does well with a highly ac-
curateatt. Based on these results, we plan to integrate
RandomOrdered andRandomMaxInd, since the external
independent set heuristic is very fast in practice. Finally,
we note thatQualityOrdered may be important in practice,
where theatt values may in fact be reliable.

7 Related Work

A wide variety of techniques have been developed to solve
different forms of schema matching for relational,ER and
object-oriented models (e.g., [5, 12, 18, 21, 31]; see [32]
for a recent survey). While these are not focused onXML

DTD schema matching, some techniques, such as linguis-
tic analyses and machine learning, are useful for finding
name/label similarity, which our algorithms take as input.

Closer toXML schema matching are [6, 13, 22, 24, 25,
26, 29]. LSD [13] proposes machine-learning techniques
that make use of instance-level information to determine
XML DTD tag mapping. Systems of [22, 24, 25] target
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a wide class of schemas and can be tailored to a variety
of data models. The similarity flooding algorithm of [24]
provides a novel schema matching tool based on graph-
similarity. Cupid [22] is a generic system that encompasses
a variety of techniques such as linguistic analyses and con-
text dependencies.Rondo [25] proposes a powerful set
of model mapping operators. For structure-level schema
matching, these systems adopt graph similarity to map a
single source schema to a target. TransScm [29] considers
instance-level mappings based on schema matching, and
uses a semi-automatic mechanism to match highly simi-
lar schemas. Clio [26] also focuses on deriving instance
translation from schema mappings. The recent work [6]
studies invertibleXML -to-relation mappings that guarantee
the sourceXML document remains valid in the presence
of updates to the mapped relations. To our knowledge, no
previous work has considered information preservation for
XML DTD schema mappings. Our notion of schema embed-
ding extends graph similarity and allows multiple source
DTD schemas to be mapped to a single structurally differ-
ent targetDTD. Furthermore, from a schema embedding an
instance mapping can beautomaticallyderived and itguar-
anteesboth invertibility and query preserving w.r.t. reg-
ular XPath queries. The ability of finding information-
preservingXML mappings is important for data integration
(see, e.g., [19]) andP2Psystems (e.g., [14, 17, 34]).

Information preservation has been studied for nested re-
lational and complex data models (e.g., [3, 16, 27, 28]).
[16] proposed several notions of dominance and studied
their relationships, which were revisited in [27]. The fo-
cus of [3, 28] has mainly been on the information capacity
of type constructs and structural transformation rules. Our
study of information preservation is inspired by the prior
work: our notions of invertibility and query preservation
are mild extensions of calculus dominance and query dom-
inance [16]. We revise these notions and study their basic
properties forXML DTD schemas andXML queries, and our
focus is to develop the notion ofDTD schema embedding
that preserves information by ensuring both effective in-
vertible mapping and efficientXML query translation.

Query preservation is related to query rewriting using
views, which has been extensively studied for conjunc-
tive and datalog queries for relational databases and regu-
lar path queries on semistructured data (e.g., [2, 11, 20];
see [15, 19] for surveys). View-based query rewriting



mainly studies whether a given query on the source can be
answered using materialized data from a set of views (loss-
less), by translating the query to an equivalent query in a
particular language on the views. In contrast, query preser-
vation deals with the issue whetherall queries in an (infi-
nite) query language on anXML source can be rewritten to
equivalent queries overXML target (view). Moreover, the
focus of this work is to generateXML “views” that automat-
ically preserves all the queries in anXML query language,
rather than to determine the losslessness of views. Note
that Theorem 3.2 establishes a connection between invert-
ibility and query rewriting;e.g., if the query languageL
includes the identity queryid, then a viewσd is invertible
andσ−1

d is inL iff id has a rewriting inL usingσd.

8 Conclusions
We have revised information-preservation criteria forXML

mappings and established separation, equivalence and
complexity results. We have introduced a novel notion of
schema embedding forXML DTD schemas, from which an
instance-levelXML mapping is automatically derived and
is guaranteed to be information preserving, type checking,
and able to accommodate multiple source schemas. While
we show that finding a schema embedding is NP-complete,
we have provided heuristic algorithms to compute embed-
dings, which are efficient and accurate as shown by our
experimental results. These yield a practical approach to
computing losslessXML data migration and integration.

We plan to extend the notion of schema embedding to
(a) accommodate more generalXML schemas with con-
straints and inheritance, (b) allow one source type to map to
different target types indifferent contexts, (c) allow certain
queries in XQuery in thepath function, and (d) preserve
XQuery fragments as query languages.
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