Extending Dependencies with Conditions

Loreto Bravo
University of Edinburgh

| bravo@ nf . ed. ac. uk

Abstract

This paper introduces a class of conditional inclusion depacies
(cINDs), which extends traditional inclusion dependencie®é)

by enforcing bindings of semantically related data vali#s.show
that cINDs are useful not only in data cleaning, but are also in
contextual schema matching [7]. To make effective useiabs

in practice, it is often necessary to reason about them. Tbst m
important static analysis issue conceomhsistencyto determine
whether or not a given set @fINDs has conflicts. Another issue
concerngmplication i.e., deciding whether a set afiNDs entails
anothercIND. We give a full treatment of the static analyses of
CINDs, and show thatINDs retain most nice properties of tradi-
tional INDs: (a) CINDs are always consistent; (If)NDs are finitely
axiomatizable,i.e., there exists a sound and complete inference
system for implication oINDs; and (c) the implication problem
for CINDs has the same complexity as its traditional counterpart,
namely,PSPACEcomplete, in the absence of attributes with a finite
domain; but it isExPTIME-complete in the general setting. In addi-
tion, we investigate the interaction betweembDs and conditional
functional dependencieg¥bs), an extension of functional depen-
dencies proposed in [9]. We show that the consistency probbe
the combination o£INDs andCcFDs becomes undecidable. In light
of the undecidability, we provide heuristic algorithms the con-
sistency analysis afFDs andCINDs, and experimentally verify the
effectiveness and efficiency of our algorithms.

1. Introduction

A class ofconditional functional dependenci¢sFps) has re-
cently been proposed in [9] as an extension of functionakdep
dencies £Ds). In contrast to traditionakDs, CFDs hold condition-
ally on a relationj.e., they apply only to those tuples that satisfy
certain data-value patterns, rather than to the entirdioelacFbs
have proven useful in data cleaning [9]: inconsistenciesearors
in the data may emerge as violationsa#Ds, whereas they may
not be caught by traditionaDs.

It has been recognized [8] that to clean data, one needs hot on
FDs but alsoinclusion dependencigsnDs). Furthermore|NDs are
commonly used in schema matching systeeng,,Clio [16]: INDs
associate attributes in a source schema with semantieddlied at-
tributes in a target schema. Both schema matching and deda-cl
ing highlight the need for extendingiDs along the same lines as
CFDs, as illustrated by the examples below.

Example 1.1: Consider a bank that has branches in various coun-
tries. Each branclB maintains a separatecount relation:
source schema account_B(an, cn, ca, cp, at)

Permission to make digital or hard copies of all or part o thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listquiees prior specific
permission and/or a fee.

VLDB ‘07, September 23-28, 2007, Vienna, Austria.

Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3@./

Wenfei Fan
Univ. of Edinburgh & Bell Labs

wenfei @nf. ed. ac. uk

Shuai Ma

University of Edinburgh

smal@ nf. ed. ac. uk

an cn ca cp at
t1: | 01 | J.Smith| Nvyc, 19087 | 212-5820844| saving
to: | 02 | G.King | NYC, 19022 212-3963455| checking
t3: | 03 J.Lee | NYC, 02284 | 212-5679844| checking

(@) account in NYC branch

an cn ca cp at
tq: | 01 | S.Bundy| EDI, EH8 9LE | 131-6516501] saving
ts: | 02 | 1. Stark | EDI, EH1 4FE | 131-6693423| checking

(b) account in EDI branch

an cn ca cp ab
te: | 01 [J.Smith | NycC, 19087 | 212-5820844| NYC
t7: | 01 | S.Bundy| EDI, EH8 9LE | 131-6516501| EDI

(C) saving

an cn ca cp ab
tg: | 02 | G.King | NYC, 19022 | 212-3963455] NYC
to: | 03| J.Lee | NYC, 02284 | 212-5679844| NYC
tio: | 02 | 1. Stark | EDI, EHI 4FE | 131-6693423| EDI

(d) checking
ab ct at rt

t11: EDI | UK saving 4.5%
t12: | EDI | UK | checking| 10.5%
t13: | NYC | US saving 4%
t14: | NYC | us | checking 1%

(e) interest
Figure 1: Example account, saving, checking, interest data

in which each tuple specifies an account: the numiergnd type
(at, saving or checking) of the account, along with the naom, (
addressda) and phone numbetg) of the owner of the account.

The bank needs to integrate thecount data from its branches
and stores the data in a target database with the followingrsa:

target schema saving(an, cn, ca, cp, ab)

checking(an, cn, ca, cp, ab)

interest(ab, ct, at, rt)
whereab is the name of the branch where the account was opened,
and an, cn, ca, cp andat are as above. In relatioimterest, rt
indicates the interest rate, aadis the country where the braneb
is located. Example sourcedcount) and targetdaving, checking,
interest) data instances are shown in Fig. 1.

A schema matching system might want to match attribates
cn, ca,cp from source schemaccount to an,cn,ca,cp in the
target schemasaving and checking, and attempt to express the
matches in terms of inclusion dependencies from the sowrce t
the targete.g.,account_B(an, cn, ca, cp) C saving(an, cn, ca, cp)
andaccount_B(an,cn, ca,cp) C checking(an,cn,ca, cp). These
traditional INDs, however, do not make sense: an account in a
source relation should be stored either in the targeing or
checking, butnotin both. This is where we need contextual schema
matching [7]: for any tuple in anaccount relation, its attributes
an,cn, ca,cp can be mapped to the targeiving relation only if
t[at] = saving, and tahecking only if ¢[at] = checking.

To capture this, one can use the constraints below (at brBjch

indi: account_B (an,cn, ca, cp; at ='saving’) C

saving (an,cn, ca, cp; ab ='B’)

ind2: account_B (an,cn, ca, cp; at =‘checking’) C
checking (an, cn, ca, cp; ab =‘B’)

whereind; asserts that for each tuple in the account relation
at branchB, if t1[at] = saving, then there must exist a tuplein
saving such that[an, cn, ca, cp] = t2[an, cn, ca, cp], and more-
over,t2[ab] = B. That is, an account in the source is migrated to
target relatiorsaving only if the type of the account is saving, and
in addition, ¢2[ab] holds the constanB. This constraint is amD
that holds only on the subset afcount tuples that satisfy the pat-
tern at ='saving’, rather on the entiraccount relation; similarly
for ind2. However, these constraints are not considekaxs since
they are specified with patterncontainingdata values ad

Example 1.2: Next let us focus on the target database alone
and consider data cleaning. It has been recognized thajrityte
constraints are important in data cleaning [24]. Prior work
constraint-based data cleaning, however, mostly adopadtional
dependencies such essandiNDs(e.g.,[2, 8, 13, 25]). Traditional
FDs andINDson our example database include:

fd1: saving (an,ab — cn,ca,cp)

fds: checking (an,ab — cn, ca, cp)

fds: interest (ct,at — rt)

inds: saving (ab) C interest (ab)

ind4: checking (ab) C interest (ab)

These assert thain, ab are a key forsaving and checking (fds,
fds), all the saving (resp. checking) accounts in the same cpunt
must have the same interest rdi; |, and that any branch saving
andchecking must appear ifnterest (inds, ind4).

While the instances of Fig. 1 satisfy these traditional dejea-
cies, the data is not clean. The bank may offer slightly diffe
interest rates for accounts in different countriegy.,for checking
accounts in thesk, the interest rate is 1.5%, whereas it is 1% for
the us checking accounts. Tuplg. in Fig. 1(e) indicates that the
interest rate for checking accounts in the is 10.5% rather than
1.5%. This inconsistency, however, cannot be detectedanylatd
INDs andFDs, which were originally developed fachema design
rather thandata cleaning In contrast, this can be caught by the
constraints below, which refineds andind,4 by adding patterns:

inds: saving (ab="'eDI’) C

interest (ab = ‘EDI’, at = ‘saving’, ct = ‘UK’, rt = 4.5%)
indg: checking (ab="'eDI’) C

interest (ab = ‘EDI’, at = ‘checking’,ct = ‘UK’, rt = 1.5%)
ind7: saving (ab=‘NYC’) C

interest (ab = ‘NYC’, at = ‘saving’, ct = ‘US/, rt = 4%)
inds: checking (ab=‘NYC’) C

interest (ab = ‘NYC’, at = ‘checking’,ct = ‘US’, rt = 1%)
indg says that for each Edinburgh checking account, there must ex
ist a tuplet in interest such that[ab] = EDI, ¢[at] = checking,t[ct]
= Uk andt[rt] = 1.5%. Thus tupletio violatesinds: no interest
tuple matches, with the correct interest rate.5%. This shows
thatinds catches the error that is not detected by traditieimaland
INDs. In fact, indg andfds together assure that for all Edinburgh
checking accountd,.5% is the unique interest rate. ad

Dependencies such agl; — ind> andinds — inds applycondi-
tionally to relations. Clearly, such constraints are needed for both
schema matchingnddata cleaningand hence deserve a full treat-
ment. However, they cannot be expressed as standard
Contributions. To this end we introduce an extensionigbs and
investigate the static analysis of these constraints.

Ouir first contribution is a notion afonditional inclusion depen-
dencieq(CINDs). A CIND is defined as a pair consisting of am
R1[X] C Ry[Y] and apattern tableaywhere the tableau enforces
binding of semantically related data values across relatity and

R>. For examplejnd; — inds given above can be expressed as
CINDs. In particular, traditionalNDs are aspecial casef CINDs.
This mild extension ofNDs captures a fundamental part of the se-
mantics of data, and suffices to express many applications co
monly found in data cleaning and schema matching.

