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Abstract

In a variety of emerging applications one needs to decide whether
a graph G matches another Gp, i.e., whether G has a topological
structure similar to that of Gp. The traditional notions of graph
homomorphism and isomorphism often fall short of capturing the
structural similarity in these applications. This paper studies revi-
sions of these notions, providing a full treatment from complexity
to algorithms. (1) We propose p-homomorphism (p-hom) and 1-1
p-hom, which extend graph homomorphism and subgraph isomor-
phism, respectively, by mapping edges from one graph to paths in
another, and by measuring the similarity of nodes. (2) We intro-
duce metrics to measure graph similarity, and several optimization
problems for p-hom and 1-1 p-hom. (3) We show that the deci-
sion problems for p-hom and 1-1 p-hom are NP-complete even for
DAGs, and that the optimization problems are approximation-hard.
(4) Nevertheless, we provide approximation algorithms with prov-

able guarantees on match quality. We experimentally verify the
effectiveness of the revised notions and the efficiency of our algo-
rithms in Web site matching, using real-life and synthetic data.

1. Introduction
The notions of graph homomorphism and subgraph isomorphism

[9] can be found in almost every graph theory textbook. Given
two node-labeled graphs G1 = (V1, E1) and G2 = (V2, E2), the
problem of graph homomorphism (resp. subgraph isomorphism) is
to find a (resp. 1-1) mapping from V1 to V2 such that each node in
V1 is mapped to a (resp. distinct) node in V2 with the same label,
and each edge in E1 is mapped to an edge in E2.

These conventional notions are, however, often too restrictive
for graph matching in emerging applications. In a nutshell, graph
matching is to decide whether a graph G matches another graph
Gp, i.e., whether G has a structure similar to that of Gp, although
not necessarily identical. The need for this is evident in, e.g., Web
anomaly detection [23], search result classification [25], plagiarism
detection [20] and spam detection [3]. In these contexts, identi-
cal label matching is often an overkill, and edge-to-edge mappings
only allow strikingly similar graphs to be matched.

Example 1.1: Consider two online stores depicted in Fig. 1 as
graphs Gp = (Vp, Ep) and G = (V,E). In these graphs, each
node denotes a Web page for sale of certain items, as indicated
by its label; and the edges denote hyperlinks. One wants to know
whether G matches Gp, i.e., whether all the items specified by Gp
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Figure 1: Graphs representing online stores

are also carried by the store G, and G and Gp can be navigated
similarly, i.e., if a site for selling item a can be reached from a site
for item b in Gp by following hyperlinks, then the site for item a
can also be reached from the site for b in G.

When graph homomorphism or subgraph isomorphism is used to
measure graph similarity, G does not match Gp. Indeed, (a) nodes
in G may not find a node in G with the same label, e.g., audio; and
worse still, (b) there exists no sensible mapping from Vp to V that
maps edges in Gp to edges in G accordingly.

However, a page checker (e.g., [8, 29]) may find connections
between pages in Gp and those in G based on their functionality:

A 7→ B, books 7→ books, audio 7→ digital, textbooks 7→ school,
abooks 7→ audiobooks, albums 7→ albums

That is, the store G indeed has the capability of Gp. While the
edges in Gp are not preserved by the similarity relation, each edge
in Gp is mapped to a path in G, e.g., the edge (books, textbooks)
in Gp is mapped to the path books/categories/school in G. This
tells us that G preserves the navigational structure of Gp. Hence G
should logically be considered as a match of Gp. ✷

These highlight the need for revising the conventional notions
of graph matching. In response to these, several extensions of the
conventional notions have been studied for graph matching [10, 11,
14, 24, 32]. However, a formal analysis of these extensions is not
yet in place, from complexity bounds to approximation algorithms.

Contributions. We propose several notions to capture graph struc-
tural similarity that encompass the previous extensions, and pro-
vide a full treatment of these notions for graph matching.

(1) We introduce p-homomorphism (p-hom) and 1-1 p-hom in Sec-
tion 3. These notions extend graph homomorphism and subgraph
isomorphism, respectively, by (a) incorporates similarity metrics to
measure the similarity of nodes, as opposed to node label equal-
ity; and (b) mapping edges in a graph to paths in another, rather
than edge-to-edge mappings. In contrast to previous extensions,
one can use node similarity to assure, e.g., that two Web pages are
matched only when they have similar contents [29] or play a simi-
lar role (as a hub or authority [6]). Edge-to-path mappings allow us
to match graphs that have similar navigational structures but can-
not be identified by the conventional notions of graph matching. In
addition, these notions can be readily extended to deciding whether
two graphs are similar to each other in a symmetric fashion.

(2) To provide a quantitative measure of graph similarity, we de-
velop two metrics, also in Section 3, based on (a) the maximum



number of nodes matched, and (b) the maximum overall similar-
ity when the weights of nodes are taken into account, respectively.
These metrics give rise to two natural optimization problems, re-
ferred to as the maximum cardinality problem and the maximum

similarity problem, respectively, for each of p-hom and 1-1 p-hom.
In particular, the maximum common subgraph problem [19] is a
special case of the maximum cardinality problem for 1-1 p-hom.

(3) We establish complexity bounds of the decision problems and
optimization problems for p-hom and 1-1 p-hom, in Section 4. We
show that the problems for determining p-hom and 1-1 p-hom,
as well as the maximum cardinality problem and the maximum
similarity problem, are all NP-complete, even for directed acyclic
graphs (DAGs). Worse still, the optimization problems are hard to
approximate: unless P = NP, it is beyond reach in practice to ap-
proximate the problems within O(1/n1−ǫ) of the optimal solutions
for any constant ǫ. All proofs are given in the appendix.

(4) Nevertheless, we provide in Section 5 approximation algo-
rithms for finding mappings with the maximum cardinality or the
maximum similarity, for p-hom and 1-1 p-hom. These algorithms
possess performance guarantees on match quality: for any graphs
G1 and G2, the solutions found by the algorithms are provable to be
within a polynomial O(log2(n1n2)/(n1n2)) of the optimal solu-
tions, where n1 (resp. n2) is the number of nodes in G1 (resp. G2).

(5) Using Web site matching as a testbed, we experimentally evalu-
ate our similarity measures in Section 6. We compare p-hom and 1-
1 p-hom with three other methods: graph simulation [17], subgraph
isomorphism [9] and vertex similarity matrix [21]. Using real-life
Web sites and synthetic graphs, we show that our methods outper-
form those three methods in both match quality and efficiency.

We expect that p-hom and 1-1 p-hom will find applications in
Web site classification [5, 12], complex object identification, pla-
giarism [20] and spam detection [3], among other things.

2. Related Work
There have been extensions of graph matching by allowing edges

to map to paths, for trees [24], DAGs [10] or graphs [11, 14, 32]. An
approximate retrieval method is proposed for matching trees [24],
which identifies and merges regions of XML data that are similar
to a given pattern, by using an inverted index. Stack-based algo-
rithms are studied for matching DAGs [10], by leveraging filtering
for early pruning. Exponential-time algorithms for matching gen-
eral graphs are developed in [11], based on join operations over
graphs encoded as tables. A notion of XML schema embedding is
studied in [14], which is a special case of p-hom with two extra
conditions. A form of graph pattern matching is considered in [32],
in which edges denote paths with a fixed length. Algorithms for
approximate graph matching can also be found in [27, 30]. Most
prior work does not consider node similarity in pattern matching,
such as all the work mentioned above except [24]. Further, ex-
cept [14], the complexity of graph matching is not settled; indeed,
some algorithms were claimed to be in polynomial time, whereas
we show that the problem is NP-hard even for DAGs (Section 4).
The complexity bounds of [14] are developed for a different prob-
lem, and do not carry over to (1-1) p-hom. In addition, none of the
previous algorithms has provable guarantees on match quality, as
opposed to the approximation algorithms of this paper.

A variety of methods have been studied for measuring graph sim-
ilarity, typically following one of three approaches. (a) Feature-

based: it counts the number of common features in graphs, namely,
domain-specific elementary structures, e.g., root-leaf paths [18].
(b) Structure-based: it assesses the similarity of the topology of

graphs based on simulation [17, 12], subgraph isomorphism (com-
mon maximum subgraph) [27, 30], or edit distance [31] (see [9,
26] for surveys). Graph simulation considers edge-preserving re-
lations instead of functions from one graph to another. Graph edit
distance is essentially based on subgraph isomorphism. (c) Vertex

similarity: it builds a matrix of node similarity based on fixpoint
computation [6, 21] and the roles of nodes in the structures of the
graphs (e.g., hubs or authorities [6]). As pointed out by [25, 30], the
feature-based approach does not observe global structural connec-
tivity, and is often less accurate than the structure-based measure.
As observed by [4, 23], vertex similarity alone does not suffice to
identify accurate matches since it ignores the topology of graphs
by and large. For Web site matching in particular, it is essential
to consider how pages are linked to each other. One cannot match
two sites with different navigational structures even if most of their
pages can be matched pairwise. Further, vertex similarity requires
fixpoint operations and is often too expensive to compute on large
graphs. As opposed to previous approaches, we introduce (1-1)
p-hom to capture both structural similarity by enforcing edge-to-
path mappings, and the contents of individual nodes by incorporat-
ing node similarity. In addition, we provide maximum cardinality
and maximum overall similarity metrics to quantitatively measure
graph similarity, which have not been studied by previous work.

A number of graph matching algorithms have been developed
(see [9] for a survey). Our algorithms extend the algorithms of [7,
16] for computing maximum (weighted) independent sets.

3. Revisions of Graph Homomorphism
In this section we first introduce p-homomorphism and 1-1 p-

homomorphism. We then present metrics to quantitatively measure
graph similarity, and formulate related optimization problems.

