Improving Data Quality: Consistency and Accuracy

Gao Cong! Wenfei Fan??
!Microsoft Research Asia

gaocong@ri crosoft.com

Abstract

Two central criteria for data quality are consistency ancuaacy.
Inconsistencies and errors in a database often emergelasanie
of integrity constraints. Given a dirty databaBe one needs au-
tomated methods to make dbnsistenti.e., find a repairD’ that
satisfies the constraints and “minimally” differs from. Equally
important is to ensure that the automatically-generat@direD’
is accurate or makes senseeg., D’ differs from the “correct” data
within a predefined bound. This paper studies effective nuxlor
improving both data consistency and accuracy. We emplogsscl
of conditional functional dependenciésFps) proposed in[l5] to
specify the consistency of the data, which are able to captur
consistencies and errors beyond what their traditionahtzparts
can catch. To improve the consistency of the data, we propase
algorithms: one for automatically computing a repBir that sat-
isfies a given set of FDs, and the other for incrementally finding a
repair in response to updates to a clean database. We shdvotha
problems are intractable. Although our algorithms are ssasly
heuristic, we experimentally verify that the methods arfedaive
and efficient. Moreover, we develop a statistical method gloar-
antees that the repairs found by the algorithmsaa@urate above
a predefined ratavithout incurring excessive user interaction.

1. Introduction

Real-world data is often dirtyi.e., containing inconsistencies,
conflicts and errors. A recent survey [31] reveals that qmises
typically expect data error rates of approximately 1%-5%he T
consequences of dirty data may be severe. For example,ét is r
ported [12] that wrong price data in retail databases alaststS
consumers $2.5 billion annually. With this comes the needfo
fective methods to improve the quality of data, or to cleatada

Inconsistencies, errors and conflicts in a database oftengem
as violations of integrity constraint51[2.]29]. A centraloptem
for data cleaning is how to make the datnsistent given a dirty
databasé, we want to minimallyeditthe data inD such that it sat-
isfies certain constraints. In other words, we want to finepair of
D, i.e.,a databas®epr that satisfies the constraints and is as close
to the original D as possible. This is the data cleaning approach
thatus national statistical agencies, among others, have been pra
ticing for decaded [13.°35]. Manually editing the data isaatistic
when the databasP is large. Indeed, manually cleaning a set of
census data could easily take months by dozens of clerks T8ig
highlights the need for automated methods to find a repafp.of

Permission to make digital or hard copies of all or part of thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

VLDB ‘07, September 23-28, 2007, Vienna, Austria.

Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3@¥./

Floris Geerts2*5
2University of Edinburgh
3Bell Laboratories

{wenfei @nf, fgeerts@nf, x.jia@ns, smal@nf }. ed. ac. uk

Xibei Jia? Shuai Ma?
*Hasselt University
*transnational Univ. Limburg

In practice one also wantacrementalmethods to improve the
consistency of the data: given a clean dataliaskat satisfies a set
¥ of constraints, and updatesD on the databas®, it is to find
a repairA Dgepr Of AD such thatD @& A Drgepr Satisfiess (we use
@ to denote the application of updates). This is often adgmuas
to batchmethods that compute a rep&epr of D & A D starting
from scratch instead of finding a typically much smalePge,:.

Another important problem for data cleaning is how to guar-
antee that a repair isaccurate or makes sense. Although an
automatically-generated repdtepr (Repr = D @ ADgey in the
incremental case) satisfies the constraints, it may comgits to
the original D that are not what the user wants. To ensure Regt
cannot go too wrong, assume tHag,: is the “correct’repair ofD.
We wantRepr to be as close td.,: as possible by guaranteeing
that|dif (Repr, Dopt)|/| Dopt | is within a predefined bound Here
dif counts the attribute-level differences between two databa

There has been a host of work on data cleaning.(2,/5,2510,
14,[34]). However, to develop practical data-cleaninggdbkre
is much more to be done. First, the previous work often models
the consistency of data using traditional dependeneigs, func-
tional dependenciesps). TraditionalFDs were developed mainly
for schema design, but are often inadequate for data clgaifims
calls for the use of constraints particularly developedifata clean-
ing that are able to catch more inconsistencies than teeditide-
pendencies [29]. Second, few algorithms have been delimpe
automatically finding repairs, and even less incrementghous
are in place. Third, none of the previous automated methaoals p
vides performance guarantee for ecuracyof the repairs found.
These are illustrated by the example below.

Example 1.1: A company maintains a relation of sale records:
order(id, name, AC, PR, PN, STR, CT, ST, zip).

Eachorder tuple contains information about an item sold (a unique

itemid, name and pricePR), and the phone number (area cade,

phone numbePN) and address of the customer who purchased the

item (streetSTR, city CT, stateST). An example databasb is

shown in Fig[I{@) (thevt rows will be elaborated on later).
TraditionalFDs on theorder database include:

fdi: [AC,PN] — [STR,CT,ST] fds: [zip] — [CT,ST]

fds: [id] — [name, PR] fdy: [CT,STR] — [zip]
That is, the phone number of a customer uniquely determines
her address, and the zip code determines the city; in addiio
uniquely determines theame and PR of the item sold, and the
city and street uniquely determine the zip code.

Although the database of F[g-_1(a) satisfies ttrse the data is
not clean: tupless andt, indicate that when the area code is 212,
the city could bePHIin PA, which is not the case in real life.

Such inconsistencies can be captureccbgditional functional
dependencie¢cFps) introduced in [6]. For example, Fifl. I{b)
shows twoCFDs ;1 andgs. CFD 1 extendsFD fd; by includ-
ing apattern tableaul’; it asserts that for any tworder tuples,
if they have the same area code 212 (resp. 610, 215pPahdhen
they must have the sansd' R, CT, ST and moreover, the city and

¢1 =([AC,PN] — [STR,CT,ST], T1)

AC | PN || STR | CT | ST |

id name PR AC PN STR CT ST zip
t1: | a23 H. Porter | 17.99| 215 | 8983490| Walnut | PHI PA | 19014 . - - - v -
wt | (1) (0.5) ©5) | 05| (05 | (08 | (0.8)] (0.8]| (0.8 Ty gié - - I\IIDT-|CI: ﬁ;
to: [@23 | H.Porter | 17.09| 610 | 3456789 Spruce| PHI | PA | 19014 o | " en e
wt | (1) (0.5) ©05) | (05)| (05) | (0.6) | (0.6)| (0.6)| (0.6)
t3: [@12 | J.Denver | 7.04 | 212 | 3345677 Canel | PHI | PA | 10012 i
wt | (1) (0.9) 0.9 | (09| (09 | 06 |01/ ©01] 08 ¥2 ([Z'Zpi}p _>”[CZ’TST|]' ST%) |
tq: | @89 | Snow White | 18.99 | 212 | 5674322| Broad | PHI PA | 10012
wt | (1) (0.6) ©5) | (09| (09 | 0.1) | (0.6)]| (0.6)| (0.9 T o012 |l nve | Ny

(a) Exampleorder data 19014 || PHI | PA

(b) Example CFDs

Figure 1: Example data and CFDs

state must belvyc andNy (resp.PHI andPA), respectively, regard-
less of what value®N, STR have (intuitively " indicates “don’t
care”). It enforces bindings of semantically related valueach
tuple inTy specifies a constraint that only applies to tuples satisfy-
ing a certain pattern, rather than to the entire relatioafiék. For
example, the constraint specified by the second tuglé ionly ap-
plies to tuples withAC = 212. Similarly,CFD y2 extendsFD fds.
Note thatcFDs @1 and . cannot be expressed as traditiorak
since they specify patterns witlata values In contrast, standard
FDs are a special case afFDs [B].

The database of Fiff. I]a) does not satisfy theses. Indeed,
tuplets violatesy: sincets[AC] = 212 but¢3[CT,ST] # (NYC,
NY); it also violatesp,: althoughts|zip] = 10012, ¢3[CT,ST] #
(NYC, NY). Similarly, t4 also violatesp; andys.

To make the databade consistentone may want to edit; and
ta such thats[CT,ST] = ¢4[CT,ST] = (NYC, NY), as suggested
by CFDs ¢1 andps. In other words, a repaiRepr of D consists
of tuplest, t2 andts, t4 updated as above. A central task of data
cleaning is to develop automated methods to find such repairs

Now suppose that one wants to inserts a tupieto Repr, where
ts[AC, PN, CT, ST, zip] = (215, 8983490NYC, NY, 10012). Then
ts and¢; violate fd:: while they agree o\C, PN, they have dif-
ferentCT,ST. The objective ofincrementaldata cleaning is to
automatically and minimally updatg such thatRepr and the up-
datedts satisfy all thecFbs andFDs given above. This is nontriv-
ial: a naive approach to updatingmay lead to an infinite process.
Indeed, one might want to changgCT, ST] to (PHI, PA) as sug-
gested bycFD 1. However, the updatetd now violatescFD ps:
t5[zip] =10012 buts[CT, ST]is not (Nyc, NY). Now if we change
t5[CT,ST] back to (iyc, NY) as suggested by, we are back to
the originalts and again need to resolve the violationmf.

A possible fix might be by changing[CT, ST, zip] to (PHI, PA,
19014). WhileRepr and this editeds indeed satisfy all the con-
straints, this change may not becurate the correct edit could be
letting ¢5[AC] = 212 while keeping the rest @f unchanged. Im-
proving theaccuracyof the data aims to guarantee that the repairs
found are as close to the correct data as possible. ad

Contributions. We present a data-cleaning framework that sup-
ports automated methods for finding repairs of databasesfan
incrementally finding repairs in response to database epdait
also supports a statistical method that guarantees thaegairs
found by our algorithms are accurate. As opposed to previauk
on data cleaning, our methods are based pbsintroduced in[[5],
rather than traditional dependencies. As we have seen abepe
are able to capture inconsistencies beyond what starrt@rdan
detect. Furthermore;FDscommonly arise in practice. In data inte-
gration, for examplerDs that hold on individual sources will hold
only conditionally, and thus becontFDs, on the integrated data.
Our first contribution is an algorithm for finding repairs of
databases based amDs. As shown inl[5], the problem of finding

a quality repair isnP-complete even for a fixed set of traditional
FDs. We show that this problem remains intractable ¢eis, and
that FD-based repairing algorithms may not even terminate when
applied tocFDs. To this end we adopt the cost model [of [5] that
incorporates both the accuracy of the data and edit distBased
on the cost model, we extend the-based repairing heuristic intro-
duced in[[5] such that it is guaranteed to terminate and firadityu
repairs when working orcFDs. To our knowledge no prior work
has considered repairing algorithms baseatens.