Our second contribution consists of techniques for reagpni
aboutcINDs. Given a set oftINDs, the first thing one wants to
do is to determine whether th@NDs are consistenti.e., whether
they have conflicts. This is very important: one does not viant
enforce thecINDson a database at run-time but find, after repeated
failures, that thecINDs cannot possibly be satisfied by a nonempty
database. Similarly, one does not want to match schema loased
CcINDsthat do not make sense. The consistency analysis help users
to develop consistent sets ofNDs for data cleaning and schema
matching. For traditionalNDsandFDs, consistency is not an issue:
one can specify anywbsandFDswithout worrying about their con-
sistency. In contrast, it is known thatbs may have conflicts, and
that it is intractable to decide whether or not a setebsis con-
sistent [9]. Another decision problem associated witkDs is the
implicationproblem, which is to decide whether a setofbDsen-
tails anothelcIND. For traditionaliNDs, the implication problem is
pspAacecomplete. Furthermore, it ifinitely axiomatizablethere
exists a finite, sound and complete set of axioms. The inpdica
analysis is useful in reducing redundantps, and hence improv-
ing performance when detectimgND violations in a database, and
speeding up the derivation of schema mappings fRDs[16].

We show that althouglciNDs are more expressive thanDs,
they retain most nice properties of their traditional caupart:
(a) cINDs are always consistent; (b) the implication ©fNDs is
finitely axiomatizable; (c) in the absence of attributeshwat fi-
nite domain, the implication problem farinDs is alsoPSPACE
complete, while in the general setting, it BEXPTIME-complete.
Since a problem with @spPAcElower bound is already beyond
reach in practice, thexPTIME result actually tells us that we do
not have to pay too high a price for the increased expressvwep
of CINDs.

Our third contribution is an investigation of the interactibe-
tweencCINDs and CFDs. This is necessary: in data cleaning one
needs bothcFDs and CINDs; so does in schema matching where
one needsINDs and at least conditional keys [16], a special case
of cFDs. For traditionalFbs andINDs, the interaction is already in-
triguing: the implication problem forDs andINDs is undecidable
and is not finitely axiomatizable. The interaction betwesRrDs
andcFbs makes our lives even harder: we show thatdowps and
CFDstogether, the consistency problem is undecidable.

Our fourth contribution is a set of algorithms for checkirge t
consistency oEFbsandcINDs. In light of the undecidability result
mentioned above, any consistency-checking algorithmcieps
and CINDs that runs in polynomial times is necessarily heuristic.
Thatis, the algorithm is sound on detecting consistentatsNDs
and CFDs, but not necessarily complete. Our heuristic algorithms
are based on a combination of chase techniques, dependeayly-
analysis, and bounded-size witness database construction

Our fifth and final contribution is a preliminary experimenta
study. We compare the performances of our algorithms ingern
both the accuracy of output and evaluation time. Our expemiiad
results show that our algorithms are effective and efficient

These results provide not only complexity bounds and arr-infe
ence system for fundamental problems associatedavitbs (and
CFDs), but also efficient algorithms that alloaNDs and CFDs to
be used in practice. Our conclusion is tlanDs, together with
CFDs, may lead to promising tools for cleaning data and for finding
quality schema matches.

We should remark thatiNDs do not introduce a new logical for-
malism. Indeed, in first-order logic, they can be expressed i
form similar to tuple-generating dependencigss), which have
lately generated renewed interests in schema mapping {8¢&of
a survey on recent results). However, (a) these simpi®s suf-
fice to capture data consistency and contextual schema imgtch
commonly found in practice, without incurring the complgxof
full-fledgedTGDs; (b) no prior work has studied the consistency,
implication and finite axiomatizability problems faicps in the
presence ofonstantgdata values).

Organization. We definecINDsin Section 2, and investigate their
associated consistency and implication problems in Se@&ioln
Section 4 we study the consistency analysisiafbsandcFbs, and
provide heuristic algorithms in Section 5. Our experiméraaults
are presented in Section 6, followed by related work in ®ect
and conclusion in Section 8.

2. Conditional Inclusion Dependencies

A relational database schenfd is a collection of relation
schemagRy, ..., R,), where eaclR; is defined over a fixed set
of attributesattr(R). Each attributed;, has an associated domain,
dom(Ay), which is finite or infinite. The sefinattr(R) contains
the finite attributes ofR. An instancel of R; is a set of tuples
such that for eacht € I, t[A;] € dom(A;) for each attribute
Ay € attr(R;). A database instancP of R is a collection of
relations(I4, . .., I,), wherel; is an instance of; for i € [1,n].
Syntax. A conditional inclusion dependencyif\D) ¢ is a pair
(R1[X; X,] C Ro[Y; Y], Tp), where (1) X, X, andY,Y, are
lists of attributes imttr(R;) andattr(R2), respectively, such that
X and X, (resp.Y andY}) are disjoint; (2)R:[X] C R2[Y]is
a standardND, referred to as thend embedded iny; and (3)7),
is a tableau, called theattern tableawf v; it has all attributes in
X, X, andY,Y,, and for eachd in X, X, orY, Y, and each tuple
t, € Ty, t,[A] Is either a constant ‘a’ idom(A), or an unnamed
variable . Moreover,t,[X] = t,[Y].

Abusing set operations, we uséU X, to denote the set of all
attributes ofX" and X,,, andX — Y to denote the list obtained from
list X by removing all the elements in li. We denoteX U X,
asLHS(y) andY UY, asRHS(v), and separate tHeHS andRHS
attributes in a pattern tuple witH". We usenil to denotean empty
list. Let X = [A4,...,An] andY = [Bi,..., Bn]. We assume
w.l.0.g thatdom(A;) C dom(B;) for eachi € [1,m].

Example 2.1: Constraintsind;—inds given in Examples 1.1 and
1.2 can all be expressed asubsshown in Fig 2:3)1—)4 for ind:—
ind4, respectivelyz)s for bothinds andind~, one pattern tuple for
each constraintand+s for bothinds andinds. In v+, for instance,
both X andY are[an, cn, ca, cp], X, is [at] andY} is [ab]. In s,
both X andY are[ab], while both X, andY,, arenil. In 5, both
X andY arenil, while X, is [ab] andY), is [ab, at, ct, rt]. O

As shown byys ands, a standardnp R;[X] C Rq[Y]is a
special case of theIND (R1[X; X,] C Ra[Y; Y], Tp) in which
both X, andY,, arenil, andT}, has a single tuple with.* only.
Semantics.In general thanDd embedded in @ ND may not hold
on the entireR; relation: it applies only ta?; tuples matching the
pattern tuples. More precisely, we define an orglean data values
and the unnamed variablg: 1, < . if eithern; = n2, orn; isa
data valuez andr is *_'. The order= naturally extends to tuples,
e.g.,(EDI, UK, 1.5%9 = (EDI, UK,) but (EDI, UK, 4.5% % (EDI, UK,
10.599. We say that a tuple, matchegs if t1 < t».

An instance(l1, I2) of (R1, R2) satisfiesthe cinD v, denoted
by (11, I>) = v, iff for eacht, in the relation/, and foreachtuple
tp in the pattern tableal,, if t1[X, X,] =< ¢p[X, X,], thenthere

11 = (account_B[an, cn, ca, cp; at] C saving[an,cn,ca,cp; ab], T})

|| an | cn | ca | cp | ab
-1 -T-1B8

an | cn | ca|cp| at

Tr: -
T T [saving |

12 = (account_BJan, cn, ca, cp; at] C checkingl[an, cn, ca, cp; ab], T2)

an | cn | ca | cp | at
- | -] -1 - | checking ||

|| an | en | ca | cp | ab

T -1 -18

13 = (saving[ab; nil] C interest[ab; nil], T3)
ab || ab

Ts:

14 = (checking[ab; nil] C interest[ab; nil], T4)
ab || ab

Ty:

= (saving[nil; ab] C mterest[nll ab, at, ct, rt], T5)

]
ab || ab at | ct | rt
Ts : EDI EDI savmg 4.5%
NYC || NYC | saving 4%

16 = (checking|nil; ab] C interest[nil; ab, at, ct, rt], T5)

ab ab at | et | rt
Ts: EDI EDI checking UK | 1.5%
NYC || NYC | checking| us | 1%

Figure 2: Example CINDs

existsts in the relation/, such thatt;[X] = ¢2[Y] =< t,[Y] and
moreoverts[Y,] < t,[Yp]. Thatis, ift1[X, X,] matches the pat-
ternt,[X, X,], then the inclusion constraint specified §ymust
apply, which requires the existence tf such that (1),[X] and
t2[Y'] are equal as required by the standawé embedded inp,
and (2)t2[Yp] must match the patterm [Y}].

The patternX, is not part of the embeddedD. Intuitively, it
is used to identify the?, tuples over which) is applied. The pat-
ternY,, enforces that the matching. tuples must satisfy a certain
form. Notice that in real case scenarios it is expected thaphat-
tern tableaux are much smaller than the database.

Example 2.2: The database in Fig. 1 satisfiesDs 1)1—)7. Note
that although theseINDs are satisfied, their embeddedbs do
not necessarily hold. For example, while is satisfied, thenD
account_edifan, cn,ca,cp] C saving[an,cn,ca,cp] is not. The
patternX,, in LHS(+1) is used to identify the tuples over whigh
has to be enforced, namely, tuples for saving accounts.

On the other handys is violated by the database. Indeed, for
tupletio, there exists a pattern tuple (the first tuple) inTs such
that¢io[ab] = t,[ab] but there is no tuple in tableinterest such
that¢[ab] = EDI, t[at] = checkingt[cn] = UK andt[rt] = 1.5%. O

We say that a databage satisfies a set of CINDs, denoted by
D E Y, if D | ¢foreachy € X.

3. Reasoning about CINDs

With any constraint languagg, there are two associated funda-
mental problems: the consistency problem for determinihgtiver
a given set of constraints ih has conflicts, and the implication
problem for deriving other constraints from a given set of-co
straints inL. As remarked in Section 1, for constraints in a lan-
guage to be effectively used in practice, it is often neagssabe
able to answer these two questions at compile time.

One might be tempted to use a constraint language more power-

ful than cINDs, e.g.,full-fledged TGDs extended by allowing con-
stants (data values). The question is whether the langulagesais

to effectively reason about its constraints. We need a cainstan-
guage that is powerful enough to express dependencies colyymo

found in schema matching and data cleaning, while at the same TraditionalFDs andINDs do not contain data values, and any set

time well-behaved enough so that its associated decisimiigms
are tractable or, at the very least, decidable [18]. Forffatiged
TGDs, it was known 30 years ago that the implication problem is
undecidableeven in theabsencef data values [5].