3.1 Graphs and Node Similarity

A node-labeled, directed graph is defined as G = (V,E, L),
where (1) V is a set of nodes; (2) E ⊆ V × V is a set of edges, in
which (v, v′) denotes an edge from node v to v′; and (3) for each v
in V , L(v) is the label of v. The label L(v) may indicate e.g., the
content or URL of a Web page [4, 5].

Consider graphs G1 = (V1, E1, L1) and G2 = (V2, E2, L2).
We assume a similarity matrix mat(). For each pair (v, u) of

nodes in V1 × V2, mat(v, u) is a number in [0, 1], indicating how
close the labels of v and u are.

The matrix mat() can be generated in a variety of ways. In Web
site matching, for instance, mat(v, u) for each pair (u, v) of pages
may be computed in terms of common shingles that u and v share.
Here a shingle [8] is a meaningful region contained in a Web page,
and mat(v, u) indicates the textual similarity of u and v. One may
also treat vertex similarity matrix [6, 21] as mat(), which measures
the hub-authority structural similarity of two nodes [6] and incor-
porates certain topological structural properties of the graphs.

It may be too expensive to compute vertex similarity matrix on
large graphs or to match those graphs. To cope with this we may
use “skeletons” of the graphs instead, namely, subgraphs induced
from “important” nodes such as hubs, authorities and nodes with a
large degree. Indeed, approximate matching is commonly accepted
in practice [6, 24, 27, 30]. We compute mat() for such nodes only.

We use a similarity threshold ξ to indicate the suitability of map-
ping v to u, such that v can be mapped to u only if mat(v, u) ≥ ξ.

3.2 P-Homomorphism and 1-1 P-Homomorphism

P-homomorphism. Graph G1 is said to be p-homomorphism (p-
hom) to G2 w.r.t. a similarity matrix mat() and a similarity thresh-
old ξ, denoted by G1 -(e,p) G2, if there exists a mapping σ from



Figure 2: p-hom and 1-1 p-hom

V1 to V2 such that for each node v ∈ V1,

(1) if σ(v) = u, then mat(v, u) ≥ ξ; and

(2) for each edge (v, v′) in E1, there exists a nonempty path

u/ . . . /u′ in G2 such that σ(v′) = u′, i.e., each edge from v is
mapped to a path emanating from u.

We refer to σ as a p-hom mapping from G1 to G2.

Example 3.1: Recall Gp and G of Fig. 1. As shown in Exam-
ple 1.1, Gp is neither homomorphic nor isomorphic to a subgraph
of G. In contrast, suppose that a page checker [8, 29] yields mate():

mate(A,B) = mate(audio, digital) = 0.7
mate(books, books) = 1.0
mate(abooks, audiobooks) = 0.8
mate(books, booksets) = mate(textbooks, school) = 0.6
mate(albums, albums) = 0.85
mate(v, u)= 0, for all other node pairs

Then Gp -(e,p) G w.r.t. mate() and any threshold ξ ≤ 0.6. Indeed,
the mapping given in Example 1.1 is a p-hom mapping.

To further illustrate p-hom, let us consider the graphs of Fig. 2.
In each pair of the graphs, assume that mat(v, u) = 1 if u and v
have the same label, and mat(v, u) = 0 otherwise, for nodes v in
one graph and u in another. Fix ξ = 0.5. One can see the following.

(1) G1 -(e,p) G2. A p-hom mapping is defined by mapping both

A nodes in G1 to the A node in G2, the node B in G1 to the B
node in G2, and the node C in G1 to any of the two C nodes in G2.

(2) G3 6-(e,p) G4. Mapping the D node in G3 to only one of the
D nodes in G4 does not make a p-hom mapping, because either the
edge (A,D) or (B,D) in G3 cannot be mapped to a path in G4.

(3) G5 -(e,p) G6, for the same reason as (1). ✷

1-1 p-homomorphism. A graph G1 is 1-1 p-hom to G2, denoted
by G1 -1−1

(e,p) G2, if there exists a 1-1 (injective) p-hom mapping

σ from G1 to G2, i.e., for any distinct nodes v1, v2 in G1, σ(v1) 6=
σ(v2). We refer to σ as a 1-1 p-hom mapping from G1 to G2.

Example 3.2: For Gp and G of Fig. 1, the p-hom mapping given
in Example 3.1 is also a 1-1 p-hom mapping, i.e., Gp -1−1

(e,p) G.

As another example, consider G1 and G2 of Fig. 2. While
G1 -(e,p) G2, G1 6-1−1

(e,p) G2. In particular, the p-hom mapping

given in Example 3.1 is not injective, since it maps both A nodes
in G1 to the same A node in G2. Similarly, while G5 -(e,p) G6,

G5 6-1−1
(e,p) G6 as a p-hom mapping has to map both B nodes in G5

to the B node in G6, which is not allowed by a 1-1 mapping. ✷

Note that subgraph isomorphism is a special case of 1-1 p-hom:
G1 is isomorphic to a subgraph of G2 iff there exists a 1-1 p-hom
mapping σ from G1 to G2 that (a) maps each edge (v, v′) in G1

to an edge (σ(v), σ(v′)) in G2, (b) adopts node label equality, and
moreover, (c) if (σ(v), σ(v′)) is an edge in G2, then (v, v′) must

be an edge in G1; in contrast, 1-1 p-hom only requires edges from
G1 to find a match in G2, but not the other way around. Similarly,
graph homomorphism is a special case of p-hom.

Remark. For G1 -(e,p) G2 (G1 -1−1
(e,p) G2) we require an edge-

to-path mapping from G1 to G2 when G1 is a pattern for a data
graph G2 to match. Nevertheless, (1-1) p-hom can be readily made
symmetric that maps paths between G1 and G2. Indeed, one only
need to compute G+

1 , the transitive closure of G1 (in O(|G1|2)-

CPH maximum cardinality for p-hom

CPH1−1 maximum cardinality for 1-1 p-hom
SPH maximum overall similarity for p-hom

SPH1−1 maximum overall similarity for 1-1 p-hom

Table 1: Notations: Optimization problems

time [22]), and check whether G+
1 -(e,p) G2 (G+

1 -1−1
(e,p) G2).

3.3 Metrics for Measuring Graph Similarity

In practice one often wants to measure the similarity of graphs
G1 and G2 although G1 may not be (1-1) p-hom to G2. We next
provide two metrics that give a quantitative measure of the similar-
ity of two graphs in the range of [0, 1]. Let σ be a p-hom mapping
from a subgraph G′

1 = (V ′

1 , E
′

1, L
′

1) of G1 to G2.

Maximum cardinality. This metric evaluates the number of nodes

in G1 that σ maps to G2. The cardinality of σ is defined as:

qualCard(σ) =
|V ′

1 |

|V1|
.

The maximum cardinality problem for p-hom (resp. 1-1 p-hom),
denoted by CPH (resp. CPH1−1), is to find, given G1, G2, mat()
and ξ as input, a (resp. 1-1) p-hom mapping σ from a subgraph of
G1 to G2 such that qualCard(σ) is maximum.

Observe the following. (1) If G1 -(e,p) G2 or G1 -1−1
(e,p) G2,

then a p-hom mapping σ with maximum qualCard(σ) is a p-hom
mapping from the entire G1 to G2. (2) The familiar maximum com-

mon subgraph problem (MCS) is a special case of CPH1−1 (recall
that MCS is to find a subgraph G′

1 of G1 and a subgraph G′

2 of G2

such that (a) G′

1 and G′

2 are isomorphic, and (b) the cardinality of
G′

1 (equivalently, G′

2) is maximum; see, e.g., [19]).

Overall similarity. Alternatively, we consider the overall simi-

larity of mapping σ. Assume a weight w(v) associated with each
node v, indicating relative importance of v, e.g., whether v is a hub,
authority, or a node with a high degree. The metric is defined to be

qualSim(σ) =
Σv∈V ′

1
(w(v) ∗mat(v, σ(v)))

Σv∈V1
w(v)

.

Intuitively, the higher the weight w(v) is and the closer v is to
its match σ(v), the better the choice of v is. This metric favors
“important” nodes in G1 that can find highly similar nodes in G2.

The maximum overall similarity problem for p-hom (resp. 1-
1 p-hom), denoted by SPH (resp. SPH1−1) is to compute, given
G1, G2, mat() and ξ as input, a (resp. 1-1) p-hom mapping σ from
a subgraph of G1 to G2 such that qualSim(σ) is maximum.

These optimization problems are summarized in Table 1.

Example 3.3: Consider graphs G5 and G6 shown in Fig. 2. There
are two nodes labeled B in G1, indicated by v1 and v2, respectively.
A similarity matrix mat0() is given as follows:

mat0(A,A) = mat0(D,D) = mat0(E,E) = mat0(v2, B) = 1
mat0(v1, B) = 0.6 mat0(v, u) = 0 for other cases

Let ξ = 0.6, and assume w(v) = 1 for each node v in G5, except
w(v2) = 6. Then G5 is not 1-1 p-hom to G6: given mat0() and ξ,
any p-hom mapping from G5 to G6 has to map both v1 and v2 in
G5 to the B node in G6, which is not allowed by a 1-1 mapping.
Nevertheless, we can still measure the similarity of G5 and G6.

(1) When the maximum cardinality metric is adopted, an optimal
1-1 p-hom mapping σc is from a subgraph H1 of G5 to G6, where
H1 contains nodes A,D,E and v1. Here σc maps each node v in
G5 to a node u in G6 that has the same label as v. The mapping σc

has maximum cardinality with qualCard(σc) = 4
5

= 0.8.