Our second contribution consists of complexity bounds amd a
effective algorithm for incrementally finding repairs. Waosv that
the problem for incrementally finding quality repairs does make
our lives easier: it is alsaP-complete. In light of this we develop
an efficient heuristic algorithm for finding repairs in resge to
updates, namely, deletions or insertions of a group of tuplédis
algorithm can also be used to find repairs of a dirty database.

Our third contribution is a statistical method to improve thc-
curacy of the repairs found by our algorithms. On one hand, in
order to ensure that the repairs meet the expectation ofdée it
is necessary to involve domain experts to inspect the rep&in
the other hand, it is too costly to manually check each eglitthen
dealing with a large dataset. In response to this we devekgma
pling method that, by involving the user to inspect and ealibgles
of manageable size, guarantees that the accurate ratesrefihirs
found are above predefined boundith a high confidence

Our fourth contribution is an experimental study of our prepd
cleaning algorithms. We evaluate the accuracy and sciabfl
our methods with real data scraped from the Web. We find that
CFDs are able to catch inconsistencies that traditiorad fail to
detect, and that our repairing and incremental repairiggrithms
efficiently find accurate candidate repairs for large dasase

Our conclusion is thatFbs and the proposed algorithms are a
promising tool for cleaning real-world data. To our knowged
our algorithms are the first automated methods for findingirsp
and incrementally finding repairs based on conditional trangs.
Furthermore, no prior work has studied methods for guarinte
the accuracy of repairs without incurring excessive maeifatts,

2. Conditional Functional Dependencies

In this section we review conditional functional dependesc
(CcFDs) proposed inl([B].

For a relation schem®, let attr(R) denote its set of attributes.
The domain of an attributel is denoted bydom(A4). Given a
database instand@ over R, the active domain of an attribut¢ is
denoted byadom(A, D); it consists of all the constants dom(A)
that appear as thd-attribute of a tuple inD. In this paper we
consider relation schemas consisting of a single relaioonly.
However, our repairing methods are applicable to genetatiom
schemas by repairing each relation in isolation. This issibs
sinceCFDs address a single relation only.

3 = (order:[id] — [name, PR], T3), andT3 is
PR

id || name
4 = (order:[CT,STR] — |[zip], T4), whereTy is
CT | STR || zip

Figure 2: Standard FDs expressed as£FDs

CFD. A crD ¢ on relationR is a pair(R : X — Y, T},), where
(1) X andY are subsets afttr(R); (2) R : X — Y is a standard
FD, referred to as thed embedded i; (3) T, is a tableau with
all attributes inX andY’, referred to as theattern tableawf ¢,
where for eact in X orY, and eaclpattern tuplet,, € 75, t,[A]
is either a constant’ in dom(4), or an unnamed variable’

If A appears in bottX andY’, we uset,[AL] andt,[Ag] in the
tableaur, to distinguish the occurrence of thieattribute inX and
Y, respectively. We denot& asLHS(¢) andY asRHS(¢).

Example 2.1: Constraintsp: and 2 given in Fig.[I{0) are
CFDs. In ¢4, for example, X (i.e., LHS(¢1)) is {AC, PN}, Y
(i.e., RHS(p1)) is {STR,CT,ST}, the standardD embedded in
¢1 is [AC,PN] — [STR,CT, ST], and the pattern tableau i
(we separate theHS and RHS attributes in a pattern tuple with
‘|I). Each pattern tuple iff expresses a constraint. For instance,
the first tuple oft; expresses the standaFd fd;.

In fact all the constraints we have encountered so far caxbe e
pressed asFDs. Indeed, the first pattern tuple gh expressefd,,
and thecrps given in Fig 2 specifie&ds (¢3) andfds (p4). O

Observe the following. (1) Astandamb R : X — Y isa
special case of therD (R : X — Y, T},) in which T}, consists
of a single pattern tuple solely containing.‘ See, for instance,
Fig.[@. (2) The pattern tabledl], of a cFD ¢ refines the standard
FD embedded i by enforcing the binding of semantically related
data values. In general, tif® embedded ir> may not hold on the
entire relation; it holds only on tuples matching the patteiples.

Semantics To give the precise semantics ©fDs, we first define
an order< on data values and’ n;, < n. if eithern; = 72, orm
is a data valued’ and 72 is ‘_’. The order= naturally extends to
tuples,e.g.,(Walnut,NYC, NY) =< (_, NYC, NY) but (Walnut,NYC,
NY) % (-, PHI,). We say that a tuple; matcheg if 1 < to.

A relation instanceD of R satisfiesthecFrb ¢ = (R : X —
Y, Tp), denoted byD = ¢, iff for each pairof tuplest,, t2 in D,
and foreachtuplet, in the pattern tableall,, if t1[X] = t2[X] <
tp[X], thent1[Y] = t2[Y] < t,[Y]. Thatis, ift1[X] andt2[X]
are equal and match the pattegiX], thent¢1[Y] and¢2[Y] must
also be equal to each other and match the pattgin].

Example 2.2: Theorder table in Fig[l satisfieps, p4 of Fig.[d.
However, as remarked in Examfilell.1, eachsot, does not sat-
isfy, i.e., violates CFDs ¢1, @2 of Fig.[I{B]. Indeed, considey, =
(212,_|| - NYC, NY) in T1. Althoughts[AC, PN] = ¢3[AC, PN] <
t,[AC, PN], we have thats[STR, CT,ST] # t,[STR,CT,ST].
This tells us that while a violation of a standafd requirestwo
tuples, asingletuple may violate a&FD. ad

We say that a databade satisfiesa set® of CFDs, denoted by
D E %, if D E ¢ for eachy € X. Moreover, we say thab
is consistent with respect t if D = ¥; otherwise we callD
inconsistenor dirty.

Observe that pattern tableaus d@rbs are quite different from
Codd tables, variable tables and conditional tables, whiave
been traditionally used in the context of incomplete infation
[22,[18]. The key difference is that each of these tablesemnts
possibly infinitely many relation instances, one instarmeeiach
instantiation of variables. No instance represented bgethable

formalisms can include two tuples that result from diffdrigistan-
tiations of a table tuple. In contrast, a pattern tableausisduto
constrain—as part of aFb—a single relation instance, which can
contain any number of tuples that are all instantiationdhefdame
pattern tuple via different valuations of the unnamed \#es *".

Normal form . From the semantics afFDswe immediately obtain

a normal formof cFDs: Given a set of CFDs, we may assume
that eachcFD ¢ € X is of the form¢ = (R : X — A, t,,), where

A € attr(R) andt, is a single pattern tuple. For ease of exposition
we assume thatrFps are given in the normal form.

Satisfiability. To clean data based @¥rDs we need to make sure
that thecFDs are satisfiable, or make sense. Badisfiability prob-
lemis to determine, given a sét of CFDs, whether or not there
exists a (non-empty) databage such thatD = X. While this
problem is trivial for traditionalFDs, i.e., any set ofFDs is satis-
fiable, this is no longer true fotFDs. Indeed, it has been shown
that this problem is intractable in general [6]. Howeveremnhihe
database schema is fixed, satisfiabilityasfds can be decided in
PTIME. In the sequel we consider satisfiakleDs only.

3. A Framework for Data Cleaning

We have seen thatrDs are capable of capturing mofeconsis-
tenciesthan traditionalFDs. The next question is how to resolve
these violations and hence improve data consistency? Merezs
there may exist (possibly infinitely) many repairs, whicindiaate
repair should be chosen? Furthermore, how can one tell whath
repair is accurate or not? In this section we answer thesgtiqus,
state the problems we will tackle, and present an overvieauof
data-cleaning framework.

3.1 Violations and Repair Operations

We first formalize the notion of violations, which helps us de
cide how “dirty” a data tuple is. We then discuss edit operaito
resolve the violations.

Consider a database and a se®: of cFbs. For each tuple
in D, thenumber of violationsncurred by¢, denoted byio(t), is
computed as follows. Initiallyio(t) is set to0.

(1) ForeactcFDg = (R: X — A, tp) in %, if t[X] =< t,[X] but
t[A] # tp[A], we say that violates¢, and incrementio(t) by 1.
This may occur when, [A] is a constant.

(2) ForeachcFrD ¢ = (R : X — A, tp) in X, if t{X] =< t,[X]
andt[A] x t,[A4], then foreachtuplet' in D such thatt[X] =
t'[X] =< tp[A] butt[A] # ¢'[A], we say that violates¢ with ',
and addl to vio(t). We can w.l.o.g. assume thgf{A] = ‘_’ since
otherwise the violation is already covered by case (1) above

For a subse€' of D, the number of violations id' is defined to
be the sum ofio(¢) for all ¢ in C, denoted byio(C).

A repairRepr of a databas® w.r.t. a set® of CFDsis a database
that (i) satisfies:, i.e., Repr = X, and (ii) is obtained fronD by
means of a set akpair operations

We considerattribute value modificationas repair operations,
along the same lines &g [5.114] 24] 34]. Note that tuple iiogert
do not lead to repairs whenrDs (or FDs) are concerned, and that
tuple deletions can be mimicked by attribute value modiibeest

When we modify theA-attribute of a tuplet in the database
D, we either draw its value froradom(A, D), i.e., the set ofA-
attribute values occurring i, or use the special valuaull when
necessary. That is, we dmt inventnew values. We pickull if
the value of an attribute isnknownor uncertain To simplify the
discussion we assume that one can keep track of a giventtuple
D during the repair process despite that the valuemfy change
(this can be achieved B/g.,using a temporary unique tuple id).

Attribute value modifications are sufficient to resolvep viola-
tions: If a tuplet violates acFp ¢ = (R : X — A, t,) (case 1
above), weesolve thecrb violation by either modifying the val-
ues of theRHS(¢) attribute such thatf A] =< ¢,[A], or changing the
values of som&HS(¢) attributes such tha{ X] # ¢,[X]. If ¢ vio-
lates¢ with another tuple’ (case 2 above), we either modifyA]
(resp.t’'[A]) such that[A] = t'[A], or change[X] (resp.t’[X])
such that[X] # t,[X] (resp.t'[X] # t,[X]) ort[X] # #'[X].
Remarks. (1) We adopt thesimple semantics of thesQL stan-
dard [23] fornull: ¢1[X] = t2[X] evaluates tarue if either oneof
them containswll. (2) In contrast, when matching a data tuple
and a pattern tuple,, t[X] =< ¢,[X] is false if ¢[X] containsnull,
i.e., CFDs only apply to those tuples that precisely match a pattern
tuple, which does not contaiull. (3) In case some attributes are
non-nullable, we use - DEFAULT to reset attributes values to
their default value. The semantics of the matching operiatoe-
defined accordingly. For convenience, we assume that abais
are nullable. (4) A tuple can be “deleted” via value modificas
by settingnull to all of its attributes.