As found in most database textbooks, standgns have several
nice properties. (a)NDs are always consistent. (b) FouDs, the
implication problem is decidableeéPACEcOmplete). (c) Better
still, INDs are finitely axiomatizablg,e., there exists a finite infer-
ence system that is sound and complete for implicatioalsDs.
The question is: when constants are introduced lintms as found
in CINDs, does the extension ofiDs still has these properties?

It was observed in [5] that iffGDs were extended by includ-
ing data values, their analysis would become more intriguil-
though we are aware of no previous work on the static analyces
TGDs with constants, the study afrDs[9] tells us that data values
in the pattern tableaux of dependencies would make our tugsh
harder. In particular, in the consistency and implicatioobems,
we have to consider whether or not the domdom (A) of each at-
tribute A in a dependency is finite, since a finite domain constrains
how we can populate a relation that satisfies the dependencie

In this section we investigate the consistency and impboat
problems ofciNDs. We show that despite the fact thaiNDs con-
tain data values and are more expressive tRas, they retain most
of the nice properties of their standamdD counterpart. That is,
CINDs properly balance the expressive power and complexity.
Normal form. To simplify the discussion, we will consider, with-
out loss of generalitycINDs in normal form. ACIND ¢ (R:[X;
Xp] € R2[Y;Y,],T)p) is in thenormal formif T), consists of a
single pattern tuplé, such that,[A] is aconstantf and only if A
isin X, orY,. We writey) as(R:1[X; X,] C Ro[Y; Yy, tp).

Two setsX; andX, of CINDs areequivalent denoted by
3, if for any instanceD, D = X iff D = Xs.

Proposition 3.1: For a setY of CINDs, there exists a sett’ of
CINDs in the normal form such thaf = ¥, and the size of’ is
linear in the size of.]

Proposition 3.1 allows us to considembDs in the normal form
in the sequel. It tells us that evegiND ¢ can be rewritten as an
equivalent sek,, of cINDsin the normal form. This can be done
as follows: (1) ify» has more than one pattern tuple, replace it with
a set ofCINDs, each with only one pattern tuple; (2) for eacinD
in the set, remove from the patter§, andY,, those attributest
if t,[A] = _; note that such pattern attributes pose no constraints;
and (3) move taX, andY, any pair(A;, B;) such thatd; € X,
B; is the matching attribute ofl in Y andt,(A;) is a constant.
Example 3.1: CINDs ¢1—4 in Fig. 2 are in the normal form, but
15 and are not. We can transfornts into the normal form
by separating it into twa@INDs, each carrying only one pattern tu-
ple of ¢5; similarly for ¢s. As another example, considernD
(R[A,B;C,D] C S[E, F;G],tp) with t,, = (_, h; 4, _||-, h; 0). It
is not in the normal form, but can be rewritten t&[A4; B, C] C
S[E; F,G), t;,) with ¢, = (2 h,i||-; h, 0) in the normal form. O

3.1 Consistency of CINDs

of FbsandINDsis consistent. However, adding data values to con-
straints may make their consistency analysis much harddeed,
CFDs, which extendrDs by adding patterns, may be inconsistent,
as illustrated by the following example taken from [9].

Example 3.2: Consider a schemg® with attr(R) = {A, B}, and
the cFDs below onR, refining standarébs A — B andB — A:

(]51: (A = true) — (B = bl), ¢2: (A = false) — (B = bz),
¢3. (B=0b1) > (A=false), ¢a: (B=0bzs)— (A=true),

wheredom(A) is bool, and by, b2 are two distinct constants in
dom(B). CFD ¢1 (resp.¢2) asserts that for any tuplet, if ¢[A]
is true (resp.false), thent¢[B] must beb; (resp.b2). On the other
hand,¢s (resp.¢4) requires that ift[B] is b1 (resp.bz), thent[A]
must befalse (resp.true). There exist®io nonempty instance ok
satisfying all theseFbs. Indeed, for anyR tuplet, no matter what
Boolean valug[A] has, theseFDs together forcet[A] to take the
other value from the finite domaisool.

Note that ifdom(A) anddom(B) were infinite, we could find a
tuplet such that[A] is neithertrue nor false, and¢[B] is notb; or
b2; then theR instance{t} satisfies theserDs. This tells us that
attributes with a finite domain may complicate the analysis. O

It was shown in [9] that the consistency problem foFDs is
NP-complete. As opposed torFDs, we show that forcINDs the
consistency analysis is as trivial as their standard copate

Theorem 3.2: For any se of ciNDsdefined on a schenfa, there
exists a nonempty instanée of R such thatD = X. a

Proof Sketch: Given X, one can construct an instance ®f as
follows. First define an active domain for each attribdtén R,
consisting of the constants appearingimplus at most one distinct
value indom(A). Then, build an instance of each relation schema
in R as the cross product of the active domains of all attributes i
it. This yields a nonempty instance &f satisfying3. |

3.2 Implication and Finite Axiomatization of CINDs

Theimplication problenfor CINDsis to determine, given a finite
setY of cINDs and anothecIND ¢ defined on a database schema
'R, whether or no& entailsy, denoted by = v, i.e.,whether or
not for all instanced of R, if D = X thenD = 1.

Example 3.3:Let Y be the set o€ INDsgiven in Fig. 2, and assume
thatdom(at) = {saving, checking One wants to know whether
3 & 4, wherey = (account_Blat; nil] C interest[at; nil], (_||));
i.e.,whether or not) is derivable from>x. O

As remarked earlier, for standardDs the implication problem
is not only decidable but also finitely axiomatization. Thaité
axiomatizability is a property stronger than the decidabsince
inference rules reveal the essential properties of thetrinss.

We now show thatCINDs are also finitely axiomatizable. We
provide an inference system fanNDs, denoted byZ and shown
in Fig. 3. Given a finite seE of cINDs and anotheCIND 1, we
denote by> 7 ¢ that) is provable from> usingZ. The rules
in Z characterizecIND implication: they are bottsound i.e., if
3 b7 ¢ thenX = ¢, andcompletei.e.,if ¥ = ¢ thenX 7 4.

One cannot expect to derive sensible schema matches or clearTheorem 3.3: The inference systefhis sound and complete for

data from a set of constraints if it is inconsistent itselius before
any run-time computation is conducted, we have to make baite t
the constraints are consistent, or make sense.

The consistency problerfor a constraint languagg is to deter-
mine, given a finite set of constraints inL defined on a database
schemaR, whether or not there exists a nonempty instahcef
R such thatD = X.

implication ofCINDs. |

Proof Sketch: The soundness & is verified by induction on the
length ofZ-proofs, and its completeness is shown by using a chase
technique (see.g.,[1] for the details of chase). m|

Recall that for standaraNDs, the inference system proposed
in [11] consists of three rules: reflexivity, projectionrpritation

CIND1: If X is a sequence of distinct attributes dt, then

(R[X;nil] € R[X;nil], tp), wheret,[A]=*_forall A € X.

If (Ra[A1,...,Am;Xp] C Re[B1,...,Bm;Ypl, tp),
then(Ra[Aiy, ..., Ai; Xp] © Rp[Biy, - -, Biy; Yyl ty),
where {i1,..,4;} is a sequence i1,...,m}; X, and
Yp’ are permutations o, andY, respectively; and; =

tp[Aiys oy Aiys Xpl|Biy -+, Biy s Yyl

If (Ra[X; Xp] € Ro[Y;Yp], t1), (Ro[Y; Y] € Re[Z; Zp),
ta), andty [Yp] = t2[Yp)], then(Ra[X; Xp] C Re[Z; Zp),
t3), wherets3[X; X,] = ¢1[X; Xp], andts[Z; Z,] = t2[Z;
Zp).

If (Ra[X5 Xp] © Ro[Y;Ypl, tp), X = {A1, ..., Am}
andY = {Bi1,...,Bn}, then(Ru[X — Aj; X, U Aj]
C Rp[Y— By; Yp U Byl, t,), where A; € X, t7,[A;] €
dom(A;), t,[A;] = t,[By], andt;,[A] = tp[A] for every
A€ (X, Xp,Y,Yp)— (A4j, Bj).

If (Ra[X;Xp] C Ry[Y;Yp],tp), then (Ra[X; Xp, A] C
Ryp[Y';Ypl, t;,), whereA € attr(Ra) — (X U X5p), 1,,[A] €
dom(A), andt;, [X; X,||Y;Yp] = tp.

If (Ra[X;Xp] C Ru[Y;Yy],tp), then (R.[X;X,p] C

Ry[Y; Y], 1)), whereY, C Yp, !, = t,[X; X,|| Y3 Y.

If (Ra[X;AXp] C RyY; Yy, t) fori € [1,m], t1[Xp;
Yyl = ... = tn[Xp; Yp|, A € finattr(R), anddom(A)
={t1[A], ..., tn[A]}, then(Ry[X; X}p] C Ry[Y; Y], tp),
wheret [Xp||Yp] = t1[Xp|[Yp].

If (Ro[X;AXp] C Rp[Y; BY,l,ts) fori € [1,n], t1[Xp;
Ypl = ... = tn[Xp; Yp|; ti|A] = t;[B] fori € [1,n], A €
finattr(R) anddom(A) = {tp1[A],tp2[A], ... tpn[Al},
then (Rq[X A; Xp] C Ry[YB; Yy, tp), wheret, [X, Y]
=t [XPIIYP}'

CIND2:

i)

CIND3:

CINDA4:

CINDS:

CINDG:

CINDT:

CINDS:

Figure 3: Inference SysteniZ for CINDs

and transitivity. To cope with the richer semanticsofiDs, the in-
ference systerfi is more complicated than the one foiDs. Below
we briefly illustrate the rules iff.