(2) When the maximum similarity metric is used, the optimal 1-1
p-hom mapping σs is from a subgraph H2 of G5 to G6, where H2

consists of nodes A and v2 only. Here qualCard(σs) = 1∗1+6∗1
1+1+1+1+6



= 0.7. In contrast, qualCard(σc) = 1∗1+1∗0.6+1∗1+1∗1
1+1+1+1+6

= 0.36, al-
though σc maps more nodes from G5 to G6 than σs. ✷

4. Intractability and Approximation Hardness
We next establish complexity bounds for the decision problems

and optimization problems associated with p-homomorphism and
1-1 p-homomorphism (see Appendix A for detailed proofs).

Intractability. No matter how desirable, it is intractable to de-
termine whether a graph is p-hom or 1-1 p-hom to another. We
remark that while graph homomorphism is special case of p-hom,
there is no immediate reduction from the former to the latter, and
vice versa; similarly for subgraph isomorphism and 1-1 p-hom.

Theorem 4.1: Given graphs G1 and G2, a similarity matrix

mat() and a threshold ξ, it is NP-complete to decide whether (a)

G1 -(e,p) G2, or (b) G1 -1−1
(e,p) G2. These problems are already

NP-hard when both G1 and G2 are acyclic directed graphs (DAGs).

It is NP-hard for 1-1 p-hom when G1 is a tree and G2 is a DAG. ✷

In addition, it is unrealistic to expect a polynomial time (PTIME)
algorithm for finding an optimal (1-1) p-hom mapping.

Corollary 4.2: The maximum cardinality problem and the max-

imum overall similarity problem are NP-complete for p-hom and

1-1 p-hom. These problems are already NP-hard for DAGs. ✷

Approximation hardness. In light of Corollary 4.2, the best we
can hope for are efficient heuristic algorithms for finding (1-1) p-
hom mappings, with performance guarantees on match quality. Un-
fortunately, CPH, CPH1−1, SPH and SPH1−1 are all hard to ap-
proximate. Indeed, there exist no PTIME algorithms for finding
(1-1) p-hom mappings such that the quality of each mapping found
is guaranteed to be within O(1/n1−ǫ) of its optimal counterpart.

Theorem 4.3: Unless P = NP, CPH, CPH1−1, SPH and SPH1−1

are not approximable within O(1/n1−ǫ) for any constant ǫ, where

n is the number of nodes in G1 of input graphs G1 and G2. ✷

The hardness is verified by a certain reduction from the maximum

weighted independent set problem (WIS). In a graph, an indepen-
dent set is a set of mutually non-adjacent nodes. Given a graph
with a positive weight associated with each node, WIS is to find an
independent set such that the sum of the weights of the nodes in the
set is maximum. It is known that WIS is NP-complete, and is hard
to approximate: it is not approximable within O(1/n1−ǫ) for any
constant ǫ, where n is the number of nodes [16].

To show the approximation bound, we need to use approximation

factor preserving reduction (AFP-reduction) [28]. Let Π1 and Π2

be two maximization problems. An AFP-reduction from Π1 to Π2

is a pair of PTIME functions (f , g) such that
◦ for any instance I1 of Π1, I2 = f(I1) is an instance of Π2

such that opt
2
(I2) ≥ opt1(I1), where opt1 (resp. opt2) is

the quality of an optimal solution to I1 (resp. I2), and
◦ for any solution s2 to I2, s1 = g(s2) is a solution to I1 such

that obj1(s1) ≥ obj2(s2), where obj1() (resp. obj2()) is a
function measuring the quality of a solution to I1 (resp. I2).

AFP-reductions retain approximation bounds.

Proposition 4.4:[28] If (f, g) is an AFP-reduction from problem

Π1 to problem Π2, and if there is a PTIME algorithm for Π2 with

performance guarantee α, then there is a PTIME algorithm for Π1

with the same performance guarantee α. ✷

Here an algorithm A has performance guarantee α if for any
instance I , obj(A(I)) ≥ α opt(I). Theorem 4.3 is verified by
an AFP-reduction from WIS to each of CPH, CPH1−1, SPH and

SPH1−1. That is, these problems are at least as hard as WIS when
approximation is concerned.

5. Approximation Algorithms
Despite Theorem 4.3, we next provide approximation algorithms

for each of the maximum cardinality problems (CPH, CPH1−1)
and the maximum overall similarity problems (SPH, SPH1−1).
Optimization techniques are presented in Appendix B.

One of the main results of this section is an approximation bound
for CPH, CPH1−1, SPH and SPH1−1: although the problems
are not approximable within O(1/n1−ǫ) (Theorem 4.3), we estab-
lish a bound O(log2(n1n2)/(n1n2)). This is verified by AFP-
reductions (f, g) from these problems to WIS, by constructing
product graphs of G1 and G2 (see Appendix A for a detailed proof).

Theorem 5.1: CPH, CPH1−1, SPH and SPH1−1 are all approx-

imable within O(log2(n1n2)/(n1n2)), where n1 and n2 are the

numbers of nodes in input graphs G1 and G2, respectively. ✷

Theorem 5.1 suggests naive approximation algorithms for these
problems. Given graphs G1(V1, E1, L1), G2(V2, E2, L2), a sim-
ilarity matrix mat() and a similarity threshold ξ, the algorithms
(1) generate a product graph by using function f in the AFP-
reduction, (2) find a (weighted) independent set by utilizing the al-
gorithms in [7, 16], and (3) invoke function g in the AFP-reduction
to get a (1-1) p-hom mapping from subgraphs of G1 to G2.

More specifically, for CPH and CPH1−1, we can leverage the ap-
proximation algorithm for maximum independent sets given in [7],
which is in O(nm) time, where n and m are the numbers of nodes
and edges in a graph, respectively. For SPH and SPH1−1, we can
use the algorithm of [16] for WIS, which is in O(nm log n)-time.
Thus the naive approximation algorithms for maximum cardinal-
ity and maximum overall similarity are in O(|V1|3|V2|3)-time and
O(|V1|3|V2|3 log(|V1||V2|))-time, respectively.

Although these naive algorithms possess performance guaran-
tees, they incur a rather high complexity in both time and space.
The cost is introduced by the product graphs, which consist of
O(|V1||V2|) nodes and O(|V1|2|V2|2) edges.

We next develop more efficient algorithms that operate directly
on the input graphs instead of on their product graph, retaining the
same approximation bound. We first present an algorithm for CPH,
and then extend the algorithm to CPH1−1, SPH and SPH1−1.

Approximation algorithm for CPH. The algorithm is referred to
as compMaxCard and is shown in Figures 3 and 4. Given G1,
G2, mat() and ξ as input, it computes a p-hom mapping σ from a
subgraph of G1 to G2, aiming to maximize qualCard(σ).

The algorithm maintains the following data structures to ensure
match quality. (a) A matching list H for nodes in G1. For each
node v in H , H[v].good collects candidate nodes in G2 that may
match v via the mapping σ; and H[v].minus is the set of nodes in
G2 that v cannot match via σ. (b) A set I of pairwise contradictory

matching pairs (v, u), where v is a node in G1 and u is a node in
G2. For any two pairs (v1, u1), (v2, u2) in I , if v1 is mapped to u1,
then v2 cannot be mapped to u2, and vice versa. (c) An adjacency
list H1 for G1. For each node v in G1, H1[v].prev and H1[v].post
store its “parents” (i.e., the nodes from which there are edges to v)
and “children” (i.e., the nodes to which there are edges from v),
respectively. (d) An adjacency matrix H2 for the transitive closure
graph G+

2 of G2 such that H2[u1, u2] = 1 iff (u1, u2) is an edge in
G+

2 , i.e., there is a nonempty path from u1 to u2 in G2.
Here the transitive closure G+(V,E+, L) of graph G(V,E, L)

is the graph such that for all nodes v, v′ ∈ V , (v1, v2) ∈ E+ iff
there is a nonempty path from v1 to v2 in G.



Algorithm compMaxCard

Input: Two graphs G1(V1, E1, L1) and G2(V2, E2, L2), a similarity
matrix mat(), and a similarity threshold ξ.

Output: A p-hom mapping from subgraph of G1 to G2.

1. for each node v ∈ V1 of graph G1 do
2. H1[v].prev := {v′ | v′ ∈ V1, (v′, v) ∈ E1};
3. H1[v].post := {v′ | v′ ∈ V1, (v, v′) ∈ E1};
4. H[v].good := {u | u ∈ V2,mat(v, u) ≥ ξ}; H[v].minus := ∅;

5. compute the transitive closure G+
2 (V2, E

+
2 , L2) of graph G2;

6. for each ordered node pair (u1, u2) in G2 do

7. if (u1, u2) ∈ E+
2 then H2[u1][u2] := 1; else H2[u1][u2] := 0;

8. σm := ∅;
9. while sizeof(H) > sizeof(σm) do
10. (σ, I) := greedyMatch(H1, H2, H); H := H \ I;
11. if sizeof(σ) > sizeof(σm) then σm := σ;
12. return σm.

Figure 3: Approximation algorithm compMaxCard

The algorithm works as follows. It first constructs the adjacency
list H1 and the matching list H for G1 (lines 1–4, Fig. 3), where
for each v in G1, H[v].good collects nodes v′ in G2 such that
mat(v, v′) ≥ ξ, and H[v].minus is initially empty. The transitive

closure graph G+
2 of G2 is then computed and stored in adjacency

matrix H2 (lines 5–7). The mapping σm is initially ∅ (line 8), and
is computed by a procedure greedyMatch as follows.

In a nutshell, greedyMatch (Fig. 4) picks a node v from H with
maximal H[v].good, and a candidate match u from H[v].good.
It then recursively computes a mapping σ1 provided that (v, u) is
a match, and a mapping σ2 without (v, u). It returns the larger
one of σ1 ∪ {(v, u)} and σ2 to decide whether (v, u) is a good
choice. Meanwhile greedyMatch computes sets I1, I2 of pairwise
contradictory matching pairs and returns the larger one of them as
I . It is worth remarking that I is nonempty.