3.2 Cost Model

repamng
module
pllng
AD — |ncremental <&D Rep, module
module et \L

Figure 3: Data cleaning framework

(S %)
saerI e

= user

Remarks. (1) Although the cost model incorporates the weight
information, our cleaning algorithms to be given shortly ot
necessarily rely on this. In the absence of the weight in&trom,
our algorithms setw(¢, A) to 1 for each attributed of each tuple

t. In this case our algorithms use the number of violativiogt)

to guide repairing process, and our experimental resutis/ghat
the algorithms work well even when the weight informatioma
available. (2) Other similarity metrics (seeg.,[L1]]) can also be
used instead of theL metric in our model.

3.3 A Data Cleaning Framework: Overview
Therepairingproblem is stated as follows: given a 8&bf CFDs

As a violation may be resolved in more than one way, an imme- over a schema and a database instanteof R, it is to compute
diate question is which one to choose? One might be tempted toa repairRepr of D such thaRepr = 3 andcost(Repr, D) is min-

pick the one that incurs least repair operations. While sudpair
is close to the original data, it may not be accurate.

imum. That is, we wanautomatednethods to find a repagonsis-
tent w.r.t.2 by modifying D. Intuitively, the smalletost(Repr, D)

We would like to make the decision based on both the accuracy is, the more accurate and closer to the original dRagr is.

of the attribute values to be modified, and the “closenesghef
new value to the original value. Following the practiceusf na-
tional statistical agencie5 [113.135], we assume thatgghtin the
range[0, 1] is associated with each attributeof each tuple in the
datasetD, denoted byw(¢, A) (see thewt rows in Fig[I{@)). The
weight reflects the confidence of thecuracyplaced by the user in

theattributet[A], and can be propagated via data provenance anal-

ysis in data transformations. Given this, we extend the custel
of [§] to provide a guidance for how to choose a repair.

For two valuesv, v in the same domain, we assume thalis
tance functiondis(v,v’) is in place, with lower values indicating
greater similarity. In our implementation, we simply addpée
Damerau-Levenshteinb() metric [16], which is defined as the
minimum number of single-character insertions, deletams sub-
stitutions required to transformto v’. The cost of changing the
value of an attributé[A] from v to ' is defined to be:

cost(v,v') = w(t, A) - dis(v,v") /max(|v|, |v'|),

Intuitively, the more accurate the origingl4] value v is and
more distant the new valu€ is fromwv, the higher the cost of this
change. We usdis(v,v")/max(|v], |v'|) to measure the similarity
of v andv’ to ensure that longer strings withcharacter difference
are closer than shorter strings witkcharacter difference.

The cost of changing the value of &xtuplet tot’ is the sum of
cost(t[A],t'[A]) for eachA € attr(R) for which the value of[A]
is modified. The cost of a repaRepr of D, denotedctost(Repr, D)
is the sum of the costs of modifying tuplesiin

Example 3.1: Recall from ExamplETl1 that tuple violatesCFps
1, @2 given in Fig[I{B). There are at least two alternative meshod
to resolve the violations: changing (@) CT,ST] to (Nyc, NY), or

(2) t3[zip] to 19014 and3[AC] to 215. The costs of these repairs
are 3/3*0.1+3/3*0.1=0.2and 1/3*0.9 + 2/5* 0.8 = 0.6,
respectively, in favor of option (1). Indeed, although opti(1)
involves more editing than option (2), it may be more reabtma
since the weights of3[CT, ST] indicate that these attributes are
less trustable and thus are good candidates to change. O

We also study théncremental repairing problemsuppose that
the databas® is consistenti.e., D = X. Given updatef\ D to D,
we want to find a repaif Dgepr Of AD such thatD @ A Dgepr = 2
andcost (A Dgepr, AD) is minimum. Since smal\ D often incurs
a small number of FD violations, and becausg is clean and thus
should not be updated, it is more reasonable and more effimen
computeA Drge,r than computing a repaRepr of D@ A D starting
from scratch. We considgyroup updatesA D is a set of tuples to
be inserted or deleted. For any deletiah®), the tuples can be
simply removed fromD without causing anyFb violation. Thus
we need only to consider tuple insertion.

To assess the accuracy of repairs, assume a correct gair
of D, perhaps worked out manually by domain experts. We say
that a repair isaccurate w.r.ta predefined bound at apredefined
confidence leve, if the ratio|dif (Repr, Dopt)|/| Dopt | is within the
bounde at the confident levef.

In practice it is unrealistic to manually finB.: or involve do-
main experts to inspect the entRepr when the dataset is large. To
this end we employ a semi-automated and interactive approee
let the user inspect small samples, and edit the sample slatelb
as inputcFDsif necessary; leveraging the user input, we invoke our
automated (incremental) repairing methods to revise repai

Putting these together, we develop a framework for datanelea
ing as shown in Fidl3. The framework consists of three madule
(a) The repairing module takes as input a dataliased a sek. of
CFDs. It automaticallyfinds a candidate repdgrepr. (b) The incre-
mental repairing module takes update® as additional input, and
automaticallyfinds repairA Dgepr. (C) The output repairs of these
two modules are sent to the sampling module, which also takes
input accuracy bound and confideneged). The sampling module
generates a sample and lets the user inspect it. The uséafded
both changeg\¥: to thecFDs and changes to the sample data —
recorded. If the accuracy is below the predefined bound gpair-
ing or incremental repairing module is invoked again basethe
user feedback. The process may continue until an accurateyan
repair is recommended to the user. In the next three sectioas
present algorithms and methods for supporting these medule

4. An Algorithm for Finding Repairs

We now present an algorithm for the repairing module, which
automaticallyfinds a candidate repair for an inconsistent database.
It is nontrivial to find a quality repair. As shown ial[5], the-r
pairing problem is alreadyP-complete for standarebs even when
the relational schema ambs are fixed (.e.,the intractability is the
data complexity). We show that f@rDs the problem remains p-
completej.e.,CFDs do not add to the complexity of this problem.

Corollary 4.1: The repairing problem foiCcFDs is NP-complete,
even for a fixed database schema and a fixed setD§. ad

This tells us that practical automated methods for this prob
lem have to be heuristic. Worse, althoughbs do not increase
the worst-case complexity, previous methods for repaifibgno
longer work oncFbps. Indeed, while it suffices to resolw viola-
tions by only editing values of attributes in tR&1S of FDs [5], this
strategy may not terminate @¥Ds, as shown by the next example.

Example 4.1: Recall CFDs ¢1, 2 from Fig[I{B). As illustrated

in Example[1L, tuples,, t5 violate 1. While this violation can

be resolved by changing the valuev(c, NY) of the RHS(y1) at-
tributests[CT, ST], to the values, [CT, ST, this introduces a vio-
lation of p5. This can no longer be resolved by changing the value
of the RHS(p2) attributests[CT,ST] back to (ivc, NY) as sug-
gested byps, since otherwise we are back to the origingl have

to resolve the violation ofp; again, and end up with an infinite
process. O

To cope with this we present a repair algorithmysTB HREPAIR,
which is a nontrivial extension of the algorithm febs proposed
in [B]. It extends the notion of equivalence classes.of [l &
guarantees to terminate and finds a repait. CFDs.

4.1 ResolvingcFD Violations

We first revise the notion of equivalence classes explordf]in
and then present our strategy for repairizps.

Equivalence classesAn equivalence classonsists of pairs of the
form (¢, A), wheret identifies a tuple in which4 is an attribute.
In a databasé), each tuplet and each attributel in ¢ have an
associated equivalence class, denotedddy, A).

In a repair we will assign a uniquarget valueto each equiva-
lence clas#, denoted byarg(FE). Thatis, forall(t, A) € E, t[A]
has the same valuarg(E). The target valuearg(E) can be ei-
ther ‘', a constant, or null, where *’ indicates thatarg(FE) is not
yet fixed, anchull means thatarg(E) is uncertain due to conflict.
To resolvecFD violations we may “upgradetarg(F) from ‘' to
a constant, or from a to null, but not the other way around. In
particular, wedo notchangetarg(E) from one constant to another.

Intuitively, we resolvecFD violations by merging or modify-
ing the target values of equivalence classes. Considerm
¢ =(R: X — A, t,). Forany pair of tuple$; and¢; in D,
if t1]X] = t2[X] =< tp[X], then(¢1, A) and(¢2, A) should belong
to the sameequivalence class and eventually[A] = targ(E).

If (t1,A) # (t2, A), we may be able to resolve the violation by
mergingeq(ti, A) andeq(t2, A) into one. By using equivalence
classes, we separate the decision of which attribute valbesld
be equal from the decision of what value should be assign#teto
equivalence class. We defer the assignmentf(£) as much as
possible to reduce poor local decisions, such as changagathe
of t5[CT,ST] in ExampldZL.

We use€ to keep track of the current set of equivalence classes
in a databas@®. Initially, £ consists okq(t¢, A) for all tuplest in
D and all attributed in ¢, whereeq(t, A) starts with a single pair
(t, A), with targ(eq(t, A)) = _.

Procedure CFD-RESOLVE. Leveraging equivalence classes, we
present the main idea of our strategy for resolva®p violations,
which is done by procedureFb-RESOLVE, a key component of
algorithm BATCHREPAIR.

ProcedurecFD-RESOLVEtakes as input a pat, A) and acFD
¢ = (R: X — At,), wheret violatesy. Recall from Sec-
tion 3 thatt may violatep if ¢[X] = t,[X] and in addition,
either (1)t[A] # tp[A] andt,[A] is a constant; or (2) there exists
another tuplet’ such thatt'[X] = ¢[X] butt'[A] # t[A], where
t»[A] = -. The procedure resolves the violation as follows.

(1) t[A] # tp[A] andt,[A] = a. There are two cases to consider.

(1.1)If targ(eq(t, A)) =, i.e.,the target value oéq(t, A) is not
yet fixed, we resolve this by simply lettingrg(eq(¢, A)) := a.
(1.2)Otherwisetarg(eq(t, A)) is either a distinct constant or null
for which we know that the value cannot be made certain. Is thi
case we have to change the value of sarH&(y) attribute oft, a
situation that does not arise when repairing traditiorz.