RulesCIND1-CIND3 correspond to the inference rules faDs.
CINDL1 is the reflexivity rule. CIND2 shows that also the pattern
portions,i.e., X,, andY,, can be permutatedIND3 enforces that
in order for the transitivity rule to be applied, not only tR&1S of
the firstcIND has to be the same as the LHS of the secomd,
but also their respective portion of the tuple patterns. eNiat
since thecinDs are in the normal form, checking that[Y; Y,] =
t2[Y; Y] is equivalent to checking [Yy] = t2[Y5].

CIND4 allows us to instantiate attributes i and their corre-
sponding attributes ifr". Given(R.[X; X,] C Ry[Y;Y,], tp), we
can take attributes fronX and the corresponding attributes¥f
replace their values in, by constants and move these attributes to
the pattern portions of theIND (X, andY},, respectively).

CINDS5 allows one to add extra attributesig,. Consider a&IND
(Ra[X; Xp] C Ru[Y; Yy, tp) and an attributed of R, which is
not already inX or X,. If ¢ holds for any value of4, then it
will also hold for a specific value afl. Thus we can add! to the
pattern portionX,, and assign to,[A] any constant frordom(A).

CIND6 removes an attribute frori,. If (R.[X; X,] C Ry[Y;
Y,], tp) holds, then for every tuple if?, that satisfies the pattern
t,[X,p], there is a match iR, that satisfies the pattetn[Y,]. If
attributes are deleted froi,, thecinD will clearly still hold.

Finally, CIND7 andCIND8 are only needed when there are finite
domains. CIND7 says that if we have a set afiNnDs that are the
same except for the valug[A] of a finite-domain attributel, and
the union of all those, [A] values covers the domain &f, then we
can replace the set @finDs by a singlecIND in which¢,[A] = _.
Furthermore, since a variable in the pattern portion ofthed has

no effect, we can just deleté from thecCIND.

CINDS8 s, in away, the inverse dfIND4. If CIND4 is used over
aCIND ¢ to instantiate the values in the pattern tuple for attribute
A and B whent,[A] ranges over all the values dbm(A), then
CIND8 can take all thoseINDs and restore). In short, CIND8
merges a set afINDs if (1) they differ only in the value of;[A],
(2) t;[A] ranges over all the values dom(A), and (3) there is an
attribute B in the RHS of eacleIND such that;[A] = ¢;[B].
Example 3.4: Recall ¥ and ¢ from Example 3.3, where
dom(at) = {checking,saving We show that 7 ; then from
Theorem 3.3 it follows that = .

(1) (account.B [nil;at] C saving]nil;ab], 1) 11, CIND2
t1 =(saving|B)

(2) (account_B [nil;at] C checkinglnil;ab], t2) 2, CIND2
to=(checking|B))

(3) (saving[nil; ab] C interest|nil; at], ¢3) 15, CIND2
t3 =(B||saving)

(4) (checking]nil; ab] C interest[nil;at], t4) 16, CIND2

t4 =(B||checking)

(account_B [nil; at] C interest|nil; at], t5)
ts=(savingd|saving)

(account_B [nil; at] C interest|nil; at], t¢)
te =(checking|checking)

(account_B [at; nil] C interest|at; nil], t7) (5),(6)CIND8
tr =(]1) 5

It is not surprising that the implication problem @fiNDs is
harder than standandiDs. The lower bound of the theorem below
is verified by reduction from the two-player tiling problert?].

Theorem 3.4: The implication problem foCINDs is EXPTIME-
complete. O

The complication of the implication problem arises from ex-
amining attributes with a finite domains. In the absence chsu
attributes, there is a linear-space non-deterministioritlgm that
uses only rule€IND1-CINDG6 in Z. In this case, the implication
problem forcINDs has precisely the same complexity asiit®
counterpart, namely, the problem becorrepAcEcomplete.

Theorem 3.5:For any setx U {¢} of ciINDs defined on a schema
R, it is PsPACEcomplete to decide whether or N6t = 1, if nei-
therX nor ¢ involvesR attributes that have a finite domain. In this
setting, the inference ruleGIND1- CIND6 are sound and com-
plete for implication ofcINDs. m|

®)
(6)
@)

(1),(3)CIND3

(2),(4)CIND3

4. Interaction between CINDs and CFDs

We have seen thatiNDs do not make the consistency and im-
plication problems much harder than their traditional degparts.
In contrast, we show in this section that whembs andCFDs are
taken together, the static analysis become far more inmguAs
remarked earlier, in schema matching and data cleaningftés
necessary to use bothNDsandCFDs.

We start with a review oEFDs, which were introduced in [9].
CFDs. A conditional functional dependen€gFD) ¢ on a relation
Risapair(R: X — Y, Tp), where (1)X andY are subsets of
attr(R); (2) R : X — Y is a standardp, referred to as theD
embedded i; and (3)7), is a tableau with all attributes iX and
Y, referred to as theattern tableawf ¢, where for eachd in X
orY and each tuple € T),, t[A] is either a constant € dom(A),
or an unnamed variable’; as defined foicINDs given earlier.

An instanceD of R satisfiesthe CFD ¢, denoted byD = ¢,
iff for each pairof tuplesti, ¢z in the relationD, and foreach
tuplet, in the pattern tablealll,, if ¢1[X] = ¢2[X] = t,[X], then
t1[Y] = t2[Y] < tp[Y]. Thatis, ift1[X] andt2[X] are equal and
match the pattern,[X], thent;[Y] and¢2[Y] must also be equal
to each other and match the pattegfiy’].

1 = (saving (an,ab — cn, ca, cp), T7)

qv. _an ab || en | ca | cp
1

2 = (checking (an,ab — cn, ca, cp), T3)

an | ab || en | ca | cp

T5:

@3 = (interest (ct,at — rt), T})

ct | at || rt
T U_K sa\;ing 4.5%
3" uk | checking|| 1.5%
us saving 4%
us | checking|| 1%

Figure 4: Example CFDs

Example 4.1: The FDs fd;-fds given in Example 1.2 can be ex-
pressed asFbs, as shown in Fig. 4. This tells us that standand
are a special case @afFbs in which the pattern tableau contains a
single tuple that consists of ‘only.

We can refinefds by asserting that whent is uk (resp.us)
andat is saving,rt must be 4.5% (resp. 4%); similarly, ¢t is Uk
(resp.us) andat is checkingyt must be 1.5% (resp. 1%). These are
incorporated intaps of Fig. 4 (the last 4 tuples, one per constraint).

While the instance of Fig. 1 satisfies standams fd;-fds and
it satisfiesp; and s, it does not satisfyps. Indeed, tuple i of
Fig. 1violatesthe constraint specified by the third pattern tutﬁe
in T4: althoughti2[ct, at] < ¢5ct, at], we can see thatz[rt] #
t3[rt]: ti2[rt] is 10.5% butt}[rt] is 1.5%. From this we can see
that while it takes at least two tuples to violate a standavda
single tuplealone may violate &FD. Moreover,CFDs can catch
inconsistencies that standa¥ds cannot detect. m]

Along the same lines asiNDsin normal form, we say thatarb
¢ = (R:X — Y, Tp) is in thenormal formif T}, consists of a
single tuplet, andY contains a single attributd, and we write
pas(R: X — A, t,). We can always rewrite @rFD into an
equivalent set o€FDs in the normal form. In the sequel, we only
considercrbsin the normal form.

For cFDs the following have been established in [9]. (a) The
consistency problem focrps is NP-complete. (b) The implica-
tion problem ofcFpsis finitely axiomatizable. (c) The implication
problem forcrbsis conpP-complete. (d) The consistency and impli-
cation problems are i®(n?) time, wheren is the size of the given
CFDs, if the cFDs do not involve attributes with a finite domain.

While crbsalone already complicate the static analyses, we next

show thatcFbs andcINDs together make our lives much harder.

Implication analysis. It is not surprising that the implication prob-
lem for cINDsandcFDsis undecidable and is not finitely axiomati-
zable, since the problem has already these characteriististan-
dard INDs and FDs (see,e.qg.,[1]), and CINDs and CFDs subsume
INDsandFDs, respectively. The result holds if the given constraints
do not involve attributes with a finite domain.

Corollary 4.1: The implication problem focINDs and CFDs is
undecidable, and is not finitely axiomatizable, evendoibds and
CcFDsthat involve only attributes with an infinite domain. ad

Consistency analysis.Even if a set ofcFbs and a set ofCINDs

are separately consistent, when they are put togethee thay be
conflicts among them, as illustrated below.

Example 4.2: Consider a relatiorR® with attr(R) = {4, B}, on

which we define &cFD ¢ = (R : A — B, (_||la)) and acIND

v = (Rnil; B] C Rnil; B], ({||b)), wherea andb are distinct
constants. Obviously, there exists a nonempty instande tifat

Constraints Consistency Implication Fin. Axiom
CINDs (Th. 3.2,3.4,3.3) O(1) EXPTIME-completq Yes
CFDs [9] NP-complete| coNP-complete Yes
CFDs +CINDS (Th 4.2, 4.1)] undecidable undecidable No
Table 1: Complexity in the general setting
Constraints Consistency| Implication Fin. Axiom
cINDs (Th. 3.2, 3.5) o(1) PSPACEcomplete Yes
CFDs [9] O(n?) O(n?) Yes
CFDs +CINDS (Th 4.2, 4.1)] undecidable|] undecidable No

Table 2: Complexity in the absence of finite-domain attribues

satisfies¢ and there is an instance satisfyigg However, there
existsno nonempty instance aR that satisfies botly and¢. To
see this, assume that such an instaRaxists. Then) tells us that
as long ag) is nonempty, there is a tupien D such that[B] = b.
In contrast requires that[B] = a, violating . m|

While the undecidability of the implication problem faiNDs
andcFDsis expected, the following result is a little surprising.eTh
undecidability can be verified by reduction from the imptioa
problem for standarabs and INDs. The undecidability remains
intact in the absence of attributes with a finite domain.

Theorem 4.2: The consistency problem faFbs and CINDsis un-
decidable, with or without attributes having a finite domain O

This tells us that it is necessary to use heuristic methodslte
the consistency and implication problems in practice.