Upon receiving σ and I from greedyMatch (line 10), algo-
rithm compMaxCard removes conflict pairs I from H (line 10)
and takes the larger one of σ and σm. (line 11). It repeatedly in-
vokes greedyMatch until σm is no smaller than H (lines 9–11),
i.e., when σm covers all the remaining nodes in H to be matched.
The quality of the mapping returned (line 12) is guaranteed because
(a) greedyMatch always picks the larger one of σ1 ∪ {(v, u)} and
σ2, and (b) bad choices of I are removed from H at an early stage.

We next give the details of the procedures of compMaxCard.

(a) Procedure greedyMatch (Fig. 4) takes the current matching list
H as input. It computes a p-hom mapping σ from a subgraph of
G1[H] to G2, and a set I of conflict pairs. It selects a candidate
match (v, u) as mentioned earlier, moves other nodes in H[v].good
to H[v].minus and sets H[v].good to empty set, since v has already
picked a match u (lines 2–3). Assuming that (v, u) is a match, it
updates H by pruning bad matches for the parent and the children
of v in G1, via another procedure trimMatching (line 4). The up-
dated H is partitioned into two lists, H+ and H−, such that for
each node v′ in H+, H[v′].good is nonempty, i.e., v′ may still find
a match provided that (v, u) is a match; otherwise v′ is included
in H− (lines 5–9). Procedure greedyMatch then recursively com-
putes p-hom mappings σ1 and σ2 for G[H+] and G[H−], respec-
tively (lines 10–11). It compares the sizes of σ1∪{(v, u)} (i.e., the
mapping with (v, u)) and σ2 (i.e., the mapping without (v, u)), and
returns the larger one (lines 12–13). It also computes the set I . If
(v, u) is not a good choice then it is included in I2 (line 12), the set
of conflict pairs found when computing σ2.

(b) Procedure trimMatching (Fig. 4) inputs a candidate match
(v, u) and the current matching list H . It removes bad matches
from H assuming that (v, u) is a match. That is, for any parent
v′ in both H1[v].prev and H , it moves each candidate u′ from
H[v′].good to H[v′].minus if there is no path from u′ to u in G2

Procedure greedyMatch

Input: Graphs H1, H2, and matching list H for subgraph G1[H].
Output: A p-hom mapping σ for subgraph G1[H] to G2

and a set I of pairwise contradictory matching pairs.

1. if H is empty then return (∅, ∅);
2. pick a node v of H and a node u from H[v].good;
3. H[v].minus := H[v].good \ {u}; H[v].good := ∅;

4. H := trimMatching(v, u,H1, H2, H);
5. for each node v′ in H do /* partition H into H+ and H− */

6. if H[v′].good is not empty
7. then {H+[v′].good := H[v′].good; H+[v′].minus := ∅}
8. if H[v′].minus is not empty
9. then {H−[v′].good := H[v′].minus; H−[v′].minus := ∅}

10. (σ1, I1) := greedyMatch(H1, H2, H+);
11. (σ2, I2) := greedyMatch(H1, H2, H−);
12. σ := max(σ1 ∪ {(v, u)}, σ2); I := max(I1, I2 ∪ {(v, u)});
13. return (σ, I);

Procedure trimMatching

Input: Node v with matching node u, H1, H2 and H .
Output: Updated matching list H .

1. for each node v′ in H1[v].prev ∩H do
/* prune the matching nodes for v’s parent nodes */

2. for any node u′ in H[v′].good such that H2[u′, u] = 0 do
3. H[v′].good := H[v′].good \ {u′};
4. H[v′].minus := H[v′].minus ∪ {u′};
5. for each node v′ in H1[v].post ∩H do

/* prune the matching nodes for v’s children nodes */

6. for any node u′ in H[v′].good such that H2[u, u′] = 0 do
7. H[v′].good := H[v′].good \ {u′};
8. H[v′].minus := H[v′].minus ∪ {u′};
9. return H;

Figure 4: Procedures greedyMatch and trimMatching

(lines 1–4), by the definition of p-hom. Similarly, it processes v’s
children (lines 5–8). The updated H is then returned (line 9).

Example 5.1: We illustrate how compMaxCard computes a p-hom
mapping from a subgraph of Gp to G of Fig. 1. For the lack of
space we consider subgraphs G′

1 and G′

2 of Gp and G, respec-
tively, where G′

1 is induced by {books, textbooks, abooks}, and
G′

2 by {books, categories, booksets, school, audiobooks}. We use
the similarity matrix mate() of Example 3.1, and fix ξ = 0.5. In
the following, the nodes labeled with ‘∗’ are the nodes chosen at
line 2 in the procedure greedyMatch.

After step 7, the algorithm constructs an initial matching list H
for G′

1 (see below), an adjacency matrix H2 for the transitive clo-
sure graph of G′

2, and an adjacent list H1 (G′

2 and H1 are omitted).

Nodes in H good bad

books∗ {books∗, booksets} ∅
textbooks {school} ∅
abooks {audiobooks} ∅

The algorithm then calls greedyMatch to produce a subgraph p-
hom mapping from G′

1 to G′

2. At step 2 of greedyMatch, it maps
books to books. After step 9, it splits H into H+ and H−, and
H+ is further partitioned into H+

a and H−

a by mapping abooks to
audiobooks (shown below with empty lists omitted).

Nodes good minus

H+ textbooks {school} ∅
abooks∗ {audiobooks∗} ∅

H− books∗ {booksets∗} ∅

H+
a textbooks∗ {school∗} ∅

For these lists, σ and I are as follows (empty sets omitted).

σ I

H+
a {(textbooks, school)} {(textbooks, school)}

H− {(books, booksets)} {(books, booksets)}

H+ {(textbooks, school), (abooks, audiobooks)} {(textbooks, school)}
{(books, books), (textbooks, school), {(books, books),

H (abooks, audiobooks)} (books, booksets)}



After removing I from H , the size of H becomes smaller than
that of σm, and compMaxCard returns {(abooks, audiobooks),

(textbooks, school), (books, books)} as the p-hom mapping. ✷

Analysis. Algorithm compMaxCard possesses the performance
guarantee given in Theorem 5.1 (see Appendix A for a proof).

Proposition 5.2: For any G1(V1, E1, L1), G2(V2, E2, L2), mat()

and ξ, algorithm compMaxCard finds a p-hom mapping σ
from a subgraph of G1 to G2 such that qualCard(σ) is within

O(log2(|V1||V2|)/(|V1||V2|)) of the optimal quality. ✷

One can verify that algorithm compMaxCard is in O(|V1|3|V2|2
+ |V1||E1||V2|3) time, and is in O((|V1|+ |V2|)2) space.

Algorithm compMaxCard can be readily converted to approxi-
mation algorithms for CPH1−1, SPH and SPH1−1, as follows.

Approximation algorithm for CPH1−1. A 1-1 p-hom mapping
requires that no two nodes in G1 are mapped to the same node in
G2. Minor changes to compMaxCard suffice to do this: we add
an extra step to procedure greedyMatch such that after node v in
H is mapped to u in G2, we remove u from H[v′].good and add
u to H[v′].minus for each node v′ in H other than v. The ex-
tra step changes neither the worst-case complexity nor the perfor-
mance guarantee of compMaxCard. This yields an approximation
algorithm for CPH1−1, referred to as compMaxCard1−1.

Approximation algorithms for SPH and SPH1−1. We develop
an approximation algorithm, referred to as compMaxSim, for the
maximum overall similarity problem SPH. The algorithm borrows
a trick from [16]. The strategy of [16] for computing WIS is as
follows. It first removes nodes with weights less than W/n, where
W is the maximum node weight and n is the number of nodes in
a graph. It then partitions the remaining nodes into log n groups
based on theirs weights, such that the weight of each node in group
i (1 ≤ i ≤ log n) is in the range [W/2i,W/2i−1]. Then for each i,
it applies an algorithm for computing maximum independent sets
(e.g., the algorithm of [7]) to the subgraph induced by the group i
of nodes, and returns the maximum of the solutions to these groups.

Along the same lines, compMaxSim first partitions the initial
matching list H into log(|V1||V2|) groups, and then it applies
compMaxCard to each group. It returns σ with the maximum
qualSim(σ) among p-hom mappings for all these groups. Sim-
ilarly, an approximation algorithm is developed for SPH1−1, re-
ferred to as compMaxSim1−1. It is easy to verify that these algo-
rithms are in O(log(|V1||V2|)(|V1|3|V2|2 + |V1||E1||V2|3)) time,
and possess the same performance guarantee as compMaxCard.

6. Experimental Study
We next present an experimental study of our matching meth-

ods in Web mirror detection. Using real-life and synthetic data,
we conducted two sets of experiments to evaluate the ability and
scalability of our methods for matching similar Web sites vs. (a)
conventional graph simulation [17] and subgraph isomorphism [9],
and (b) vertex similarity based on similarity flooding [21].

Experimental setting. We used real-life data and synthetic data.

(1) Real-life data. The real-life data was taken from the Stan-
ford WebBase Project [2], in three categories: Web sites for online
stores, international organizations and online newspapers, denoted
by sites 1, 2 and 3, respectively. For each Web site, we found an
archive that maintained different versions of the same site.

Using the Web data we generated our graphs as follows. We ran-
domly chose a Web site A in each category. We then produced a
set TA of Web graphs, using data from the archive for A. In each

graph, each node was labeled with the content of the page. The
similarity between two nodes was measured by the textual similar-
ity of their contents based on shingles [8].

Skeletons. These Web graphs are typically large. We thus con-
sidered their skeletons that retain only those nodes with a degree
above a certain threshold. For each graph G in TA, we produced its
skeleton Gs, which is a subgraph of G such that for each node v in
Gs, its degree deg(v) ≥ avgDeg(G) + α × maxDeg(G), where
avgDeg(G) and maxDeg(G) are the average and maximum node
degree in G, respectively, and α is a constant in [0, 1].