More specifically, we look at each attribuf¢, € X such that
targ(eq(t, Bs)) is ', i.e., not yet fixed. If no suctB; exists, we
cannot resolve the conflict with a certain value. Thus we @gk
such that the sum of weights of attributesda(¢, B;) is mini-
mal, and changearg(eq(t, B;)) to null. If there existsB; with
targ(eq(t, Bi)) = -, we pick such aB; and a valuev such that
cost(eq(t[B;]), v) is minimum, and letarg(eq(t, B;)) := v. The
valuev is picked by a procedureIRDV, which we shall discuss
shortly, along with the definition afost(eq(¢[B]), v).

Example 4.2: Continuing with Exampld_Zl1, suppose that we
want to resolve the violation ofp, caused by tuplets. If
targ(eq(ts, CT)) andtarg(eq(¢s,ST)) are ', we can resolve this
by simply letting them to b&iyc andNy, respectively. However,

if these target values were already septa andPA when,e.g.,re-
solving the violation ofp; caused bys and¢;, we can no longer
change these target values of fRES(y2) attributes. Hence, we
have to change the value of théiS(p2) attributets[zip]. Now
procedure FNDV may settarg(eq(ts, zip)) to 19014. If, however,
targ(eq(ts, zip)) was already given another constant, we set it to
null since there is no certain value to resolve the violation. O

(2) t violates with another tuplet’. We consider the following
cases. Suppose thatrg(eq(t, A)) = n andtarg(eq(t’, A)) = 7'
(2.1) Neithern nor ' is null, and at least one of them is.’ In this
case the violation is resolved byergingeq(t, A) andeq(t’, A)
into one. We remark that this step is identical to the resmhustep
for FDs presented in15]. In fact this is thenly operation required
to resolve allFD violations. ForcFps, more needs to be done. We
lettarg(eq(t, A)) be ' if both n and andy’ are "'; if one of them

is a constant, we lettarg(eq(¢, A)) bec.

(2.2) 7" andn’ are distinct constants ¢’, respectively. Like case
(1.2) above, this inconsistency cannot be resolved by ¢hgng
RHS() attributes, and we have to resolve this by changing some
LHS(¢) attribute of eithet ort’, along the same lines as case (1.2).

(2.3)At least one ofy andn’ is null. Assume that it is;. Thent[A]
will be given null as its value. By the simple semantics rafil,
t[A] = targ(eq(t’, A)) no matter what valugarg(eq(t’, A)) will
eventually take. In other words, the violation is alreadsoteed.

Example 4.3: Consider again the setting of Exampl€l4.1, and sup-
pose that we want to resolve the violationmfcaused bys andt;.

If the target values ofq(ts, CT) andeq(¢s,ST) (resp.eq(t1, CT)
andeq(t1,ST)) are ', and none of them isull, we can resolve
the violation by simply mergingq(ts, CT) andeq(t1, CT) and by
mergingeq(ts, ST) andeq(t1, ST). In the presence of conflicting
target valuese.g.,wheneq(ts, CT) andeq(t1, CT) have distinct

Procedure BATCHREPAIR(D, X)

Input: A setX of CFDs, and a databage.
Output: A repair Repr of D.

1. £={{(t,A)} |t € R, A € att(R)};

2. foreachE € £do /*initializing targ(E) */

3. targ(E) = _;

4. Initialize Dirty _Tuples;

5. while Dirty_Tuples # 0

6. (t, B,v,) = PICKNEXT();

7. Repr := CFD-RESOLVH{, B, v, ¢);

8. UpdateDirty_Tuples;

9. if Dirty_Tuples = @ then

10 for eachE € £ do

11 if targ(F) =_ then [*instantiating_ */
12. targ(F) := a constant with the least cost;
13. UpdateDirty_Tuples;

14. for eachE € £ and each(t, A) € E do

t[A] = targ(E);
. return D.

[* updating D to obtainRepr

Figure 4: Algorithm B ATCH REPAIR

constant target values, we have to change the target valtiees of
LHS(1) attributes of eithet, orts, i.e.,the target value of one of
eq(ts, AC), eq(ts, PN), eq(t1, AC) oreq(ti, PN). O

4.2 Batch Repair Algorithm

We now present algorithm & CHREPAIR. In addition to the set
£ of equivalence classes, the algorithm keeps track of vaiat
of cFps. As we have seen in Examdle}.1, a repair may gener-
atenew violations Therefore, we maintain for eaatFD p € %

a setDirty_Tuples(y) of tuples that (possibly) violate. We up-
date these sets after each resolution of a violation. Mageigpely,
suppose that a violation @f caused byt is resolved by updating
eq(t, A). Then for each tuple’, if (¢', A) € eq(t, A), and for
eachyy = (R : X — C,tp), if A € X U{C}, we addt’ to
Dirty_Tuples(t)). We then remove from Dirty_Tuples(¢). In this
way Dirty_Tuples always contain alpotentially unresolveduples.

The algorithm is shown in Fifll 4. We start with initializatiof
the sett of equivalence classes abdrty_Tuples (lines 1-4). Next,
as long as there are dirty tuples (loop on line 5) we greeditk ffor
the “best” next repair. More specifically, the procedure ©NEXT
loops over eacltFD ¢ € ¥ and its violating tuplé; it identifies
which pair (¢, t) incurs the least cost to repair (line 6). The algo-
rithm then resolves for ¢ (line 7), resulting in a modified set of
equivalence classes, by invoking procedor®-RESOLVE. It then
updates the set of dirty tuples (line 8) before finding thet est
repair. If no more dirty tuples are unresolved (line 9), tf@reach
equivalence clask € & withtarg(E) = _, itfinds a constant value
with the least cost to instantiaterg(E) (lines 10-12). That isyl-
timately all equivalence classes will have either a constant value
or null. This instantiation may introduce new violations, and thus
Dirty_Tuples should be maintained (line 13). After the loop, we
create a repaiRepr by editing the original databade by using the
target values of equivalence classes (lines 14-15).

The most expensive and elaborate procedura@dx REXT (see
Fig.[). It finds the next tuplé and CFD ¢ to be resolved. More
specifically, for eacttFD ¢ and its unresolved tuple PICKNEXT
first decides for which attribut@® of ¢ it can updatesq(t, B) to
resolve the violation (line 3), following the analysis delsed in
Sectio L. AfterB is fixed, it finds a sefS of tuples that agree
with ¢ on all the attributes ip exceptB (line 4). The idea is that we
may pick a target value for eq(t, B) from the B-attribute values
of the tuples inS (line 5). It then analyzes the cost of repairing the
violation usingv (lines 6-7), whereCost(t, B, v) is defined to be
S yeeq(e,p) W', C) - cost(v,t'[C]). Itreturns(t, B, v) with

Procedure PICKNEXT()

1. BestCost ;= oo;
2. for eachcFbyp = (R: X — A, tp), t € Dirty_Tuples(p) do
3. decide an attribut® in ¢ to updatesq(t, B);
S={t' € R|¢[X U{A}\{B}] = {[X U {A}\ {B}}:
v = FINDV(¢, B, S, ¢);
if Cost(t, B,v) < BestCost then

BestFix := (¢, B, v, ¢); BestCost := Cost(t, B, v);

4
5.
6.
7
8. return BestFix;

Figure 5: procedure PIcCK NEXT

the least cost (line 8).

It remains to show how the valueis picked. Givert, B and¢,
procedure FNDV (not shown) aims to select semantically-related
values by first using values FDs. If this is not possible, a value is
selected from values appearing in related tuples. Moredwyethe
definition of Cost the optimal value is selected in a similar way
as in the most-common-value strategy. More preciselybW
checks whetheB = A. If so, v is already determined by either
tp[A] (case (1.1) in Sectioi4.1) or the target valuesaft, A)
andeq(t’, A) (¢’ is the tuple with whicht violatese, case (2.1)).
Otherwisej.e.,if B € LHS(yp), it inspectstarg(eq(t1, B)) for all
t1 € S, and finds with the leastCost (¢, B, v) such thab # t[B].
The motivation for pickingv from S is to find a semantically-
related value, identified by the pattetfdX U {A} \ {B}]. If such
v does not exist, it lets := null.

Example 4.4: Returning to ExamplE-.2, suppose now that the tar-
get values of(eq(ts, CT),eq(ts,ST)) are PHI, PA). To resolve

the violation of s caused byts, we decide to change the target
value ofts[zip]. Procedure RRKNEXT finds S = {t1,t2,ts3,t4},

i.e., S consists of all tupleg’ with (PHI, PA) as the target value

of (eq(t’,CT),eq(t',ST)), Now Procedure RDV attempts to
choosev from the target values ofq(t', zip) for ¢ € S. There

are two such values: 19014 and 10012. It decides to pick 19014
since it is the only one that differs from[B]. If S were empty or
targ(eq(ts, zip)) already had a constant, it assignsl to v. O

Upon receiving(t, B, v, ¢) from PICKNEXT, procedureCFp-
REsoLVEin algorithm BATCHREPAIR merges or update the target
values of equivalence classes to resolve the violatiop ohused
by ¢, as described in Sectifn #.1.

Correctness. Clearly at each step of algorithmABCHREPAIR, a
CFD violation is resolved. However, each step can also intreduc
new violations as illustrated in ExamBIeK.1; moreover mddcan
appear as a violation multiple times. Neverthelesst GHREPAIR
always terminates and generates a repair.

Theorem 4.2: Given any databasé and any set: of CFDs,
BATCHREPAIR terminates and finds a repaRepr = X for D.
]

Proof sketch: At each step either the total numbat of equiva-
lences classes is reduced or the numbesf those classes that are
assigned a constant aull is increased. Lek be the number of
(t, A) pairsinD. SinceN < kandH < 3 - k (the target value of
eq(t, A) can only be”, a constant, onull), BATCHREPAIRNeces-
sarily terminates. Furthermore, since the algorithm peoseuntil
no more dirty tuples exist, it always finds a repairiof m|

5. An Incremental Repairing Algorithm

In this section we present the algorithm underlying the éncr
mental module of our framework shown in Hi§j 3, which tackles
theincremental repairing problemAs remarked in Sectidn_3.3, it
suffices to consideA D consisting of insertions only, as deletions
never cause any inconsistencies.

Procedure INCREPAIR(D,AD, X, O)

Input: A clean databas®, a set® of CFDs, a set of updated D,
and an ordering on AD.

Output: A repair Repr of D @& A D such thatD C Repr.

1. Repr:=D;

2. for eacht in AD in the given orde© do

3. Repr; := TUPLERESOLVE(t, Repr, X);

4 Repr := Repr U {Repr, };

5. return Repr.