Summary. We summarize the complexity bounds for the consis-
tency and implication problems, as well as for finite axioizettil-

ity (Fin. Axiom) in Tables 1 and 2. Table 1 gives the resultshe
general setting where attributes of infinite domains andehwith
finite domains are both present, and Table 2 for constraintsv-

ing attributes with an infinite domain only. This gives us axpbete
picture of the static analyses forNDsandcCFDs, established in this
work (for CINDs, andCINDs + CFDs) and in [9] (for CFDs).

5. Algorithms for Consistency Analysis

In light of the undecidability of the consistency problenr fo
CINDsandcCFDs, in this section we develop efficient heuristic meth-
ods to check the consistency ©fNDs andCFDs.

More specifically, given a se€f of CINDs and CFDs, our algo-
rithms attempt to construct a nonemptytness databas® such
that D = X. The algorithms conclude that is consistent, and
return true, if such a witness can be built. It is guaranteed that
if true is returned ther is consistent. However, the algorithms
might not find a witness database eveRifs consistent, due to the
undecidability of the problem. As will be seen in the nextteet
the algorithms are able to return accurate answers in messca

The algorithms are based on an extension of the chase tech-
nique, bounded-size witness databases, and an optinmnzatb-
nique leveraging dependency graphscofiDs and CFDs. We ex-
tend the chase in Section 5.1, present a checking algorithBec-
tion 5.2 and provide our optimization technique in Sectidh 5

5.1 Chasing with CFDs and CINDs

The chase is an important tool for implication analysis of de
pendencies and for query optimization (seeg., [1] for details
about chase). However, even for standavds there may ben-
finite chasing sequenceis.,the chase may not terminate. To cope
with this, we present an extension of the chase that, empbys
bles with bounded-size, therefore, guaranteeing ternonat\We
use this extension of the chase for ttemsistencynalysis ofcFDs

andCINDs.

Consider a database schef®aFor each relation schenfain R
and each attributel in R, we assume a nonempty finite sat[A]
of distinct variables. Intuitively, when chasing withNDs, we may
have to create a new tuple; then we use only the variableeseth
sets to “populate” the unknown fields in the tuple. All thesset
var[A] have a maximum size d¥, which is a predefined parameter.

Let Var be the set consisting of all these variable. We assume for

convenience a total ordet on variables invar. We also assume
thatv < a for anyv € Var and constant, but do not pose the
order on constants. Thus# a andv # a; but we allowv =<' _".

We now define our chase operations for a Sedf CINDs and
CFDs, which transform a databade into a new databas®’. To
simplify the discussion we denote by a schema as well as an
instance of the schema when it is clear from the context.

For eachCIND ¢ = (Ra[A1, ..., Am; Xp] C Ry[Bi, ..., Bm;
Yy], tp) in X, we define the chase operatithiD(v)) as follows.
For atuplet, € R, satisfyingt.[X,] = t,[X,], we add a tuple,
to R, such thatty[B;] = tq[As] fori € [1,m], t:[Yp] = t,[Y5),
andt,[B] takes a random variable fromar[B] for the rest attribute
B e attr(Rb) — ({Bl7 RN Bk} U Yp).

For eachcFD ¢ = (R : X — A,tp) in X, we define the
chase operatiorD(¢) as follows. For tupleg;,t2 € R such
that t1[X] = t2[X] = t,[X], but eithert1[A] # t2[A] or
t1[A] = t2[A] # t,[A], we consider the following two cases:

(i) tp[A] ='_": if either t1[A] or t2[A] is a variable and; [A] <
t2[A] (resp.t2[A] < ti[A]), we replacet;[A] with t3[A] in R
(resp. replacez[A] with ¢1[A]). If ¢1[A] andt2[A] are different
constants, then the applicationfiD(¢) to D is not defined.

(i) t[A] = a: if either¢1[A] or t2[A] is a constant distinct froma,
then the application ofD(¢) is undefined. Otherwise we replace
botht1[A] andtz[A] with a.

A chasing sequenaaf D w.r.t. X is a sequence of database tem-
plates (with variablesPDo, D, ..., D, such thatD, = D and
D;+1 is the result of applying a chase operation for a constraint
in ¥ to D;. If IND(¢)(Dn) = D, for everyCIND ¢ € 3 and
FD(¢)(Dn) = D, for everyCFD ¢ € X, we say that the chase
of X over D is terminaland refer taD,, as theresultof the chase,
denoted byhase(D, X). Otherwise FD(¢) must be undefined for
some¢ € X, and in this case we say thetase(D, X) is unde-

fined Since the chase takes values from a predefined finite set of

variables, it willalways terminate Note that for a set o€INDs
only, the chase is always defined.

5.2 Heuristic Methods for Consistency Checking

Employing this extension of the chase, we next develop aseur
tic method for checking the consistencyafbs andCINDs.

For any set of ciINDs andcFbps defined overR, if 3> does not
involve attributes that have finite domains, a possible isgarto
determine ifY is consistent works as follows: (1) it first constructs
a databas® that only contains, in a randomly chosen relati®re
R, atuplet = (v1,...,v,) such that[A;] = v; is fromvar[4;];

(2) it then checks whethehase(D, X) is defined; and (3) it return
true if the chase is defined. One can see thathifse(D, X)) is
defined therk is consistent, as illustrated by the example below.

Example 5.1: ConsiderR = (Ri, R2), whereattr(R:) = {E,
F}, attr(R2) = {G, H}, finattr(R) = 0, and the domain of all the
attributes istring. Also conside® = {¢1, ¢2, 11, 12, 3}, where
$1 (R1 :E = F, (), ¢2=(R2: H — G, ([c), 1 =
(R1[E; nil] C Ra[G; nill, (||), w2 = (Ra[nil; H) C Ri|nil; F,
(0]]a)) andss = (Ra[nil; H] € Ra[nil; F], (11b)).

The heuristic mentioned above works as follows. L&fA] =
{va1,va2} for A € {E,F,G,H}. We start withD that contains

Algorithm RandomChecking

Input: A setX of CINDs andcFDs over schem®& = (R1,..., Rn)
Output: true if a databaseD can be built s.tD = 3; false otherwise

1. D := aninstance oRR that contains, for a randomly chosen schema
R; € R, asingle-tuple instance of fresh variables frdfar;

2. k=0

3. while Vinaeer(r) # 0 0ork < K do

4 randomly choosp € Vhinattr(R)>

5. Vfinattr(R) = Vfinattr(R) - {P}; k=k+1;

6 if chase;(p(D), X) is definedthen

7 return true,

8. return false;

Figure 5: Algorithm RandomChecking

tuple (ver, ve2) in R1. After applyingIND (1), tuple (ve1, vH1)
is added taR2. Then,FD(¢2) makesve: = c. No chase operation
can be applied after that, artase(D, X) is:

E F G H

Ro:
UH1

Ri:
c | vk c

The heuristic concludes that is consistent. Indeed, since the
domain of F and H are infinite, it is always possible to find a map-
ping from the variables to values in the respective domairth s
that they do not satisfy the left pattern of aoywb andcFp. For
example, by mappingr; = d andvy; = e, we obtain a database
instance ofR that satisfiex.. m|

In contrast, if¥ involves attributes with finite domains, we can
no longer usehase(D, X) as above, as shown by the next example.

Example 5.2: ConsiderX of Example 5.1. If instead of having
an infinite domain foH we haddom(H) = {0, 1}, then it is not
always possible to find a valuation for the variables such tita
result database of the chasea.t. the valuation satisfies. For ex-
ample, forvy; = 1, we could still applyND (3)3). If, for example,
there are alsaby = (Ri[nil; F] C Ra[nil; G], (al|d)), andys =
(R1[nil; F] C Ra[nil; G], (b]|d)), thenIND(¢5) would now apply,
resulting in a database that does not satisfyecause of.. O

Algorithm RandomChecking. To cope with finite domains, we de-
velop an algorithm, calleBandomChecking and given in Fig. 5.
While the chase given above always terminates, it may yield a
witness database of exponential size. To avoid this, wetadap
further simplifications. (a) When applyin®{D(v)) foray € %,
we need to add a new tuple that might have variables. If this va
able is for an attribute with a finite domain, we modifyD(¢)
in such a way that instead of adding a variable, a constartieof t
finite domain is used. (b) During the chase, if the number of tu
ples in any table exceeds a predefined thresfiglde say that the
chase is undefined and terminate the process. The chaséhesth t
two simplifications is referred to as thiestantiated chaseand is
denoted bychaser (D, X). More specifically, letl” be the set of
all variables associated with attributes that have finitmaios. A
valuation py w.r.t. V' is a mapping froml/ to constants in the re-
spective domains of the variables. We denote{®) the database
D obtained by applying to D. Note that constants and variables
with infinite domains inD remainunchangedn p(D). The set of
all valuationsw.r.t. V' is denoted byWinaur(r). If V' = 0, then we
assume thals,.« (=) consists of a single empty mapping.
Algorithm RandomChecking starts by creating a databage
that, for a randomly chosen relatioR € 7R, contains a tu-
ple (v1,...,v,) such thatv; for attribute 4; is a variable from
var[A;] (line 1). For a predefined parametat, it then randomly
picks up toK valuationsp from Vinae(z), and checks whether

chaser(p(D), X) is defined (lines 3-5). If it is for any sugh then
the algorithm immediately returnsue (lines 6-7). Otherwiséalse

is returned (line 8). The use df is to prevent the exponential
cost of exploring all possible valuations Wnau (=) in the worst
case. However, as will be seen in the next section, in many pra

notion of dependency graphs ofDs andCINDs. Below we first
define dependency graphs. We then present a consistendyiranec
algorithm that benefits from the usage of dependency graphs.
Dependency graph.For a set of cFbsandciNDs defined over a
database schent?, thedependency grapis defined to b&/[X] =

tical caseds is not necessary because a positive answer can often (V,). The setV contains one vertex per relatid®; in R. Each

be found before many valuations are tried out.