Selection of Web graphs. For each Web site A, we generated TA

consisting of 11 graphs representing different versions of A. Based
on TA, we fixed α = 0.2 and produced a set of Web skeletons.
Unfortunately, these graphs were beyond the capability of the al-
gorithms we could find for computing maximum common sub-
graphs [1]. To favor [1], we also chose top 20 nodes with the
highest degree, and constructed another set of skeletons. The infor-
mation about the Web graphs and skeletons is reported in Table 2.

Since each set of the graphs represents different versions (snap-
shots) of the same Web site, they should match each other. Based
on this, we evaluated the accuracy of our algorithms. More specif-
ically, after TA was generated, we sorted the 11 graphs based on
their timestamp to get a Web graph sequence [23]. We treated the
oldest one as pattern G1, and tested whether various approaches
could match the 10 later versions to G1. We used the percentage of
matches found as the accuracy measure for all the algorithms.

(2) Synthetic data. We also designed a generator to produce graphs,
controlled by two parameters: the number m of nodes and the noise
rate noise%. Given m, we first randomly generated a graph pattern

G1 with m nodes and 4 × m edges. We then produced a set of
15 graphs G2 by introducing noise into G1, with added complex-
ity to make it hard to match G1. More specifically, G2 was con-
structed from G1 as follows: (a) for each edge in G1, with prob-
ability noise%, the edge was replaced with a path of from 1 to 5
nodes, and (b) each node in G1 was attached with a subgraph of at
most 10 nodes, with probability noise%. The nodes were tagged
with labels randomly drawn from a set L of 5 ×m distinct labels.
The set L was divided into

√
5×m disjoint groups. Labels in dif-

ferent groups were considered totally different, while labels in the
same group were assigned similarities randomly drawn from [0, 1].

(3) Algorithms. We have implemented the following, all in Java:
(a) all of our algorithms: compMaxCard, compMaxCard1−1,
compMaxSim, and compMaxSim1−1, (b) the graph simulation al-
gorithm of [17], (c) the algorithm of CDK [1] for finding a maxi-
mum common subgraph, denoted by cdkMCS, and (d) vertex sim-
ilarity based on the similarity flooding (SF) algorithm of [21] (we
also tested the algorithm of [6], which had results similar to those
of SF; for the lack of the space we only report the results of SF).

The experiments were run on a machine with an AMD Athlon
64× 2 Dual Core CPU and 2GB of memory. Each experiment was
repeated over 5 times and the average is reported here.

Experimental results. We next present our experimental results.
In both sets of experiments, we fixed the threshold for matching to
be 0.75; i.e., a graph G1 is said to match G2 if there is a mapping σ
from G1 to G2 such that qualCard(σ) ≥ 0.75 (resp. qualSim(σ);
see Section 3). We also assumed a uniform weight w(v) = 1 for all
nodes v when measuring the overall similarity. We used a unified
accuracy measure defined above. This is because it is impractical
to determine whether two graphs exactly match or not, and the two
input graphs were guaranteed to match in all the experiments when
generated. Recall that the problems are NP-hard (see Section 4).



Web graphs G(V,E,L) Skeletons 1 (α = 0.2) Skeletons 2 (top-20)
Web Sites

# of nodes # of edges avgDeg(G) maxDeg(G) # of nodes # of edges # of nodes # of edges

Site 1 20, 000 42, 000 4.20 510 250 10, 841 20 207
Site 2 5, 400 33, 114 12.31 644 44 214 20 20
Site 3 7, 000 16, 800 4.80 500 142 4, 260 20 37

Table 2: Web graphs and skeletons of real life data

Accuracy (%) Scalability (seconds)
Algorithms Skeletons 1 (α = 0.2) Skeletons 2 (top-20) Skeletons 1 (α = 0.2) Skeletons 2 (top-20)

site 1 site 2 site 3 site 1 site 2 site 3 site 1 site 2 site 3 site 1 site 2 site 3

compMaxCard 80 100 60 80 100 60 3.128 0.108 1.062 0.078 0.066 0.080
compMaxCard1−1 40 100 30 80 100 40 2.847 0.097 0.840 0.054 0.051 0.064
compMaxSim 80 100 50 90 100 60 3.197 0.093 0.877 0.051 0.051 0.062

compMaxSim1−1 20 80 10 90 100 40 2.865 0.093 0.850 0.053 0.049 0.039
SF 40 30 20 80 80 70 60.275 3.873 7.812 0.067 0.158 0.121

cdkMCS N/A N/A N/A 67 100 0 N/A N/A N/A 156.931 189.16 0.82

Table 3: Accuracy and scalability on real life data

Exp-1: Accuracy and efficiency on real-life data. In the first set
of experiments, we evaluated the accuracy and efficiency of (1-1)
p-hom against the conventional notions of graph matching as well
as vertex similarity (SF), using the sets of Web skeletons.

In this set of experiments, graph simulation did not find matches
in almost all the cases. This shows that the graph simulation al-
gorithm, which aim at finding matches for an entire graph, is too
restrictive when matching Web sites. As a result, we opt to report
the results of our approximation algorithms, cdkMCS and SF only.

The accuracy and efficiency results are shown in Table 3. (1)
In most cases, our algorithms found more than 50% of matches.
(2) The p-hom algorithms found more matches than the 1-1 p-hom
ones since the latter pose stronger requirements than the former. (3)
All algorithms found more matches on sites 1 and 2 than site 3 since
a typical feature of site 3 (online news papers) is its timeliness,
reflected by the rapid changing of its contents and structures.

On all graphs in skeletons 1, cdkMCS did not run to completion.
While compMaxCard and compMaxSim found more than 50% of
matches, SF found no more than 40%. On skeletons 2, all of our
algorithms found more matches than cdkMCS. In particular, on
site 3 cdkMCS found no matches at all. In contrast, our algorithms
found up to 60% of matches on the same data. Compared with SF,
all of our algorithms performed better on sites 1 and 2, whereas SF
did better on site 3. However, when the size of Web sites increased,
the performance of SF deteriorated rapidly.

Our algorithms took less than 4 seconds in all these cases, while
cdkMCS took 180 seconds even for graphs with only 20 nodes.
Note that although sites 2 and 3 are about the same size, the running
times of cdkMCS on them are not comparable. While the running
time of SF was comparable to our algorithms on small Web sites
(skeleton 2), it took much longer on large sites (skeleton 1).

From the results we can see the following: our algorithms (1)
perform well on both the accuracy and efficiency on different types
of Web sites, (2) find more matches than cdkMCS and SF, and (3)
are much more efficient and robust than the other two methods.

Exp-2: Accuracy and efficiency on synthetic data. In the second
set of experiments, using graphs randomly generated, we evaluated
the performance of our algorithms and the graph simulation algo-
rithm of [17], denoted by graphSimulation. However, we could
not evaluate cdkMCS and SF, since cdkMCS did not run to com-
pletion on large graphs, and SF found constantly 0% of matches.

We investigated (a) the accuracy of our four algorithms, and (b)
the efficiency of these algorithms and graphSimulation. We do not
show the accuracy of graphSimulation as it found 0% of matches
in all the cases. We evaluated the effects of the following parame-
ters on the performance: the number of nodes m in G1, the noise

ratio noise% and the node similarity threshold ξ. In each setting,
the accuracy was measured by the percentage of matches found be-
tween G1 and a set of 15 graphs (G2) as mentioned above.

(1) Varying the size of G1. To evaluate the impact of graph sizes
on the accuracy and the scalability, we fixed noise% = 10% and
ξ = 0.75, while varying m from 100 to 800, where the number of
nodes in G2 was in the range [260, 2225].

The accuracy results are reported in Fig. 5(a), which show that
our approximation algorithms have accuracy above 65%, and are
insensitive to the size of G1. The scalability results are reported in
Fig. 6(a), which show that all the algorithms scale well with the size
m. The larger G1 is, the longer the algorithms take, as expected.

(2) Varying the noise. We evaluated the accuracy and performance
of the algorithms w.r.t. noise%: fixing m = 500 and ξ = 0.75, we
varied noise% from 2% to 20%, where the number of nodes in G2

was in the range [650, 2100] accordingly.
Figure 5(b) shows that the accuracy of our algorithms is sensitive

to the noise rate. But the accuracy is still above 50% even when
noise% = 20% and G2 had 2000 nodes. Figure 6(b) shows that
while the scalability of graphSimulation is sensitive to noise%, our
algorithms are not. All these algorithms scale well with noise%.

(3) Varying the similarity threshold. Finally, we evaluated the im-
pact of ξ: fixing m = 500 and noise% = 10%, we varied ξ from
0.5 to 1.0, where the number of nodes in G2 was about 1, 300.

Figure 5(c) shows that the accuracy of our approximation algo-
rithms is not very sensitive to ξ, with accuracy above 70% in all
the cases. When ξ is between 0.6 and 0.8, the accuracy is relatively
lower. This is because (a) when ξ is low ([0.5, 0.6]), it is relatively
easy for a node in G1 to find its matching nodes in G2; (b) when
ξ is high (above 0.8), the chances for each node in G1 to find its
copy in G2 are higher, by the construction of G2. Figure 6(c) tells
us that the scalability of all these algorithms is indifferent to ξ.

Summary. From the experimental results we find the following.
(a) The notions of (1-1) p-hom are able to identify a large num-
ber of similar Web sites that are not matched by graph simulation,
subgraph isomorphism and vertex similarity. On a set of organiza-
tion sites, the accuracy of all of our algorithms is above 80%, as
opposed to 0%, 0% and 30% by graphSimulation, cdkMCS and
SF, respectively. (b) Our algorithms scale well with the sizes of the
graphs, noise rates, and similarity threshold. They seldom demon-
strated their worst-case complexity. Even for G1 of 800 nodes and
G2 of 2000 nodes, all of our algorithms took less than two minutes.