Figure 6: Algorithm | NCREPAIR

One might think that the incremental repairing problem a-si
pler than its batch (non-incremental) counterpart. Unfioately
it is not the case. Indeed, since the repairing problem (sme S
tion[333) can be seen as an instance of the incremental irggpair
problem (indeed, just consider the case that= (), we immedi-
ately obtain the following corollary from Theordm4.1.

Corollary 5.1: The incremental repairing problem f@rDs is NP-
complete, even for a fixed schema and a fixed sepof |

Therefore, we again have to rely on heuristics in the incraale
setting. We first develop a heuristic in Section 5.1 and thresgnt
optimization techniques to improve the algorithm in Secfind.
Finally, we show in Sectiofi’d.3 that the incremental aldynitin
fact provides an alternative method for the repairing peahl

5.1 Incremental Algorithm and Local Repairing Problem

Given a set of updateA D, Corollary[51 tells us that it is be-
yond reach in practice to find an optima Dge,. Furthermore,
we cannot directly apply the algorithm developed for theargpg
problem to findingA Dre,r Since we cannot prevent it from updat-
ing the cleanD. Following the approach commonly used in repair-
ing census datd [1B8.B5], we repair the tupleg\iy one at a time
following some ordering? on these tuples. We assume tliis
given but will provide various orderings in Sectibnls.2.

Therefore, the key problem is to find, given a clean dataliase
a tuplet to be inserted intd, and a sek of CFDs, a repairRepr,
of ¢ of minimum cost such thab U {Repr, } is a repair. We refer
to this as thdocal repairing problem

Algorithm | NCREPAIR. The overall driver of our incremental re-
pairing algorithm is presented in F[d. 6. Taking as input tabdase
D, a setAD of updates, a set of crFbs, and an ordering) on
AD, it does the following. It first initializes the repaiepr with
the current clean databage (line 1). It then invokes a procedure
called TuPLERESOLVE (line 3) to repair each tuplein AD ac-
cording to the given orde© (line 2), and adds the local repair
Repr, of ¢ to Repr (line 4) before moving to the next tuple. Once
all tuples inA D are processed, the final repair is reported (line 5).
The key characteristics ofNCREPAIR are (i) that the repair
grows at each step, providing in this way more informatioat th
we can use to clean the next tuple, and (ii) that the dafa is not
modified since it is assumed to be clean already.
Algorithm TuPLERESOLVE. The core of the NCREPAIR algo-
rithm is the procedure TPLERESOLVE that aims to solve the local
repairing problem. One might think that the local repairjprgb-
lem would make our lives easier. However, the result beldls tes
that it is not the case.

Theorem 5.2: The local repairing problem isiP-complete. More-
over, it remains intractable if one considers standambonly. O

Proof sketch: The NP-hardness is verified by reduction from the
distance-SAT problem, which isP-complete[[8]. That is to deter-
mine, given a propositional logic formulg an initial truth assign-
mentp,, and a constant, whether there exists a truth assignment

Procedure TUPLERESOLVE(t, Repr, X2)

Input: A tuple ¢ to repair, the current repaRepr, and a sek of CFDs.
Output: A repair Repr, of t such thaRepr U {Repr, } = X.
1. C:=0; Repr, = t;

2. while attr(R) # C do

3 cost 1= 00;

4 for eachC € [attr(R) \ C]i do

5 V = {0 | Repr U {repr:[C/0]} EZ(CUC)};
6. 0 := arg _mingey costfix(C, 9);

7 if costfix(C, ¥) < cost then

8 cost ;= costfix(C, 0); BestFix:=(C, v);

9. C:=CUC, Repr, := Repr,[C/1];

10. return Repr,.

Figure 7: Algorithm TUPLERESOLVE

p2 that satisfieg) and differs fromp; in at mostk variables. O

TheorenT&R shows that finding the optimal regeépr, of ¢ is
infeasible in practice. Indeed, the naive approach, nanezly-
merating all possible repairs and then selecting the onk thi¢
minimal cost, is clearly not an option in case that the nundfer
attributes or the size of the active domains is large.

In light of this intractability, procedure OPLERESOLVEIs based
on agreedyapproach. As shown in Fifll 7, it takes as input a single
tuplet to be inserted, the current rep&epr, and a sek of CFDs,
and returns a repaRepr, of ¢ such thaRepr U {Repr,} = X.

Before we explain TPLERESOLVE in more detail, we need
some notation. For a fixed integér > 0 and a set of attributes
X C attr(R) we denote by X], the set of all subsets oX of
sizek. For atuplet, a setC € [X], andv = (v1,...,vx), Wwhere
v; € adom(D, A;)U{null} for eachA; € C, we denote by[C/7]
the tuple obtained by replacingA;] by v; for eachA; € C and
leaving the other attributes unchanged. Finally, for &5ef cFDs
and a setX C attr(R), we denote by (X) the set ofcFDsin X
oftheform(R:Y — A,t,) withY U {A} C X.

We explain how procedureUdPLERESOLVEWOrks in an induc-
tive way. In a nutshell, it greedily finds the “best” sets dfiatites
of ¢ to modify in order to create a repair. More specifically, for a
fixedk > 0itfirst finds the “best’™C € [attr(R)]x (lines 4-9) and
attribute value$ = (v1,. .., vx) for the attributes irC: such that
(i) v; isinadom(Repr, A;) U {null} (line 5);

(i) Repr U {t[C1/0]} satisfies alcFpsin 3(C1) (line 5); and
(iii) the costcostfix(Ch,0) = cost(t, t[C1/D]) x vio(t[C1/D]) is
minimal (lines 6-8).

In other words, the predefined parametdimits the number of
possible repairs that we consider. Our experiments shotwfona
k = 1,2 we are already able to obtain good results. We denote the
set of allk-tuplesv satisfying (i) and (ii) byV (line 5). Once T-
PLEREsOLVEfindsC: andv, C1 is added t& andt is replaced by
t1 = t[C1/?] (line 9). Furthermore, TPLERESOLVEWiIll never
backtrack and modify; for the attributes irC; again.

Suppose that TPLERESOLVE already selected best pairwise
disjoint setsC4,...,Cy in [attr(R)]x and k-tuplesoy,..., o,
such that fort, = t,—1[Cn/0s], we have thaRepr U {t,} &
3(C), whereC = C1 U ---U Cr—1. That is,t, is the current
(almost) repair fort. If attr(R) = C then clearlyt,, is a real
repair of t and TUPLERESOLVE will output Repr, = ¢, (line
2, line 10). Otherwise, TPLERESOLVE finds the next best set
Chn41 in [attr(R) \ C]x and finds ak-tuple 0,41 satisfying the
same conditions (i)—(iii)) as abowexceptthat the repaitt,,+1 =
tn[Crt1/0n+1] must satisfy(Cr 1 UC). Again, the seC', 11 is
then added t@ and the current (almost) repair is settto, ;1. The
procedure TPLERESOLVEKeeps selecting such sets of attributes
and values untidttr(R) is completely covered.

It is important that is allowed to contaimull values (see prop-
erty (i)). Indeed, this is needed for guaranteeing the erist of
k-tuplesv satisfying property (ii) as the next example illustrates.

Example 5.1: Considert; in Exampld_LIL and suppose that 2.
Suppose that TPLERESOLVE already fixed all attributes except
CT andST. In fact, no attribute values ity are changed since the
violatedcFpsinvolve the two non-fixed attributes. In order fouT
PLERESOLVE to repairts it needs to find a tuplé = (v1,v2)
for C = {CT,ST} such thatts[C/?] satisfies bothp; and ¢-.
As observed in Example_l.1 no sugétexists when we only con-
sider values in the active domains. Thus the only posgiliiere is
(null; null). In contrast, ExamplgZl.1 shows th@t{CT, ST, zip}
for k = 3, ando=(PHI, PA, 19014) provides a repair fas. O

Correctness.The termination of NCREPAIRfollows from the fact
that (i) each tuple iMAD is treated only once; and (ii) each at-
tribute is modified at most once byUPLERESOLVE. Moreover,
TupPLERESOLVEalways generates a repair for each tuplé\ip.

Theorem 5.3: Given a databasé, a setX. of cFbs and update
AD, INCREPAIR always terminates and finds a repafX Drepr
such thatD @& ADgepr |= X, regardless of the ordering. O

5.2 Ordering for Processing Tuples and Optimizations

While the ordering® for processing tuples has no impact on the
termination of an NCREPAIR process, it does make a difference
when it comes to repairing performance and the accuracyeafeth
pair. We next study various orderings, based on which weldpve
(and experiment with) variants of th@¢REPAIR algorithm.

TheoremZ1 tells us that it is beyond reach in practice to find
an ordering that leads to an optimal repair. Thus we propose a
experiment with the following orderings.

Linear-scan ordering. A naive approach is to adopt an arbitrary
linear-scan order fo®©, with the benefit that it incurs no extra cost.
We refer to NCREPAIRbased on this as LNICREPAIR.

A greedy algorithm based on violations.This algorithm, referred
to as V-INCREPAIR, is based on theumber of violationssio(t)
of each tuplet, which is defined in Sectiof3.1. A tuplec D
might cause multiple violations of constraintsdn Intuitively, the
lessvio(t) is, the more accurateis and the less costly to repair it.
Algorithm V-INCREPAIR repairs tuples in théncreasingorder of
vio(t) so that accurate tuples are includedRiepr early, and based
on them we resolve violations of “less accurate” tuples.

A greedy algorithm based on weightsAnother approach is based
on the weighwt(t) of a tuplet (recall the definition ofvt(¢) from
Sectior3P). Intuitively, the largert(t) is, the more accurateis.
We develop a variant oNCREPAIR, referred to as WNCREPAIR,
which processes tuples based on deereasingorder ofwt(t) to
reduce the cost and improve the quality of repairs found.

We next present optimizations adopted by our algorithm.
Optimization. The main computational cost oNEREPAIR lies
in the procedure TPLERESOLVE. Indeed, there one needs to (i)
consider all possible subsetsof attributes of sizé; (ii) for each
suchC compute the seY consisting of all possiblé-tupless on
the attributes inC' that satisfy the relevantrps; and (iii) obtain
from V the tupled that has minimal cost with[C] (Fig[d, lines
5-6). To do these tasks efficiently we leverage the use ofé@sdi
LHS-indices. For eachcrD (R : X — A, tp) in X we build
an indexZ for the embedde@d X — A. The index consists of
pairs(key, it) wherekey uniquely identifies itenit in Z and is con-
structed as follows: it,[A] = a, then we simply addt,[X], a)
to Z; if tp[A] =_, then we add for each tuplé € Repr such that
t'[X] < t,[X] the pair(t”[X],t"[A]) to Z. Observe that because

Repr is clean, such keys provide indeed a unique identifier.