Example 5.3: Applying to the constrainty of Example 5.1 with
dom(H) = {0, 1}, Algorithm RandomChecking works as follows.
After executing line 1 of the algorithm)) could contain a tuple
(ve1,vH1) In R2. The only variable with a finite attribute g
and its possible mappings awe and p, that mapsvu; to 0 and 1,
respectively. A sequence of the instantiated chase p; (D) is:

R1 Ry
p, |ELF G | H IND(42) applied top; (D)
VE1| a vg1| O
D, ELF G |H FD(¢2) applied toD;
Vgl | @ c 0
E F G H]
D3 vEL| @ c |0 IND(1) applied toDs
VE1 0
Dy EF G|H FD(¢2) applied toD3
c a c 0

Sincechase; (D, X)) is defined and results in database (which
satisfies the constraints), the algorithm returns: and does not
need to check the chase for mappjng ad

Improvement. While conceptually simple, it may hamper the
chance of finding a witness database if we assign a val@-to
ery variable with a finite domaibeforethe chase starts. To rectify
this, before applying a valuation from Vinaer (), We first chase
with cFDsin 3, which mayinstantiatecertain variables by impos-
ing constant bindings in their pattern tuples. This recgigepro-
cedureCFD_Checking that, given a databade; (with variables) in
a chase sequence, chases witlly CFDs in X; that is, it applies
FD(¢) for everyCrD ¢ in X that is applicable td;, instantiating
variables in terms of constants in the pattern tuples whesipte.
The procedure appligsfrom Vin.e (=) only to theremainingvari-
ables with a finite domain that have not been assigned a value d
ing the chase. Procedu@D_Checking returns a databasb;1
in which all variables with finite domains have constant values, if
D, 41 is consistent with theFbsin X, and it fails otherwise.
Capitalizing on CFD_Checking, algorithm RandomChecking
works as follows. It starts witbhase; (D, 33), and randomly picks
a constraint inX to chase with. Every time a new tuple is added
to the database as a result of sofND(v)), it invokes proce-
dure CFD_Checking, which instantiates all variables with finite do-
mains as described above.dFD_Checking fails, chase; (D, X) is
undefined and the algorithm starts another random run. Baént
eitherchase; is defined in some run and theandomChecking re-
turnstrue, or chase; (D, X) is undefined for allK runs and the al-
gorithm returndfalse. This is the algorithm we have implemented.
ProcedureCFD_Checking (not shown due to lack of space) can
be implemented either as described above, or by leveragiatirey
tools for knownnNP problems, since the consistency problem for
CFDsis in NP [9]. In the latter case, we reduce it 8nT, a well-
known NP-problem, and then check the consistency ofdhes by
using SAT4j [19], a well-developed tool.

5.3 Optimization: Dependency Graph Analysis
To further improve the accuracy and response time of our al-
gorithms, we next present an optimization technique, based

vertex R; is associated with the set afrbs defined onR; in X3,
denoted byCFD(R;), and a tuple template, denoted byr(R;),
which consists of distinct variables in each attributefaf Later,

7 will be instantiated to be a tuple that satisfies all ttwDs in
CFD(R;) if CFD(R;) is consistent. The sef contains an edge
from vertexR; to R; if there is at least oneIND from R; to R; in

3. Furthermore, the edge is labeled with the set ofallDs from

R; to R;, denoted bYCIND(R;, R;).

Example 5.4: Consider the following extension of the schema and
constraints of Example 5.1R = {R1, Rz, R3, R4, Rs}, attr(R1)
={E, F}, attr(Rz) = {G, H},attr(R3) = {A, B}, attr(R4) =

{C, D}, attr(R5) = {I, J}, finattr(R) = {H} anddom(H) is
bool. Also considery = {¢17 b2, O3, Pa, ¢s5, GPs, V1, Y2, V3,

Y4, Y5}, wheregi1—po andi1—p3 are those given in Example 5.1,
andgs = (Rs : A — B, (cl|l.), ¢4 = (R : C — D, ([[a)),

¢s = (Ra : C — D, ([|D)), 6 = (Rs : I — J, (-||c)), ¥ =
(Ra[nil; H) C Ra[nil; FJ, (1[b)), va = (Rs[A; B] C Ra[C; nill,
(;b]])), andess = (Rsnil; J] € Ra[nil; G, (c]|d)). The graph
G[X] is depicted in Fig. 6. Each node @] is associated with

a set ofcFDs: CFD(R1) = {¢1}, CFD(R2) = {¢2}, CFD(R3)

{¢s}, CFD(R4) = {4, ¢5} andCFD(R25) = {dc}. =
{2, 93} ’
Rgﬂ)fﬁ Rl/\RQ(ﬂRS
{¥1}

Figure 6: Graph G[X]

In a nutshell, we want to redugg[>] by removing any nodé?
(and its related edges) for whi@FD(R) is inconsisteneand thus
has to be empty in any instance Bfthat satisfies:. The reduc-
tion is conducted with care such that it will not generateactpon
the consistency analysis on the remaining graph. When tqghgr
cannot be further reduced, it consists of strongly conmkctem-
ponents such that if! is consistent, then all relations in some of
those components have to be nonempty. Furthermore, forreach
lation R’ in a componentCFD(R') is consistent. This allows us
to reduce the consistency analysis Bnto the analysis on a sin-
gle component. Better still, in some cases the graph remtutgils
us whether or nok is consistent. For example, if the find[X]
is empty then there is no relatiaR for which CFD(R) is consis-
tent; as a resulE is inconsistent. On the other hand, we can con-
clude that is consistent if there i$ such thatr(R) = CFD(R)
and the (instantiated) tuple(R) does notrigger any CIND in X,
i.e., there is noCIND (R[X; X,)] € R'[Y;Y,],t,) in ¥ such that
7(R)[Xp] < tp[Xp]. This is because a consistent instancérof
can be built such that it consists of @)(R)} as the instance R,
and (b) empty instances for all other relation schemas.

We formalize this idea in algorithmreProcessing, shown in
Fig. 7. First, the algorithm performs a topological sort @ntexes
in G[3]] (line 1) such that for anyz; and R; in G[X], (a) if they are
on a cycle, then an arbitrary order ¢t and R; is adopted, and (b)
otherwise, if there is edge froli; to R; thenR; precedesk;. The
order is stored in gueue®). Second, for each relatidR in @, algo-
rithm CFD_Checking is called to check the consistency@fD(R)
(lines 3-4). After runningCFD_Checking, if the setCFD(R) is con-
sistent,r(R) becomes a tuple that satisfiesD(R). Furthermore,

Algorithm preProcessing

Input: The dependency gragh(X) of a set> of CINDs andcFDs.

Output: G(X) is reduced, containing only strongly connected components
1 is returned if a databas® such thatD |= X is found,0 if it
can conclude that is inconsistent, and-1 otherwise.

Q:= a topological order of nodes G(X);
while @ is not emptydo
R := Q.dequeue();
if CFD_Checking(CFD(R), 7(R)) then
if 7(R) does not trigger angIND in X then
return 1;
else
for each R; such that R;, R) € £(G[X])
. addCIND(R;, R)* to CFD(R;);
10. if R;is notinQ then
11. Q.enqueuer;);
12. Delete node? from G[X];
13. Delete all nodes @ with indegree = 0;
14. if G(X) is emptythen
15. return 0;
16. return —1,

©CeoNou,~wDE

Figure 7: Algorithm preProcessing

if 7(R) does notrigger CIND in X, then we can conclude thatis
consistent, and returh(lines 5-6).

Now, if the selCFD(R) is inconsistent, we know that no database
that satisfiesX: can have an nonemptiz. We can thus delete
node R from G[¥] after addingnon-triggering CFDs to prevent
all the neighboring relations from inserting tuples imto(lines 7-
12). More specifically, for eack®; and eactcIND (R;[X; X,,] C
R[Y; Y], tp) in X, we add non-triggeringFbs (R; : X, — A,
(t[X,] [1)) @and (R : X, — A, (t,[X,] || e2)), whereA €
attr(R;) andci, c2 are distinct constants idom(A). These two
CFDs deny any tuple inR; that matches the pattetk,. We use
CIND(R;, R)* to denote the set of all such non-triggeriogps
for R; and itsCINDs. If non-triggeringCFbps are added to a node
R; for which CFD(R;) was already checked for consistency, then
R; has to be added back & to make sure the updatefD(R;)
is still consistent (line 11).

After checking the local consistency afrbs for all nodes in
G[X], the graph contains only relations for which the setpbsis
consistent. If there is a node that has no incoming edges, it can
also be deleted (line 13), since we can makempty without any
impact on finding a consistent instancebfIf after the process the
graph is empty, we can conclude thats inconsistent and retuith
(lines 14-15). Otherwise, whether or notis consistent cannot be
decided at this point, and thusl is returned.

Example 5.5: Continuing with Example 5.4, l&f[>] be the graph
of Fig. 6. AlgorithmpreProcessing starts by performing a topolog-
ical sort. One possible outputd@ = [R4, R3, R1, Rz, Rs].

In the first while-iterationR = R4 and@ = [Rs, R1, Rz, Rs].
ProcedurecFD_Checking returnsfalse sinceCFD(R4) = {4, ¢s5}
is inconsistent. Thu®, is deleted fronG[%] after addingcFDsto
Rs in order to ensure thap, is not triggered. NowCFD(R3)
{¢3, (R3 B — A7 (b||cl)), (R3 : B — A7 (bHCz))} SinceR4
is deleted fron7[%], edge(Rs, R4) no longer exists.

In the next iterationR = Rs andQ = [Ri1, Rz, Rs]. Pro-
cedureCFD_Checking returnstrue sinceCFD(R3), including the
non-triggering constraints added in the previous stepiisistent.
Infact,7(R3) could be(v1, v2) wherev: andv; are variables. This
means that since attributesand B are infinite, it is always possi-
ble find constants in the domains such that d¢ifes are satisfied.
Better still, sinceRs has no outgoing edges(R3) does not trigger
any CIND. This implies that-(Rs) = X and thaty is consistent.