7. Conclusion
We have proposed several notions for capturing graph similarity,
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Figure 6: Scalability on synthetic data

namely, p-hom, 1-1 p-hom, and quantitative metrics by maximiz-
ing either the number of nodes matched or the overall similarity.
These notions support edge-to-path mappings and node similarity.
We have established the intractability and the hardness to approxi-
mate for these problems. Despite the hardness, we have developed
approximation algorithms for these problems, with provable guar-
antees on match quality. We have verified the effectiveness of our
techniques using Web site matching as a testbed. Our experimen-
tal results have shown our methods are able to identify a number of
similar Web sites that cannot be matched either by the conventional
notions of graph matching or by vertex similarity alone.

This work is a first step to revising the conventional notions of
graph matching. We are exploring areas in which our techniques
are effective, beyond Web mirror detection. We also plan to im-
prove our algorithms by leveraging indexing and filtering of [27,
30]. Another topic is to compare the accuracy and efficiency of our
methods with the counterparts of the feature-based approaches.
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[16] M. M. Halldórsson. Approximations of weighted independent set and
hereditary subset problems. J. Graph Algorithms Appl., 4(1), 2000.

[17] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing sim-
ulations on finite and infinite graphs. In FOCS, 1995.

[18] S. Joshi et al. A bag of paths model for measuring structural similarity
in Web documents. In KDD, 2003.

[19] V. Kann. On the approximability of the maximum common subgraph
problem. In STACS, 1992.

[20] C. Liu, C. Chen, J. Han, and P. S. Yu. Gplag: Detection of software
plagiarism by program dependence graph analysis. In SIGKDD, 2006.

[21] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A
versatile graph matching algorithm. In ICDE, 2002.

[22] E. Nuutila. An efficient transitive closure algorithm for cyclic di-
graphs. Inf. Process. Lett., 52(4), 1994.

[23] P. Papadimitriou, A. Dasdan, and H. Garcia-Molina. Web graph simi-
larity for anomaly detection. Technical report, 2008.

[24] I. Sanz, M. Mesiti, G. Guerrini, and R. B. Llavori. Fragment-based
approximate retrieval in highly heterogeneous XML collections. Data

Knowl. Eng., 64(1):266–293, 2008.

[25] A. Schenker, M. Last, H. Bunke, and A. Kandel. Classification of Web
documents using graph matching. IJPRAI, 18(3), 2004.

[26] D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmics and applica-
tions of tree and graph searching. In PODS, 2002.

[27] Y. Tian and J. M. Patel. Tale: A tool for approximate large graph
matching. In ICDE, 2008.

[28] V. V. Vazirani. Approximation Algorithms. Springer, 2003.

[29] Webconfs. Similar page checker. www.webconfs.com/similar-page-
checker.php.

[30] X. Yan, P. S. Yu, and J. Han. Substructure similarity search in graph
databases. In SIGMOD, 2005.

[31] Z. Zeng, A. K. Tung, J. Wang, J. Feng, and L. Zhou. Edit distance
evaluation on graph structures. In VLDB, 2009.
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Appendix A: Proofs
Proof of Theorem 4.1 (a)

The p-hom problem is to determine, given two graphs G1 =
(V1, E1, L1) and G2 = (V2, E2, L2), whether G1 -(e,p) G2. We
show that the p-hom problem is NP-complete even when both G1

and G2 are DAGs.
We first show that this problem is in NP. An NP algorithm is

given as follows: first guess a binary relation R ⊆ V1 × V2, and
then check whether it is a p-hom mapping. It is in polynomial time
(PTIME) to check whether R is a function and whether it is a p-hom
mapping from G1 to G2.

We next show that this problem is NP-hard by reduction from the
3SAT problem, which is NP-complete (cf. [15]).

An instance φ of 3SAT is of the form C1∧· · ·∧Cn where all the
variables in φ are x1, . . . , xm, each clause Cj (j ∈ [1, n]) is of the
form yj1 ∨yj2 ∨yj3 , and moreover, for i ∈ [1, 3], yji is either xpji

or xpji for pji ∈ [1,m]. Here we use xpji to denote the occurrence
of a variable in the literal i of clause Cj . The 3SAT problem is to
determine whether φ is satisfiable.

Given an instance φ of the 3SAT problem, we construct two DAGs
G1, G2 and a similarity matrix mat() such that G1 -(e,p) G2 if
and only if φ is satisfiable. The similarity threshold ξ is set to 1.

(1) The DAG G1 = (V1, E1, L1) is defined as follows:
◦ V1 = {R1, C1, . . . , Cn, X1, . . . , Xm};
◦ E1 = {(R1, Xi), (Xpj1 , Cj), (Xpj2 , Cj), (Xpj3 , Cj)} for

each i ∈ [1,m] and each j ∈ [1, n]; and
◦ we simply let L1(v) = v for each node v ∈ V1.
Intuitively, graph G1 encodes the instance φ of 3SAT. Node Xi

(i ∈ [1,m]) denotes variable xi, and node Cj (j ∈ [1, n]) repre-
sents clause Cj . Node R1 is the root of graph G1, which connects
to all Xi nodes (i ∈ [1,m]). An edge (Xi, Cj) in E1 encodes that
variable xi appears in clause Cj , i.e., xi is one of the three variables
xpj1 , xpj2 and xpj3 .

For example, consider an instance for the 3SAT problem: φ =
C1 ∧C2, where C1 = x1 ∨ x2 ∨ x3 and C2 = x2 ∨ x3 ∨ x4. The
corresponding graph G1 is depicted in Fig. 7 (G1).

(2) The DAG G2 = (V2, E2, L2) is defined as follows:
◦ V2 = {R2, T, F,XT1, XF1, . . . , XTm, XFm, 01, . . . , 71,

. . . , 0n, . . . , 7n}.
◦ E2 = {(R2, T ), (R2, F )} ∪ {(T,XTi), (F,XFi)} ∪ E′

2,
where i ∈ [1,m].

◦ E′

2 contains 7× 3 edges for each clause Cj = yj1 ∨ yj2 ∨ yj3
of φ (j ∈ [1, n]), and there are in total 21n edges in E′

2.

(a) Treating true as 1 and false as 0, we represent the truth
assignments of clause Cj in terms of 8 nodes Cj(ρ), where ρ
ranges over all truth assignments of variables xpj1 , xpj2 and
xpj3 . Each node Cj(ρ) is a three-bit constant yj1yj2yj3 with
a subscript j, determined by ρ(xpj1), ρ(xpj2) and ρ(xpj3),
e.g., 21.

(b) For each truth assignment ρ of xpj1 , xpj2 and xpj3

that makes Cj true, E′

2 consists of the following edges:
(XTpjk , Cj(ρ)) if ρ(Xpjk ) = true, or (XFpjk , Cj(ρ)) if
ρ(Xpjk ) = false, where k ∈ [1, 3].

◦ L2(u) = u for each u ∈ V2.
Intuitively, graph G2 encodes the truth assignments of the vari-

ables that satisfy the clauses in the instance φ of 3SAT. Node
XTi (i ∈ [1,m], resp. XFi) means assigning variable xi a true

(resp. false) value. Nodes {0j , . . . , 7j} represent Cj(ρ), which
are denoted as a three-bit constant w.r.t. the truth assignments of
the three variables in clause Cj . Node R2 is the root of graph
G2. Nodes T and F are simply included for the ease of exposi-

Figure 7: An example reduction for p-hom

tion. Edges from XTi or XFi to nodes {0j , . . . , 7j} encode the
relationships between the truth assignments of the variables (xpj1 ,
xpj2 and xpj3 ) and the corresponding Cj(ρ).

For example, graph G2 corresponding to the 3SAT instance φ
given above is shown in Fig. 7. Observe that both G1 and G2 are
DAGs.

(3) The similarity matrix mat() is defined as follows:
◦ mat[R1, R2] = 1;
◦ mat[Xi, XTi] = 1 and mat[Xi, XFi] = 1 for i ∈ [1,m];
◦ mat[Cj , 0j ] = 1, . . ., mat[Cj , 7j ] = 1 for j ∈ [1, n];
◦ mat[v, u] = 0 for any other nodes v ∈ V1 and u ∈ V2.
The matrix mat() guarantees that (a) the root R1 of G1 must

be mapped to the root R2 of G2, (b) node Xi (i ∈ [1,m]) in G1

is mapped to either node XTi (true) or XFi (false) of G2, and
(c) node Cj in G1 (j ∈ [1, n]) is mapped to one of the nodes
{0j , . . . , 7j} of G2.

It is easy to verify that the above construction is in PTIME. We
next verify that this is indeed a reduction from the 3SAT instance,
i.e., there is a p-hom mapping from G1 to G2 if and only if the
3SAT instance φ is satisfiable.

Assume that there is a p-hom mapping λ from G1 to G2. We
show that there is a truth assignment ρ that makes φ true. The
truth assignment ρ is defined as follows. For each variable xi (i ∈
[1,m]), ρ(xi) = true if λ(Xi) = XTi, and ρ(xi) = false if λ(Xi)
= XFi. Note that node Xi in G1 cannot be mapped to both nodes
XTi and XFi in G2 since λ is a function. For each node Cj (j ∈
[1, n]), λ(Cj) guarantees that ρ must make clause Cj true, by the
construction of graph G2. Hence the truth assignment ρ indeed
makes φ true.