Now, given a tuple’ and a fixed set of attributed, we can ef-
ficiently determine whether or not a candidate repair ¢'[C /7]
violates acFD (R : X — A, tp) in Z(C U C) by (i) searching
the index forp usingt”[X] as key; and (i) testing whethef [A]
matches the returned item. Doing this for altDs allows us to
compute the number of violations of a candidate repair effity.

Finally, these indices are dynamically updated when repie
added tcRepr using standard update mechanisms.

Cost-based indicesWe arrange the values atlom(Repr, A) for
each attributed in a tree structure, by using a hierarchical agglom-
erative clustering method [20]. In the tree, “similar” vakiare
grouped together based on the metric. Suppose for the moment
that we are considering a single attributeonly and want to range
overadom(Repr, A) such that values are considered in decreasing
similarity to a given attribute valug[A]. We then simply iterate
over adom(Repr, A) by first searching fot[A], starting from the
root, and then moving to its child cluster that is closest[t)] in
terms of thebL metric. This process then continues until we find
a value modification for[A] that satisfies the requirements given
in TUPLERESOLVE. If no suitable candidate can be found, we sim-
ply usenull. In case of multiple attributes (recall thatPLERE-
SOLVE tries to findk-tuples), we range over the individual trees in
a nested way until a suitable candidate tuple is found. Agaa
introducenull whenever no suitable attribute value can be found.

5.3 Applying INCREPAIR in the Non-incremental Setting

Algorithm INCREPAIR can also be used in the non-incremental
setting. Indeed, given a dirty databaBé one can first extract a
maximal consistent set of tuplds from D’ and then simply ap-
ply INCREPAIRt0o D andAD = D'\ D. However, computing
such a maximal set of tuples might be too hard in practice:

Proposition 5.4: It is NP-hard to find, given a datasé?’ and a set

3 of cFDs, a maximal subsef' of D’ such thatC = 3. O
Proof sketch: This is verified by reduction from the independent
set problem, which isip-complete (cf.[[17]). m|

Greedy algorithms do provide some approximation guaranféle

for finding such a se€. However, unless for eachrD ¢ € ¥

the number of tuples that violate with another tuple is bounded
by a small constant, the approximation factor grows withdtze

of the databasé [19]. A simpler approach is to compute thé’set
of tuples that do not violatany constraint inX. This clearly does
not gives us a maximal set of tuples but as showrin [6] it can be
efficiently computed usingQL queries. Moreover, in practice one
can often expect this set to be fairly large. Indeed, thechipérror
rate of real-world data in enterprises is 1%-5% [31].

6. Statistical Methods for Improving Accuracy

In this section we present the third part of the cleaning ram
work shown in Fig[Bj.e., the sampling moduleThe repairing al-
gorithms BxsTcHREPAIRand INCREPAIRboth return a repaiRepr
that satisfies theFDs in X, i.e., consistentw.r.t. the givenCFbs.
However, certain value changesRapr, which were automatically
generated, may not be what the user wants. Referring to Exam-
pled I anf[5]1 NCREPAIR (for & = 3) resolves theps by modi-
fying t5 in the attribute<CT, ST andzip, while the user may have
wanted to modifyts[AC] only. This concerns thaccuracyof the
repair, rather than its consistency.

As remarked in Sectiofi 3.3, it is unrealistic to consult tlseru
for every change. To improve the accuracy without incurrixg
cessive human efforts, we propose a sampling process. Bleepr
dureSAMPLING (not shown) involves the user to inspect and edit

sampleof Repr rather than the entirBepr. This procedure ensures
that for candidate repairs found by the repairing algorghtheir
estimated inaccuracy ratée., |dif(Repr, Dopt)|/|Dopt|, is below
a predefined boundwith high confidence.

Given a repairRepr and predefined and é, proceduresAam-
PLING works as follows: (1) it draws a sample from Repr and
lets the user inspect; (2) based on the user feedback andt
computes dest statisticz; and finally (3) it compares with the
critical valuez, at confidence leved, which is obtained via nor-
mal distribution (seee.g.,[d]), wherea = 1 —§. If z < —z,,
then it rejects the null hypothesis that the proportion afticurate
data inRepr is above the given value, andRepr is returned as
a candidate repair. Otherwise it recruits the user to ldih the
sampleS andcFpsin X. This user interaction may trigger new vi-
olations after which the repairing algorithm and samplimggess
are invoked again, based on the possidgr-revisedetY of CFDs
and database.

The objective ofSAMPLING is twofold: (i) It involves the users
to check whether the repair is accurate enough to meet thgérce
tation on the data quality; and (ii) it allows the repairingaithms
to “learn” from the user interaction and improve the nextrrdwf
cleaning process. In particular, the user may enter aens based
on new semantic bindings of related values.

We next outline methods for drawing a sample and for comput-
ing the statistic test. We also discuss the size of the sample
quired to guarantee with high probability that the inaccyreatio
is below the predefinedthreshold.

Sampling methods. A naive approach is to use uniform random
sampling techniques. However, the tuples drawn in this way m
not sufficientlyrepresenthose that were modified by the repairing
algorithm, which are the tuples that we would like the usatteck
since they have a higher likelihood to be inaccurate. Thisvates
us to employ the stratified sampling methbd [1].

The idea is to partition the tuples Repr into multiple strata and
draw certain number of tuples from each strata, giving |i§do
strata that are likely to be inaccurate. More specificallypmse
that we want to draw a sample bftuples. We partitiorRepr into
m strataPi, ..., Pn withm < k. Fori € [1,m], the stratumP;
consists of those tuple$in Repr such that’ was obtained by the
repairing algorithm by modifying a tuplein the original dataset
D with vio(t) > v;, wherevio(t) is the number of violations of
(SectiorZ1L), and; is a fixed threshold. Alternatively, instead of
usingvio(t) one can useost(t',t) to partition the data set.

We also assume predefined thresholds. .., &, such that
Zie[l,m] & = 1andg; < &y1. Then we drawg; - £ many tu-
ples from the stratun®;. In this way we give a larger coefficient
&, to the stratumP;, and thus draw more tuples frof, if tuples
in P; are more likely to be inaccurate. We draw tuples from each
P; by leveraging a widely used algorithra.§.,[33]) that scans the
data in one pass and uses constant space, afdtatsist of tuples
drawn from all strata.

Statistical Test. Let random variableX denote the number of in-
accurate tuples in a sample. Because the probability ohlyesmn
inaccurate tuple in the sample is proportional to the siz¢hat
sample, the variabléX obeys a Binomial distribution, which is
commonly computed via its normal approximation (providbdtt

probability §.

The remaining question is how to compute the inaccuracy rate
p for a specific samplé&. First, we let the user inspect and mark
the tuples that fall short of the expectation. From the usedback
we get, for each € [1,m], a numbere;, which is the number
of inaccurate tuples in those tuples drawn from strattm The
weighted inaccuracy ratg of the sampleS is computed byp =
(Ciemm € 50/ (Zicpm [Pl - 5:), wheres; = |Pi[/(€ - k).
Sample size We next discuss the choice of the sizéor the sam-
ple S. In general, the lower the inaccurate rateRepr is, the larger
the sample is required. Intuitively, this is because in ofdeinac-
curate tuples to appear in the sample, a large enough saeglis n
to be taken. A theoretical prediction for sampling size cardb-
rived using Chernoff bound5][1], as follows.

Theorem 6.1: For a random samples' of sizek and a constant
oifk> <+ din(Z5) + %\/(In(ﬁ))2 +2-c-In(tX5), then
P[X < ¢] < 1- 4 holds,i.e.,the probability that at least many
inaccurate tuples appear in the samglds no less thar. m|
Proof sketch: The Chernoff bound<[1] state that for any positive
— ’762

constan) < n < 1, we haveP[X < (1 —n)ke] <e - By
rewriting P[X < c]to P[X < (1—(1—c¢/(ke)))ke], and applying
the Chernoff bound result tB[X < (1—(1—c¢/(ke)))ke] < 1-34,
we get the inequality stated in the theorem. m|

7. Experimental Evaluation

In this section, we present an experimental study of ouriregga
algorithms. We investigate the repair quality, scalapiéind sensi-
tivity to error rate and types of violations for botrABCHREPAIR
and INCREPAIR.

7.1 Experimental Setting

Our experiments were conducted on an Apple Xserve with
2.3GHz PowerPC duaPuand 45B of memory; of those, at most
2GB could be used by our system. We used a commeb&&IS on
the same machine.

Data and constraints. Our experiments used an extension of the
relation shown in Figlll. Specifically, its schema models @-co
pany’s sales records and includes 4 additional attributasely,
the country of the custom&iTY, the tax rate of the ite'WAT, the
title TT and quantity of the itenQTT. To populate this table, we
scraped real-life data fromMAzON and other websites, and gen-
erated datasets of various sizes, ranging from 10k to 3Qflksu

Our setX consists of 7crFps: 5 taken from Fig[l and Fidl 2,
together with two new cyclicFbs.

We included 300-5,000 tuples in the pattern tableaus okthes
CFDs, enforcing patterns of semantically related values whieh w
identified through analyzing the real data. Note that the&ebn-
straints is fairly large since each pattern tuple is in facbastraint.

We first populated the table such that the initial datasetsan-
sistent with all thecFbsin X. We refer to this “correct” data as
Dopt. We then introduced noise to attributes/i,: such that each
“dirty” tuple violates at least one or morerbs. To add noise to
an attribute, we randomly changed it either to a new valueclvhi
is close in terms obL metric (distance between 1 and 6) or to an
existing value taken from another tuple. Such “dirty” datas re-

the sample size is large enough). Thus we can compute the tesfferred to asD. We used a parametpgranging from 1% to 10% for

statistic byz = (p — €)/(1/ <4=2), wherep is the inaccuracy rate
in a specific sample; is the predefined inaccuracy rate dni the
sample size. As mentioned earlier, we compare the tesstitati
z with the critical valuez, at confidence leved. If z < —z,,
we can conclude that the inaccuracy rateRepr is belowe with

the noise rate.