{12,193}

{v1}
Figure 8: Graph G[X] after preProcessing

Algorithm Checking

Input: A setX of CINDs andcFDs over schem&® = (R1, ..., Rn)
Output: true if a databaseD can be built s.tD |= 3; false otherwise

G = the dependency gragh(X) of ;
2. if preProcessing(G) = 1 then

3. return true;

4. if preProcessing(g) = 0 then

5. return false;

6. for each connected componegt € G
7

8

9

1

=

LetY be theciNDs andcFbs defined oveg’;
if RandomChecking(X’) then
return true;
0.return false;

Figure 9: Algorithm Checking

At this pointpreProcessing returnsl.

As another example, let us replage in S by ¢}, = (R3[A;
nil] € R4[C; nill, (_|]-)). In the first while-iterationR = R4 and
Q = [Rs, R1, R2, Rs]. The algorithmCFD_Checking returnsfalse
sinceCFD(R,) is inconsistent. Thug, is deleted fromG[X] af-
ter addingcFps to Rs in order to ensure thap is not triggered.
Since X, in v} is nil, there is no way to avoid triggering it. This
implies thatR3 also has to be empty. This is enforced by adding
non-triggeringCrbs, and nowCFD(R3) = {¢s, (R3 : B — A,
(_le1)), (Rs : B — A, (||c2))}. These non-triggeringFps are
now inconsistent, and therefore no tuple will be adde&1o

In the next iteration,R = Rs and@Q = [Ri, Rz, Rs]. Pro-
cedureCFD_Checking returnsfalse sinceCFD(R3), including the
non-triggering constraints added in the previous stepngsrisis-
tent. NodeRs is therefore deleted frorg[%].

Now, R = R; andQ = [R2, Rs]. ProcedureCFD_Checking
returnstrue since CFD(R;) is consistent. TheIND ; is trig-
gered by any tuple iR, so we need to continue to the next re-
lation. Subsequently, foR = R» and then forR = Rs, pro-
cedureCFD_Checking returnstrue and it is not possible to avoid
the triggering of constraints. The queue is now empty @fd| is
reduced to relation®;, R» and Rs and their edges.

The execution of line 13 of the algorithm will delete nofg,
since any database that contains tupleR4rand satisfiex can be
replaced by another database that also satisfiest without Rs.

When preProcessing terminates,G[¥] is reduced to the graph
shown in Fig. 8, and -1 is returned. a

Algorithm Checking. We combine algorithnpreProcessing with
RandomChecking and develop algorithrehecking shown in Fig. 9.
Initially, graphG[5] is constructed and pre-processed (lines 1-2). If
preProcessing returns 1, from the discussion above we know that
is consistent and thu@hecking returnstrue (lines 2-3). Similarly, if
preProcessing returns 0,Checking returnsfalse (lines 4-5). Other-
wisepreProcessing does not have an affirmative Boolean answer; it
returnsg’, a reduced version @f[X] that consists of only strongly
connected components. Subsequertiyecking takes each con-
nected component @’ and callsRandomChecking that attempts
to find the witness databade that satisfiess’ (line 6-8). If this
database is found, the algorithm retutmse (line 9). If for each
connected component it cannot find such databasalgorithm
Checking returnsfalse (line 10).

Example 5.6: Consider the set given in Example 5.4, with)} of
Example 5.5 in place of,. If algorithm Checking is run to check
the consistency of, it would first call algorithmpreProcessing
which would return the reduced graph as shown in Fig. 8. The re
duced graph has only one connect component Rits {R1, R2}
andX = {¢1, d2,11,1%2,93}. Then, algorithmChecking runs
RandomChecking (see Example 5.3). ad

Itis easy to verify the correctness of our checking algonish

Theorem 5.1: Given a sel of cCINDsand CFDs, if either Checking
or RandomChecking returnstrue, then is consistent. O

For the complexity of the algorithms, given a scheRiand a set
¥ of constraints, lek: andm be the numbers afFbsandcCINDsin
3 respectivelyy be the number of relations, ande the maximum
relation arity. Then we can get the following: @ndomChecking
isinO(a -7 - (n* + m)), (b) preProcessing is in O(a - r - (n +
m)? +r?), and (c)Checking is in O(a - - (n +m)? + r2). Note
that in practice: andr will be much smaller tham andm.

6. Experimental Study

We next present a preliminary experimental study of our iseur
tic methods for checking the consistencycfDs andCFDs.

We compare the performance of our algorithms for checkirg th
consistency of (acrbs alone, namely, the chase-based method
and the method based on reduction gaT presented in Sec-
tion 5.2, for implementingCFD_Checking, denoted byChase and
SAT, respectively, and (bfFDs and CINDs put together, namely,
RandomChecking and Checking. As shown by Theorem 3.2, there
is no need to consideriNDs alone as they are always consistent.

For these algorithms we investigated their accuracy anthsca
bility when varying both the schema (the number of relafjar
the number of constraints. We ugéto denote the ratio of finite-
domain attributes in the schema.

Experimental setting. We used relational schemas that include
up to 100 relations, with” ranging from0% to 25%. Each finite

CFDs. In this case, the accuracy can be determined by running the
algorithm with and without a limitKcep. Fig. 10(b) shows the
results obtained for 1000 randomly generatatbs while varying
Kcrp from 100 to 16K. In fact even wheRA crp reache2000K,
our algorithm still runs very fast. Thus we fixd€crp = 2000K
in the sequel.

Given the advantage afhase over SAT, we adopted the chase
implementation of£FD_Checking in the rest of the experiments.

Experiments for cFbsand cINDs. Our second experiments evalu-
ated the efficiency and accuracyrdndomChecking andChecking.
We fixed the following parameters in these experiments:

(1) SchemaR included 20 relations, with at most 15 attributes in
each relation and’ ranging from 0% to 20%.

(2) ConstraintsX consisted of 75% of FDs and 25% ofcINDs.

(3) Other Parameterdx’, the number of instantiation of finite do-
main attributes, is set t20. 7', the maximum number of tuples in
each relation of the witness database, ranges bet@keand4 K.

Algorithms RandomChecking and Checking scaled well when
the number of constraints was increased for both consistedt
random set of constraints (see Fig. 11(b) and 11(c) resedg}i
Even though the running time &fandomChecking is theoretically
better tharChecking, in practice, most of the cases are solved in the
preProcessing step and thereforehecking shows to be more effi-
cient. Also, as shown in Fig. 11(a), for algorithi@secking the ac-
curacy was almost constantly 100%.The experiments shavtttba
preProcessing not only increases accuracy but it also improves the
scalability of the algorithm. The high accuracy can be exgld by
the difficulty of generating consistent datasets that weraptex
enough for the algorithm to fail. However, we believe theadats
used in the experiments are already more complex than the one
found in practice.

To investigate the impact of the number of relations ovepisre
formance, the algorithms were run with different number elfi¥
tions, but fixing the ratio of%|/|R| = 1000. The results of this
experiment are given in Fig. 11(d).

domain was set to have 2 to 100 elements. The experiments showSummary. We have presented preliminary results from our exper-

that IV, the maximum size ofar[A], has a negligible impact on
the accuracy of the algorithms. This is why we 3ét= 2 in the
experiments, which makes the algorithms much more efficient

We have implemented a generator that, given a schieman-
domly generates sets &f consisting ofcFbs and CINDs defined
over R, with any given cardinalitycard(X) of 3. More specifi-
cally, each sek: was either consistent or inconsistent. We evalu-
ated the accuracy of the algorithms by applying them on stersi
and randomly generated setsmfiDsandcCFbs. In order to gener-
ate the former, we took care to generate a consistent &tCFDs

imental study. First, we find that our heuristic methods,|mast
all cases, accurately determine the consistenayrok andCINDs.
Second, all algorithms, excepAT, scale well when the number of
constraints or the size of relations increases. Third, we &hd
that thepreProcessing optimization technique not only improves
the accuracy, but also reduces the running time.

7. Related work

Closest to our work is the recent study ©fbs [9], which pro-
posed the notion of Fbs, established the intractability of the con-

andcINDs by ensuring that there exists at least one possible value sistency and implication problems farps, and provided arsQL

for each attribute so as to makeviness databasef 3.

technique for findingcFD violations. However, neitheZINDs nor

The experiments were run on a machine with an Intel Pentium D their static analyses were studied in [9].

3.00GHz with 1GB of memory. Each experiment was run 6 times
and the average is reported here.

Experiments for cFDs only. This experiment aimed at comparing
the accuracy and scalability Ghase andSAT. In order to avoid the
exponential cost of checking all the valuations of finiteiltites in
algorithmChase, no more thankcrp valuations are allowed.

We varied the cardinality otard(X) of X while fixing the
number of relations to 20, anfl' to 25%. The results, given in
Fig. 10(a), show thathase significantly outperformsAT in terms
of scalability. IndeedcChase works well even for a large number of
cFDs. When the accuracy is concernathase and SAT are com-
parable and both do very well: the percentage that they tegor
true when the inpu®: was consistent was 100% and only in a few

Also relevant are dependencies of [4, 21, 22] developeddor ¢
straint databases. Constrained dependencies of [21] &ne &6rm
& — (Z — W), where¢ is an arbitrary constraint that is not
necessarily aD. These dependencies applp Z — W only
to the subset of a relation that satisfiés They cannot express
CFDs since Z — W does not allow patterns with constants as
found inCFDs. More expressive are constraint-generating depen-
dencies ¢GDs) of [4] and constrained tuple-generating dependen-
cies CTGDs) of [22], of the formVZ(R1(Z)A. . . ARk (Z)NE(T) —
&' (z)) andVz(R1(Z) A ... Re(z) A€ — Fy(RL(Z,9) A ... A
Ry(z,y) A& (7, 7)), respectively, wher;, R} are relation sym-
bols, and¢, &’ are arbitrary constraints. While bothcbs and
CTGDs can expres€FDs, and CTGDs can expres€INDs, little is

occasions it was 95%. We also experimented with random $ets o known about the complexity of their satisfiability and ingaltion

T T T T T T T T
1001 W—N I
=~ 80} -
S
g 60 -
5
g 40f —
20 CFD_checking—+—
0 1 1 1 1 1 1 1 1

0 200 400 600 800 1000120014001600
Kerp

(b) CFD_Checking accuracy for differen¥crp

Figure 10: Scalability and accuracy of consistency checkifor cFbsand CINDs

2 T T T T T
Il
| Chase—+—
! SAT —-3--
. 15f! .
g |
2 |
E 1y .
g !
2 i
I
05 -
:’
ot ke e |
0 200 400 600 800 1000 1200
of CFDs per relation
(a) Performance ofFD_Checking
T T T T
100 [X-=X-=- KXo K- KKK X
9 80 - —
z
I 60 - -
=}
(5]
& 40 .
20 RandomChecker—— o
Consistency-->*--
0 I I I I
0 5000 10000 15000 20000

Number of Constraints
(a) Accuracy for consistent sets OfFbsandCINDs

T T T T

60 - B
RandomChecking—+—

50 | Checking —->*--

40 -
30 -

Runtime(sec.)