Conversely, if there is a truth assignment ρ that makes φ true, we
show that there is a p-hom mapping λ from G1 to G2. The p-hom
mapping λ is defined as follows: (1) λ(R1) = R2; (2) for each
i ∈ [1,m], λ(Xi) = XTi if ρ(xi) = true, and λ(Xi) = XFi if
ρ(xi) = false; and (3) for each j ∈ [1, n], λ(Cj) = Cj(ρ) defined
as above. It is easy to verify that λ is indeed a p-hom mapping. ✷

Proof of Theorem 4.1 (b)

We show that the 1-1 p-hom problem (G1 -1−1
(e,p) G2) is NP-

complete even when G1 is a tree and G2 is a DAG.
We first show that this problem is in NP. An NP algorithm is

given as follows: first guess a binary relation R ⊆ V1×V2, and then
check whether it is a 1-1 p-hom mapping. It is in polynomial time
(PTIME) to check whether R is an injective function and whether it
is a p-hom mapping from G1 to G2.

We next show that this problem is NP-hard by reduction from



Figure 8: An example reduction for 1-1 p-hom

the exact cover by 3-sets problem (X3C), which is NP-complete
(cf. [15]). Given a finite set X = {x1, . . . , x3q} with |X| = 3q and
a collection S = {C1, . . . , Cn} of 3-element subsets of X , where
Ci = {xi1, xi2, xi3} for i ∈ [1, n], the X3C problem is to decide
whether there exists an exact cover for X , that is, a sub-collection
S′ ⊆ S such that S′ is a partition of X , i.e., every element of X
occurs in exactly one member of S′.

Given an instance I of X3C, we construct two graphs G1 and
G2 and a similarity matrix mat() such that there is a 1-1 p-hom
mapping from G1 to G2 if and only if there exists an exact cover
for I . The similarity threshold ξ is set to 1.

(1) The tree G1 = (V1, E1, L1) is defined as follows:
◦ V1 = {R1, C

′

1, . . . , C
′

q, X
′

11, X
′

12, X
′

13, . . . , X
′

q1, X
′

q2, X
′

q3};
◦ E1 = {(R1, C

′

i), (C
′

i, X
′

i1), (C
′

i, X
′

i2), (C
′

i, X
′

i3)} for each
i ∈ [1, q]; and

◦ L1(v) = v for each node v ∈ V1.
Intuitively, the tree G1 encodes the structure of an exact cover

S′ for the X3C instance I . If there exists such an S′, then S′ con-
sists of exactly q subsets, and each contains three distinct elements.
Node R1 is the root node of tree G1. Nodes C′

i (i ∈ [1, q]) de-
note the subsets in the solution S′. Moreover, we encode the three
elements for each subset C′

i (i ∈ [1, q]) with three distinct nodes
X ′

i1, X ′

i2 and X ′

i3. Edges from node C′

i to nodes X ′

i1, X ′

i2 and
X ′

i3 indicate their relationships.
For example, consider an instance of X3C, where X =

{X11, X12, X13, X21, X22, X23} and S = {C1, C2, C3} such
that C1 = {X11, X12, X13}, C2 = {X11, X12, X21} and C3 =
{X21, X22, X23}. The tree G1 is depicted in Fig. 8 (G1).

(2) The DAG G2 = (V2, E2) is defined as follows:
◦ V2 = {R2, C1, . . . , Cn, X11, X12, X13, . . . , Xq1, Xq2, Xq3};
◦ E2 = {(R2, Ci)} ∪ {(Ci, Xjk)}, where i ∈ [1, n], 1 ≤ j ≤

p, and Xjk ∈ Ci for all k ∈ [1, 3]; and
◦ L2(u) = u for each node u ∈ V2.
Intuitively, DAG G2 encodes the instance of the X3C problem.

Node R2 is the root of G2. For each i ∈ [1, n], node Ci represents
the 3-element subset Ci in S, and nodes Xi1, Xi2, Xi3 denotes the
three elements of Ci. Again, edges from node Ci to nodes Xi1,
Xi2 and Xi3 indicate their relationships.

Referring the X3C instance given above, the DAG G2 is shown
in Fig. 8 (G2).

(3) The similarity matrix mat() is defined as follows:
◦ mat[R1, R2] = 1;
◦ mat[C′

i, Cj ] = 1 for i ∈ [1, q] and j ∈ [1, n];
◦ mat[X ′

ik, Xjg] = 1 for i, j ∈ [1, q] and k, g ∈ [1, 3];
◦ mat[v, u] = 0 for any other nodes v ∈ V1 and u ∈ V2.
The similarity matrix mat() guarantees that (a) the root R1 of

G1 must be mapped to the root R2 of G2, (b) node C′

i (i ∈ [1, q])
of G1 is mapped to node Cj (j ∈ [1, n]) of G2, and (c) node X ′

ik

in G1 (i ∈ [1, q] and k ∈ [1, 3]) is mapped to node Xjg in G2

(j ∈ [1, q] and g ∈ [1, 3]).

It is easy to verify that the above construction is in PTIME. We
next verify that this is indeed a reduction from the X3C instance,

i.e., there is a 1-1 p-hom mapping from G1 to G2 if and only if
there is an exact cover for the X3C instance.

First, suppose that there exists a 1-1 p-hom mapping λ from G1

to G2. From the mapping λ, we construct S′ = {λ(C′

i)} for each
C′

i ∈ V1 of G1 (i ∈ [1, q]). We next show that S′ is an exact cover
for the X3C instance.

Since the mapping λ is injective, it is easy to verify that (1) |S′|
= q, and (2) for any two distinct nodes C′

i and C′

j (i, j ∈ [1, q] and
i 6= j) in G1, λ(C′

i) 6= λ(C′

j), i.e., they are mapped to distinct
nodes in G2. From this it follows that if S′ is not an exact cover of
S, there must exist λ(C′

i), λ(C
′

j) ∈ S′ (1 ≤ i, j ≤ q and i 6= j)
such that λ(C′

i) ∩ λ(C′

j) 6= ∅. However, this implies that there
exist two distinct nodes X ′

ik (a child of node C′

i) and X ′

jg (a child
of node C′

j) in G1 such that λ(X ′

ik) = λ(X ′

jg), which is impossible

since λ is injective. Hence, S′ is indeed an exact cover.
To illustrate this, let us consider an example. Let λ be a 1-1 p-

hom mapping from G1 to G2 shown in Fig. 8 such that (1) λ(R1)
= R2, (2) λ(C′

1) = C1, λ(C′

2) = C3, and (3) λ(X ′

ik) = Xik for each
i ∈ [1, 2] and each k ∈ [1, 3]. Consider S′ = {λ(C′

1), λ(C
′

2)} =
{C1, C3}. It is easy to verify that S′ is an exact cover for the X3C

instance given above.
Conversely, suppose there is an exact cover S′ for the X3C in-

stance. We show that there is 1-1 p-hom mapping λ from G1 to G2.
Assume w.l.o.g. that S′ = {Cj1 , . . . , Cjq} such that ji ∈ [1, n] and
Cji ∈ S for i ∈ [1, q].

We define a mapping λ as follows: (1) λ(R1) = R2, (2) λ(C′

i)
= Cji for i ∈ [1, q], and (3) λ(X ′

ik) = Xjik for i ∈ [1, q] and
k ∈ [1, 3], where Cji = {Xji1, Xji2, Xji3} and X ′

i1, X
′

i2, X
′

i3 are
the children of C′

i in G1. Then it is easy to verify that λ is a 1-1
p-hom mapping, using an argument similar to the one given above.

For instance, S′ = {C1, C3} is an exact cover for the X3C in-
stance in Fig. 8. Then the corresponding 1-1 p-hom mapping λ is
constructed as follows: (1) λ(R1) = R2, (2) λ(C′

1) = C1 and λ(C′

2)
= C3, (3) λ(X ′

ik) = Xik for i ∈ [1, 2] and k ∈ [1, 3]. ✷

Proof of Corollary 4.2

We show that the maximum cardinality problem (MCP) and the
maximum overall similarity problem (MSP) are NP-complete for
both p-hom and 1-1 p-hom. These problems are already NP-hard
when only DAGs are considered.

Given graphs G1, G2, similarity matrix mat, threshold ξ, and a
rational number K, MCP (resp. MSP) for p-hom (resp. 1-1 p-hom)
is to determine whether there exists a p-hom (resp. 1-1 p-hom)
mapping σ from G1 to G2 such that qualCard(σ) ≥ K (resp.
qualSim(σ) ≥ K).

It is easy to verify that these problems are in NP. We next
show that there exists a reduction from the p-hom problem to MCP
(MSP) for p-hom, and the reduction from the 1-1 p-hom problem
to MCP (MSP) for 1-1 p-hom is identical.

Given an instance I1 = (G1, G2, mat, ξ) of the p-hom problem,
we construct an instance I2 = (G1, G2, mat′, ξ, K) of MCP (MSP)
such that (1) K = 1, (2) mat′(v, u) = 1 for each node v in G1

and each node u in G2 such that mat(v, u) ≥ ξ, and mat′(v, u) =
mat(v, u) otherwise. The reduction is trivially in PTIME.

If there is a p-hom mapping σ such that qualCard(σ) ≥ 1 for
MCP or qualSim(σ) ≥ 1 for MSP in instance I2, then it is easy
to verify that the mapping σ contains all nodes of G1. From this,
it follows that there exists a solution for instance I1 if and only if
there exists a solution for instance I2. ✷

Proof of Theorem 4.3

We show that CPH, CPH1−1, SPH and SPH1−1 are not approx-
imable within O(1/n1−ǫ) for any constant ǫ, where n is the num-



ber of nodes in G1, and G1 and G2 are input graphs.
We show that there exists an AFP-reduction (f, g) (see Sec-

tion 4 for a detailed description) from the WIS problem to the SPH
problem, from which the conclusion follows since the WIS prob-
lem is not approximable within O(|V1|1−ǫ) for any constant ǫ [16].