Moreover, in accordance to the cost model defined in SeCi@n 3
we set weights to the attributes of tuples/irin the following way.
Suppose that is a tuple inD, then we say thatl is a “clean” at-
tribute for¢ if the corresponding tupl¢ in D, agrees withi on
attribute A; otherwise we calld “dirty” for ¢. For dirty attributes

in ¢, we randomly assign a weight(t, A) in [0, a]; for clean at-
tributes we randomly select a weight{t, A) in [b, 1]. This is based

on the assumption that a clean attribute usually has a sfigigher
weight than a dirty attribute. In the experiments, we et 0.6
andb = 0.5. We also studied the case when no weight information
was available, by setting the weights to 1 for all attributes

Algorithms. We have implemented prototypes ofaBCHRE-
PAIR and all three variants oNCREPAIR, i.e., L-| NCREPAIR, V-
INCREPAIRaNd W-INCREPAIR, all in Java. We did not experiment
with algorithmsAMPLING because we could easily find out the in-
accuracy rate in a repaltepr by comparing the clean data and the
repair, since we started with the clean data.

In the experiments we used¢REPAIRto repair the entire data
set, as described in Sectibnl5.3, except in one occasion[{H)g
That is, L-INCREPAIR, V-INCREPAIR and W-INCREPAIR were
applied to non-incremental setting except for Eg. 12.

Measuring repair quality. There is no benchmark algorithm avail-
able for repairingcFDs. While each repaiRepr of the databas®
found by our algorithms satisfies all theFDs (this follows from
the correctness of our algorithms), it still may contain ttypes
of errors: (a) the noises that are not fixed, and (b) the newesoi
introduced in the repairing process. Although it is impaotte dis-
tinguish these two types of errors, the metrics used in prevdata
cleaning work often considers the first type of errors wtiledring
the second type. For examplgl [5] measuhespercentage of error
corrected which does not distinguish these two types of errors.

To measure these two types of errors, we used the notidPseof
cision and Recall which are widely used in information retrieval
and many other area®recisionis the ratio of the number of cor-
rectly repaired noises to the number of changes made by plagrre
ing algorithm. It measures the repair correctnd?scallis the ra-
tio of the number of correctly repaired noises to the totahbar of
noises. It measures repair completeness. For a dirty ddieaed a
Repr found by our algorithms, we compute the number of noises by
dif (D, Dopt) (recall that we knowD,p:). The number of changes
made by the repairing algorithmdsf (D, Repr) and the number of
noises correctly repaired tif (D, Repr) — dif (Dopt, Repr). Note
that our algorithm may change some valuesaid. If such a value
before the change is correct, we count thel as an error; other-
wise, we treat it as a correction.

7.2 Experimental Results

We now report our findings concerning the accuracy (Preci-
sion/Recall) of our algorithms, their scalability in termwisthe size
of the data, noise rates, and types of violations, and sheveftit
cacy of CFDsVvs. FDsin repairing data.

Efficacy of CFDs vs. FDs. We first show thatcrFbps are indeed
more effective tharFps in repairing dirty data. In Fig[l8, we
ran BATCHREPAIR on a dataset of 60K tuples and varied the noise
rate p between 2% to 10%. The upper two curves report the accu-
racy for our set ocFDs. The lower two curves show the accuracy
for the embeddedns (i.e., the CFDs in which the pattern tableau
consists of a single pattern of wildcards only). Fidure 8vehthat
patterns improved significantly the accuracy of the repair.
Quality of the repair. We evaluated the data quality of our re-
pairing algorithms. We show the accuracy in termsPoécision
(Fig.[@) andRecall(Fig.[10) of all our algorithmsi.e., BATCHRE-
PAIR, L-INCREPAIR, V-INCREPAIR and W-INCREPAIR. In these
experiments, we varied the noise rateom 1% to 10%. The total
database size was fixed at 60K tuples.

Our experiments show that WEREPAIR and W-INCREPAIR
consistently outperform LNCREPAIR, while W-INCREPAIR per-
forms slightly better than VNCREPAIR. The accuracy of W-

10

INCREPAIR is influenced by the quality of the weightse., the
choice ofa andb. The good performance of WICREPAIRIs con-
sistent with the expectation that a tuple which has lessatimis
is more likely be a correct tuple. Indeed, algorithm NMeREPAIR
first repairs tuples that are more likely to be correct, whigthpro-
vide more reliable information when cleaning less accudiitty
tuples subsequently. A similar argument holds for the goamia
racy of W-INCREPAIR. Moreover, the running times (Fif1L3) of
L-INCREPAIR and W-INCREPAIR are similar and slightly better
than V-INCREPAIR. Therefore, the improved quality of the latter
two algorithmsdoes notome at a price, in terms of time.

Also in Fig.[9 and Fig[Cll0 we show the accuracy of the repair
given by BATCHREPAIR. Although BATCHREPAIR and INCRE-
PAIR are different in nature, the quality of the repairs providsd
them is comparable. Note also that tReecisionand Recall de-
crease slightly with the increase of noise rate, as expedteel val-
ues ofRecallare relatively high, which means that our algorithms
can repair most of the errorBrecisionshows that new noises were
introduced when repairing these errors.

In the following, when reporting on theNEREPAIR algorithm
we always used VNCREPAIR, as it consistently gave good results
for a wide range ofa, b)-values.

In Fig.[I4 we verify our intuition thatFps with a constant in
theirRHS are more informative during the repairing than those with
a variableRHS. In this experiment we fixed the size of the data
to 60K tuples and varied the percentage of violations forstanmt
CFDs W.r.t. violations for variablecFDbs from 20% to 80%. As can
be seen, an increasing number of constar violations enabled
both BATCHREPAIRand INCREPAIRto achieve higher accuracy.

Scalability. In the following experiments we investigate the scal-
ability of our algorithms. In Figlll we show the scalability
of BATCHREPAIR. As described in Sectiod 4, the overall com-
plexity is governed by the proceduredk NEXT. We found in our
experiments that without any further optimizatiom®HREPAIR
runs very slow. Therefore, we applied some additional ogém
tions based on the dependency graph ofthes, which help RPck-
NEXT to select the nextFp to repair. As Fig[IlL shows, the op-
timized BATCHREPAIR scales very well for database sizes varying
from 60K to 300K tuples. The noise rate was fixed at 5%.

The effectiveness ofNCREPAIR, when used in thancremental
setting, is reported in Fig—12. We started from a clean detab
consisting of 60K tuples and inserted 10 to 70 dirty tupleshbws
that INCREPAIR significantly outperforms BTCHREPAIR in this
incremental setting, with comparable accuracy (see Eigadgll).
Observe that the running time ofitREPAIR increases faster than
that of BATCHREPAIR.

The scalability of all our algorithms with respect to noisgeris
shown in Fig[IB. We fixed the data size to 60K tuples and varied
the noise rate from 1% to 10%. All algorithms require moregim
when the data has more noise, as expected. An interestiegvabs
tion is that BATCHREPAIRIs less sensitive to the noise rate because
it can repair many tuples simultaneously.

In Fig.[I3 we show that the presence of violations for vari-
able crFbs has a negative effect on the time performance of
both BATCHREPAIR and INCREPAIR. This is not surprising since
such violations involve multiple tuples.

Summary. Our experimental results demonstrate both the effec-
tiveness and efficiency of our repairing algorithms. (1) Wedfi
that all of our repairing algorithms, even the worst-penied L-
INCREPAIR, improve the quality of the data. (2) All of our algo-
rithms scale well with the database size. (3) Algorithmg 8HRE-
PAIR and V-INCREPAIR provide repairs that have comparable ac-
curacy. (4) Repair quality decreases when the noise ratedres

100

T T T T T T T 100 T T T T T T T T
100 T T T T T T T
95y - 90 --
P 7 e SR -f A
@ B
S 90 ol 4 S 80
< S RSN
oy 5 < g0 * 3
8 85 |- B) 7003, e < Beg
3 femm—ae o g8 T g B
8 o e o I} =
< 80 |- BatchRepair (FD/Recally—— I o 60 BatchRepair (RS e B & 70 | [_— B
BatchRepair (FD/Precy ->¢ - V-IncRe pair R BatchRepair—+—
BatchRepair (CFD/Recall)- - - pair ==2¢=- pair——
75 BatchRepair (CFD/Prec)--&-- - 50 - W-IncRepair - --% E 60 V-IncRepair -- n
P L-IncRepair - W-IncRepair - - -%- - -
70 1 1 1 1 1 1 1 20 Loy L-IncRepair &
2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 50 R
Percentage of errors(%) Percentage of errors(%) 12 3 4 5 6 7 8 9 10
. - Percentage of errors(%)
Figure 8: Efficacy of CFDsVs. FDs Figure 9: Precision vs. noise rate . .
Figure 10: Recall vs. noise rate
3500 F T T T T 50 T T T T T T T T T T T 1
1400 |- o
| : _ BatchRepair—+— .
3000 BatchRepair—— 40 f 1200 V-IncRepair ——>-- N -
- - | — W-IncRepair - - - - - 7 4
g 2500 T g ¢ 1000 L-IncRepair & el ,,é;if«ﬁ
. X
) 0 30 BatchRepair—+— [2) - .k
T 2000 1 T IncRepair ---- T 800 X A]
£ £ £ R
€ 1500 1 S 20} 1 S 6001 e
x X x X A
1000 e R 4001 B
10 e g R
500 1 =T 2004 -
o 1 1 1 1 S 1 1 1 1 0 T R R R

100 150 200 250

of tuples in database(K)
Figure 11: Scalability of BATCH REPAIR

300 20 30

for all of the algorithms. (5) If violations are mainly caasby
constantcFbps, then the algorithms run more efficiently and pro-
vide more accurate results. (6) While our algorithms cdtyefix
noises, they may also introduce new noises. This is an igsugen
well studied by previous work.

8. Related Work

A variety of constraint formalisms have been proposed|[@&,4,
26,121]. Except for[lB], these formalisms have not been appli
in the context of data cleaningcFDs are proposed irl[6], which
studies satisfiability and implication analysesa¥ps, and gives
sQL techniques for detecting inconsistencies usimps. How-
ever, it does not propose cleaning methods. Constraing] odiso
referred to as conditional functional dependencies, aeil &xten-
sion known as constrained dependencies df [26], alsoceattFD
to hold on a subset of a relation. However, they cannot egpres
evencFDs. More expressive are constraint-generating dependen-
cies (CGDs) of [4] and constrained tuple-generating dependencies
(cTGDs) of [27]. While bothcGDs andCTGDs can expressFbs,
this expressive power comes with the price of high compjexit

Research on constraint-based data cleaning has mostlgddcu
on two topics introduced iri.{2]repair is to find another database
that is consistent and minimally differs from the originatabase
(e.g.,[2, 15,125 ,[9[ID[14]); andonsistent query answés to find
an answer to a given query in every repair of the original loiase
(e.0.,[2, 110,124 ,[34]). Most earlier work (exceyil B} 9.114.] 34])
considers traditional full and denial dependencies, whkighbsume
FDs, but do not consider patterns defined with data values. Bkyon
traditional dependencies, logic programming is studie{Birl4]
for fixing census data. A tableau representation of full delea-
cies with data values is studied [n]34], which focuses ordensed
representation of repairs and consistent query answers.