20 -
10 -

0 | | | |
0 5000 10000 15000 20000
Number of Constraints
(c) Scalability for random sets afFbsandCINDs

60 T T T T

| RandomChecking—+—

50 Checking -->--

40 |

30

Runtime(sec.)

20 -

10 - B

0 | N | N2
0 5000 10000 15000 20000
Number of Constraints
(b) Scalability for consistent sets oFbsandcCINDs

T T T
RandomChecking—+— —

120 -
Checking —->--
100 |- B
s X
i‘,{ 80 - B
Q
£ 6o} -
c
&
40 - E
20 - B
0 1 1 1 1 1
0 20 40 60 80 100

Number of Relations
(d) Scalability for different number of relations

Figure 11: Scalability and accuracy of consistency checkinfor cFbsand CINDs

problems, effective algorithms to solve these problemsheir in-
ference systems. Indeed, focDs, the complexity of these prob-
lems is an open issue in the presence of constarfisite-domain
attributes, even whef and¢’ are (&, #) constraints; forcTGbs
the satisfiability and implication problems are alreadyenidable
even in the absence ¢f¢’ and constants. That is, the expressive

sistent and minimally differs from the original databaseg(,[8,
13, 15]); andconsistent query answering to find an answer to a
given query in every repair of the original databasey(,[2, 25]).
A variety of constraint formalisms have been used in datargtey,
ranging from standar@ébs and INDs [2, 8, 13], denial constraints
(full dependencies) [20], to logic programs (see [6] for aemt

power of these dependencies comes with the price of high com- survey). To our knowledge, no prior work has consideredepatt

plexity. None of the prior results applies ¢@Ds or CINDs.
Constraints used in schema matching are typically standarsl
and keys (sees.g.,[16]). Contextual schema matching [7] inves-
tigated the applications of contextual foreign keys, a fiiv@ and
special case ofINDs, in deriving schema mapping from schema
matches. While [7] partly motivated this work, it neitherrfal-
ized the notion ofINDs nor considered static analyses@fDs.
Research on constraint-based data cleaning has mostlgddcu
on two topics [2]:repairing is to find another database that is con-

tableaux, which, as shown in [9], can be treatedlat® tablesin
sQL queries and thus allow efficiesL techniques to detect con-
straint violations. Moreover, previous work on data cleandid
not study the consistency and implication problems of gairss,
which are the focus of this paper.

As remarked earlier, algorithms and inference systemstfer t
implication problems of standardbs and INDs can be found in
most database textbooks, and have also been well studiedvéer
riety of constraints such asxsDs, equality generating dependencies

and embedded dependencies @eg,[1]). In contrast tocFbsand
CINDs, these constraints were studied in #ifgsenceof constant
values (and negation), and thus their consistency anafysisial.

The consistency problera,k.a.theconstraint satisfiability prob-
lem, has been studied for first-order logic constraints, foralhi
heuristic methods have also been developed @eg,[10, 23]).
Unfortunately, attributes with finite domains were not ddesed in
that context, and thus those algorithms cannot be applietnbs
andcrbs. Methods have also been developed for the satisfiability
problem for,e.qg.,description logics (see.g.,[3]), in which CINDs
andcFDsare not expressible.

The chase is widely used in implication analysis and query op
timization, and has been studied for a variety of depen@snci
(see,e.g.,[1]). Recently it was extended for query reformulation
and schema mapping, and a number of sufficient conditions wer
identified to guarantee its termination (see [14] for a résenvey).

A heuristic method for chasing withbs and INDs was proposed
in [17], with the following simplifications to ensure ternaition:
for a predefined constant, INDs are applied at most times and
then only one extra variable is allowed to be used to insitatt-
tributes of the tuples newly inserted when chasimgs. This is, in
spirit, similar to our predefined variable sets.

8. Conclusion

We have proposedINDs, a mild extension ofNDs that is im-
portant in both contextual schema matching and data clgakife
have provided complexity bounds and a sound and complete inf
ence system for consistency and implication problemsios.

We also established complexity bounds for reasoning aboubs
together withcFDs. These results settle the fundamental problems
associated with conditional dependencies. Even if we densinly
finite databases,e., databases where each relation has a finite ex-
tension, all the obtained complexity bounds still hold.slteft for
future work checking if better complexity results can beabiéd

by considering extra assumptions, such as acyclicitgiafbs or
CINDs with only unary relations.

In response to the intractability of the interaction betwe€&bs
and CcINDs, we have developed efficient heuristic algorithms for
checking the consistency afiNDs and CFDs. As verified by
our preliminary experimental results, these algorithnes@omis-
ing for employingCINDs and CFDs in practical data cleaning and
schema matching tools.

There is naturally much more to be done. In practice one of-
ten needs to find a minimal cover of a given 3ebf constraints,
namely, a set,,. that is equivalent t& but contains no redun-
dancy. The computation afl,,. involves implication analysis,
which is undecidable fociNDs andCcFDs. Thus it is practical to
develop heuristic algorithms for checking implicationarbs and
CINDs. Another interesting topic is propagation©fbsandCINDs
throughsqQL views. This is needed when deriving schema mapping
from the constraints [16]. We are also investigating SQkdna
techniques for detectingIND violations in real-life data along the
same line as [9] for data cleaning. Finally, effective usenfbs
and CcFDs in schema matching and data cleaning requires a full
treatment.

Acknowledgments Wenfei Fan is supported in part by
EPSRC GR/S63205/01, GR/T27433/01, EP/E02921aHd BBSRC
BB/D006473/1

9. References
[1] S. Abiteboul,

R. Hull, and V. Vianu.Foundations of

DatabasesAddison-Wesley, 1995.

M. Arenas, L. E. Bertossi, and J. Chomicki. Consistergrgu

answers in inconsistent databas@®LP, 3(4-5):393-424,

2003.

F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and

P. Patel-Schneider, editofBhe Description Logic Handbook

— Theory, Implementation and Applicatio@ambridge Uni-

versity Press, 2003.

M. Baudinet, J. Chomicki, and P. Wolper. Constraint-

Generating DependencieBkCS$59(1):94-115, 1999.

C. Beeri and M. Vardi. A proof procedure for data dependen

cies.JACM, 31(4):718-741, 1984.

L. Bertossi. Consistent query answering in databaSt6-

MOD Rec, 35(2):68-76, 2006.

P. Bohannon, E. Elnahrawy, W. Fan, and M. Flaster. Pgittin

context into schema matching. VWL.DB, 2006.

P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-

based model and effective heuristic for repairing constsai

by value modification. 'SIGMOD pages 143—-154, 2005.

P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsiet-

sidis. Conditional functional dependencies for data dlegan

In ICDE, 2007.

F. Bry, N. Eisinger, H. Schitz, and S. Torge. SIC: Satfsl-

ity checking for integrity constraints. IDDLP, pages 25-36,

1998.

M. A. Casanova, R. Fagin, and C. H. Papadimitriou. |an

dependencies and their interaction with functional depend

cies.JCSS$28(1):29-59, 1984.

B. S. Chlebus. Domino-tiling game3CSS$ 32(3):374-392,

1986.

J. Chomicki and J. Marcinkowski. Minimal-change intiég

maintenance using tuple deletiomsformation and Compu-

tation, 197(1-2):90-121, 2005.

[14] A. Deutsch, L. Popa, and V. Tannen. Query reformulation
with constraintsSIGMOD Record35(1):65-73, 2006.

[15] E. Franconi, A. L. Palma, N. Leone, S. Perri, and F. Seiéoc
Census data repair: a challenging application of disjuacti
logic programming. ILLPAR pages 561-578, 2001.

[16] L. Haas, M. Hernandez, H. Ho, L. Popa, and M. Roth. Clio
grows up: from research prototype to industrial tool StG-
MOD, 2005.

[17] D. S. Johnson and A. Klug. Testing containment of con-
junctive queries under functional and inclusion depenigenc
JCSS$28(1):167-189, 1984.

[18] P. G. Kolaitis. Schema mappings, data exchange, and-met
data management. RODS 2005.

[19] Lens Computer Science Research Centre. SAT4j home page
2003. http://www.satdj.org/

[20] A. Lopatenko and L. Bertossi. Complexity of consistguéry
answering in databases under cardinality-based and incre-
mental repair semantics. I€DT, 2007.

[21] M. J. Maher. Constrained dependencigbeoretical Com-
puter Sciencel73(1):113-149, 1997.

[22] M. J. Maher and D. Srivastava. Chasing Constrained &upl
Generating Dependencies.RODS 1996.

[23] R. Manthey. Satisfiability of integrity constraintsefRections
on a neglected problem. FMLDO, pages 169-179, 1990.

[24] E. Rahm and H. H. Do. Data cleaning: Problems and current
approachedEEE Data Eng. Bull.23(4):3-13, 2000.

[25] J. Wijsen. Database repairing using updatéBODS
30(3):722-768, 2005.

(2]

(3]

(4]

(5]

(6]

(7]
(8]

(9]

[10]

[11]

[12]

[13]