Closest to our work ig[]5]. Here, a cost model and repairing al
gorithms are developed for standas andINDs. Our cost model
(SectioZ3R) is an extension of the one proposedlin [5], loyvitig
weights to be associated with attributes rather than wiphets As
remarked earlier, repairingFDs is far more intriguing than stan-
dardrps. Our batch repairing algorithm (Sectibh 4) is a nontrivial

11

of dirty tuples inserted
Figure 12: Scalability of INCREPAIR

40 50 60 70 4 5 6 7 8

Percentage of errors(%)

Figure 13: Scalability vs. noise rate

extension of the algorithms df][5] in that both are based amweq
alence classes of tuple attributes, but the algorithms]ahgy not
terminate orcFDs. Incremental repairing and sampling for improv-
ing data accuracy (Sectiofls 5 did 6) are not consideréd.in [5]
Value modifications as repair operations are use@ 1h[[13344,
5,128,[24]. A method for cleaning census data, based on rieduct
to Mwsc, was proposed ir [13] and has been being usedsya-
tional statistical agent5[85]. Our heurisREPAIR-CFDis inspired
by [13], but differs from it in that[[13[_35] deal with editingiles
on individual records among which there is no interactiohereas
modifying a single tuple may lead to violatioasDs by multiple
other tuples. The repair algorithms 6f [25] are essentialyex-
tension of the method of113] for restricted denial constigi As
remarked earlier[134, 24] focus on consistent query ansatber
than repair. [[14] employs logic programming to clean cerdats.
and is quite different from the techniques developed inwosk.
There has been a host of work on the merge-purge prokeemn (
[15, [21,[28]) for the elimination ofipproximate duplicates As
observed in[lb], it is possible to model many cases of thibjem
in terms ofFbsandiNDsrepair. As shown in Sectidn 3.2, clustering
techniques developed for merge-purge have immediatecapiolins
in constraint-based data cleaning. There have also beemeasial
ETL (extraction, transformation, loading) tools, in which aga
portion of the cleaning work has still to be done manually pr b
low-level programs (se&[29] for a comprehensive survey).
Related to this work are also theax, Potter's Wheel andRK -
Tos systems.AJAX [L5] proposes a declarative language for spec-
ifying data cleaning operations (duplicate eliminationyidg data
transformations. Potter's Wheeél[[]30] is an interactiveadelean-
ing system, which supports a sliding-window interface, anth-
bines data transformations and error detection (syntaxiraegu-
larities). ARKTOS [32] is anETL tool that detects inconsistencies
based on basic keys, foreign keys and uniqueness constreiat,
but it makes little effort to remove the detected errors. W&l
constraint repair facility will logically become part ofdltleaning
process supported by these tools and systems, we are na afvar
analogous functionality currently in any of the systems tioered.

Figure 14: Accuracy vs. percentage of constantFD violations

9.

100 T T T T T

95 -

0

Accuracy(%)

IncRepair (Precy—+—
BatchRepair (Precy->--
BatchRepair (Recall}--%-- |

8 IncRepair (Recall) &

80 1 1 1 1 1
20 30 40 50 60 70 80

Percentage of dirty tuples violating constant CFDs(%)

Conclusions

We have proposed a framework for improving data qualityedas
on cFDs. We have shown that the problem for finding optimal re-
pairs and the problem for incrementally finding optimal riepare
both NP-complete. In light of these intractability results, we bav
developed heuristic algorithms for both problems, and erpEn-
tally verified their effectiveness and efficiency in impnogithe
consistency of the data. To improve the accuracy of the deda,
have proposed a statistical method that guarantees to fiegaérr

above a predefined accuracy rate with a high confidence. To our

knowledge, this work is among the first treatments of bothston
tency and accuracy, and is the first effort to (incrementailgan

data based on conditional constraints. We expect difas and

data-cleaning methods based ©rps will yield a promising tool

for improving the quality of real-life data.

Several extensions are targeted for future work. First,ffiece
tively clean real-life data, it is often necessary to coasiloth
cFDs and inclusion dependencied [5]. We are investigating effec
tive methods for improving the consistency and accurachi®tiata

based on botltFbs and inclusion dependencies. Second, we are

studying effective methods to automatically discover ulefFDs
from real-life data. Finally, we exploring conditional iraints
beyondcFbs.

Acknowledgments

Wenfei Fan is supported in part by

EPSRC GR/S63205/01, GR/T27433/01, EP/E02921a1d BBSRC

BB/D006473/1 Floris Geerts is a postdoctoral researcher of the

FWO Vlaanderen and is supported in partBBSRC GR/S63205/01

10. References

(1]
[2]
3]
[4]
5]

(6]
[7]
(8]

[9]
[10]

N. Alon and J. H. SpencefThe Probabilistic Method” John Wiley
Inc., 1992.

M. Arenas, L. E. Bertossi, and J. Chomicki. Consistergrguanswers
in inconsistent databases.RODS 1999.

0. Bailleux and P. Marquis. DISTANCE-SAT: Complexity chalgo-
rithms. INAAAI/IAAIL 1999.

M. Baudinet, J. Chomicki, and P. Wolper. Constraint-&exing De-
pendenciesJCS$59(1):94-115, 1999.

P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cosetianodel
and effective heuristic for repairing constraints by vatoedification.
In SIGMOD, 2005.

P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. KementdistsCon-
ditional functional dependencies for data cleaningddBE, 2007.

R. Boppana and M. M. Halldérsson. Approximating maximinde-
pendent sets by excluding subgrapBHI, 32(2):180-196, 1992.

P. D. Bra and J. Paredaens. Conditional dependenciesofizontal
decompositions. IrColloquium on Automata, Languages and Pro-
gramming 1983.

R. Bruni and A. Sassano. Errors detection and corredtidarge scale
data collecting. INDA, 2001.

J. Chomicki and J. Marcinkowski. Minimal-change intieg mainte-
nance using tuple deletionsf. Comput, 197:90-121, 2005.

12

[11]
[12]
(23]

[14]

[15]
[16]
[17]
(18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]
[26]
[27]
[28]
[29]
[30]
(31]

[32]

(33]

[34]
[35]

800 T T T T T

BatchRepair—+—
=~ IncRepair -->--

Runtime(Sec.)

20
Percentage of dirty tuples violating constant CFDs(%)

Figure 15: Time vs percentage of constantFp violations

30 40 50 60 70 80

W. Cohen, P. Ravikumar, and S. Feinberg. A comparisostiafig-
distance metrics for name-matching tasksllVWseb, 2003.

L. English. Plain English on data quality: Informatiquality man-
agement: The next frontieDM Review MagazineApril 2000.

I. Fellegi and D. Holt. A systematic approach to autameadit and
imputation.J. American Statistical Associatipr1(353):17-35, 1976.
E. Franconi, A. L. Palma, N. Leone, S. Perri, and F. Sel&ocCensus
data repair: a challenging application of disjunctive togrogram-
ming. InLPAR 2001.

H. Galhardas, D. Florescu, D. Shasha, E. Simon, and i&. alAX:
An extensible data cleaning tool. 8iIGMOD, 2001.

H. Galhardas, D. Florescu, D. Shasha, E. Simon, and i&. $seclar-
ative data cleaning: Language, model and algorithm¥LiDB, 2001.
M. Garey and D. Johnso@omputers and Intractability: A Guide to
the Theory of NP-Completene®d. H. Freeman and Company, 1979.
G. Grahne.The Problem of Incomplete Information in Relational
DatabasesSpringer, 1991.

M. Halldérsson and J. Radhakrishnan. Greed is googiraimat-
ing independent sets in sparse and bounded-degree gragBisOIC
1994.

J. Han and M. KambetData Mining: Concepts and Techniques”
Morgan Kaufmann Publishers, 2006.

M. A. Hernandez and S. Stolfo. Real-world data is difata cleans-
ing and the merge/purge problelata Mining and Knowledge Dis-
covery 2(1):9-37, 1998.

T. Imielihski and W. L. Jr. Incomplete information irelational
databaseslACM, 31(4):761-791, 1984.

International StandardSO/IEC 9075-2:2003(E) Information technol-
ogy: Database languages, SQL Part 2 (Foundation, 2ndmgifio03.
A. Lopatenko and L. Bertossi. Complexity of consisteputery an-
swering in databases under cardinality-based and incrednepair
semantics. INCDT, 2007.

A. Lopatenko and L. Bravo. Efficient approximation aligoms for
repairing inconsistent databases!|@DE, 2007.

M. J. Maher. Constrained dependenciéheoretical Computer Sci-
ence 173(1):113-149, 1997.

M. J. Maher and D. Srivastava. Chasing Constrained éupl
Generating Dependencies. RODS 1996.

A. Monge. Matching algorithm within a duplicate deiect system.
IEEE Data Engineering Bulletir23(4), 2000.

E. Rahm and H. H. Do. Data cleaning: Problems and curagnat
proacheslEEE Data Engineering Bulletir23(4), 2000.

V. Raman and J. M. Hellerstein. Potter's Wheel: An iatdive data
cleaning system. INLDB, 2001.

T. Redman. The impact of poor data quality on the typeakrprise.
Commun. ACM2:79-82, 1998.

P. Vassiliadis, Z. Vagena, S. Skiadopoulos, N. Karaydis, and
T. Sellis. ARKTOS: towards the modeling, design, contradl @xe-
cution of ETL processesnf. Syst, 8:537-561, 2001.

J. S. Vitter. Random sampling with a reservddCM Trans. Math.
Softw, 11(1), 1985.

J. Wijsen. Condensed representation of databasersdpaiconsistent
query answering. IHCDT, 2003.

W. E. Winkler. Methods for evaluating and creating datality. Inf.
Syst, 29(7):531-550, 2004.

	Introduction
	Conditional Functional Dependencies
	A Framework for Data Cleaning
	Violations and Repair Operations
	Cost Model
	A Data Cleaning Framework: Overview

	An Algorithm for Finding Repairs
	Resolving cfd Violations
	Batch Repair Algorithm

	An Incremental Repairing Algorithm
	Incremental Algorithm and Local Repairing Problem
	Ordering for Processing Tuples and Optimizations
	Applying IncRepair in the Non-incremental Setting

	Statistical Methods for Improving Accuracy
	Experimental Evaluation
	Experimental Setting
	Experimental Results

	Related Work
	Conclusions
	References