We first construct algorithm f . Given an instance I1 of the WIS

problem as its input, algorithm f outputs an instance I2 of the
SPH problem. The instance I1 is an undirected graph G(V,E)
with a positive weight w(v) on each node v. The instance I2 con-
sists of the following: (1) two directed graphs G1(V1, E1, L1) and
G2(V2, E2, L2) such that V1 = V2 = V , E1 contains the set of
(arbitrarily directed) edges in E, E2 = ∅, and L1(v) = L2(v) = v
for each node v ∈ V ; (2) a similarity matrix mat() such that
mat(v, u) = 1 iff L1(v) = L2(u) for any nodes v in G1 and u
in G2, and mat(v, u) = 0 otherwise; (3) for each node v ∈ V1, its
weight is equal to w(v) on G; and (4) a similarity threshold ξ = 1.
It is easy to verify that algorithm f is in PTIME.

We then construct algorithm g. Given a feasible solution s2 =
{(v1, v1), . . . , (vn, vn)} of the SPH instance I2, algorithm g out-
puts s1 = {v1, . . . , vn}. Algorithm g is trivially in PTIME.

We now show that (f, g) is an AFP-reduction from the WIS

problem to the SPH problem. Let us consider the following.

Claim 1. Let s1 = {v1, . . . , vn} be a set of nodes of G in the WIS

instance I1, and s2 = {(v1, v1), . . . , (vn, vn)} be a mapping of
the SPH instance I2. Then s2 is p-hom mapping from subgraph
G1[s1] to graph G2 in I2 iff s1 is an independent set of G in I1.

This suffices. For if it holds, then we can easily verify that algo-
rithm g produces a solution of the WIS instance I1, obj1(s1) =
obj2(s2), and opt

2
(I2) = opt1(I1). Recall that (1) obj1()

(resp. obj2()) is a function measuring the quality of a solution to
I1 (resp. I2); and (2) opt1 (resp. opt2) is the quality of an optimal
solution to I1 (resp. I2). From this it follows that (f, g) is indeed
an AFP-reduction from the WIS problem to the SPH problem.

We next prove Claim 1. First, suppose that s1 is an independent
set in I1. By the definition of p-hom, it is easy to verify that s2 is a
p-hom mapping from subgraph G1[s1] to G2 in I2.

Conversely, suppose that s2 is a p-hom mapping from subgraph
G1[s1] to graph G2 in I2. We then show that s1 is an independent
set of graph G in I1. By the definition of p-hom, (1) each node vi
(i ∈ [1, n]) of s1 in G1 is mapped to node s2(vi) = vi in G2; and
(2) for any nodes vi, vj (i 6= j) in s1, (vi, vj) is not in E1 since
G2 has no edges at all (E2 = ∅). Hence, s1 is an independent set
of graph G1 in I2. By the construction of graph G1 in algorithm f ,
s1 is indeed an independent set of graph G in I1.

For the SPH1−1 problem, the above AFP-reduction suffices
since the p-hom mapping constructed is indeed injective.

For the CPH (resp. CPH1−1) problem, by setting the weights of
all nodes in G1 to 1, the revised AFP-reduction (f, g) for SPH

given above suffices again. ✷

Proof of Theorem 5.1

We show that CPH, CPH1−1, SPH and SPH1−1 are all approx-
imable within O(log2(n1n2)/(n1n2)), where n1 and n2 are the
numbers of nodes in input graphs G1 and G2, respectively.

It suffices to show that there exists an AFP-reduction (f, g)
from the SPH problem to the WIS problem, from which the con-
clusion follows since the WIS problem is approximable within
O(log2n)/n, where n = n1n2 is the number of graph nodes [16].

We first design algorithm f . Given an SPH instance I1 as
its input, algorithm f produces a WIS instance I2. The in-
stance I1 consists of (1) two directed graphs G1(V1, E1, L1) and
G2(V2, E2, L2), (2) a similarity matrix mat() on the nodes of G1

and G2, and (3) a similarity threshold ξ. Algorithm f first com-
putes the transitive closure G+

2 (V2, E
+
2 , L2) of graph G2, and then

produces an undirected graph G(V,E) with a positive weight on
each node based on graphs G1 and G+

2 . The graph G, a product
graph of G1 and G2, is built as follows:

(1) V = {[v, u] | v ∈ V1, u ∈ V2,mat(v, u) ≥ ξ}.

(2) For any nodes [v1, u1], [v2, u2] in V , there exists an edge from
[v1, u1] to [v2, u2] in E iff they satisfy the following conditions:
(a) v1 6= v2; (b) if there is a loop (v1, v1) (resp. (v2, v2)) in G1,
then there must exist a loop (u1, u1) (resp. (u2, u2)) in G+

2 ; and
(c) if (v1, v2) ∈ E1, then (u1, u2) ∈ E+

2 .

(3) For each node [v, u] in G, its weight is equal to mat(v, u).
Finally, algorithm f produces a graph Gc(V,Ec), which is the

WIS instance I2. Graph Gc(V,Ec) is the complement graph of
G(V,E) such that an edge e ∈ Ec iff e 6∈ E. Here graph Gc allow
no self-loops. It is easy to verify that algorithm f runs in PTIME.

We then design algorithm g as follows. Given a feasible solu-
tion s2 = {[v1, u1], . . . , [vn, un]} of the WIS instance I2, g out-
puts s1 = {(v1, u1), . . . , (vn, un)}. Algorithm g is obviously in
PTIME.

We now show that (f, g) is an AFP-reduction from the SPH

problem to the WIS problem. Let us consider the following.

Claim 2. Let s2 = {[v1, u1], . . . , [vn, un]} be a set of nodes in Gc,
and s1 = {(v1, u1), . . . , (vn, un)}. Then s2 is an independent set
in graph Gc iff s1 is a p-hom mapping from subgraph G1[V

′

1 ] to
G2 such that V ′

1 = {v1, . . . , vn}.
If Claim 2 holds, then we can easily verify that (1) algorithm g

produces a solution (a p-hom mapping) for the SPH instance I1,
(2) obj1(s1) = obj2(s2), and (2) opt

2
(I2) = opt1(I1). From this

it follows that (f, g) is indeed an AFP-reduction.
We next prove Claim 2. Assume that s2 is an independent set

of Gc. We show that s1 is a p-hom mapping from G1[V
′

1 ] to G2.
Since s2 is an independent set of Gc, s2 is a clique of G. Hence
there exists an edge in graph G between any nodes [vi, ui] and
[vj , uj ] (i 6= j) of s2. The construction of G guarantees the fol-
lowing: (a) if there is an edge from nodes [vi, ui] to [vj , uj ], then
vi 6= vj , and (b) if there is an edge from vi to vj in G1, then there
must exist a path from vi to vj in G2; (c) nodes with self-loops
in G1 must be mapped to nodes with self-loops in G+

2 . Condition
(a) guarantees that s1 is a function; and conditions (a), (b) and (c)
together guarantee that s1 is indeed a p-hom mapping.

Conversely, if s1 is a p-hom mapping from G1[V
′

1 ] to G2, we
show that s2 is an independent set of Gc. This is trivial since
for any nodes [vi, ui] and [vj , uj ] (i 6= j) in s2, there is an edge
([vi, ui], [vj , uj ]) in G, and thus no edge in Gc.

To prove the statement for the SPH1−1 problem, for each
node pair [v1, u] and [v2, u] (v1 6= v2), we further add an edge
([v1, u], [v2, u]) to Gc given above. This suffices to guarantee that
the independent set s2 corresponds to a 1-1 p-hom mapping.

For the CPH (resp. CPH1−1) problem, by setting the weights
of all nodes in Gc to 1, the AFP-reduction (f, g) for SPH

(resp. SPH1−1) given above suffices. ✷

Proof of Proposition. 5.2

We show that given any graphs G1(V1, E1, L1), G2(V2, E2, L2),
mat() and ξ, algorithm compMaxCard finds a p-hom mapping σ
from a subgraph of G1 to G2 such that qualCard(σ) is within
O(log2(|V1||V2|)/(|V1||V2|)) of the optimal quality.

As pointed out in Section 5, the AFP-reductions in Theorem 5.1,
together with the algorithm for the WIS problem [16] serve as naive
approximation algorithms for these problems. These algorithms
have the performance guarantee given above. Thus, all we need to



Algorithm ISRemoval

Input: An undirected graph G(V,E).
Output: A clique C of G.

1.i :=1; (I1, C1) := Ramsey(G);
2.while G is not empty do

3. G := G \ Ii; /*remove independent set Ii from G*/

4. i := i+ 1; (Ci, Ii) := Ramsey(G);
5.return max(C1, C2, . . . , Ci).

Procedure Ramsey

Input: An undirected graph G(V,E).
Output: An independent set I and a clique C of G.

1.if G = ∅ then return (∅, ∅);
2.choose some node v of G do

3. (C1, I1) := Ramsey(N (v));
/*subgraph N (v) of G consists of the neighbors of v*/

4. (C2, I2) := Ramsey(N (v));
/*subgraph N (v) of G consists of the non-neighbors of v*/

5.I := max(I1, I2 ∪ {v}); C := max(C1 ∪ {v}, C2);
6.return (I, C).

Figure 9: Algorithm ISRemoval

do is to show that given the same input, algorithm compMaxCard

produces the same output as those naive algorithms.
To show this, it suffices to show that algorithm compMaxCard

simulates algorithm ISRemoval, in a non-trivial way, for finding a
maximum clique on the product graph (shown in Fig. 9). Algorithm
ISRemoval is the dual of algorithm CliqueRemoval for finding a
maximum independent set [7]. Recall that the maximum indepen-
dent set problem on graph G is equivalent to the maximum clique
problem on the complement graph Gc of G, and vice versa.

One can easily see how algorithm compMaxCard in Fig. 3 mim-
ics algorithm ISRemoval. We next show, in detail, how procedure
greedyMatch in Fig. 4 simulates procedure Ramsey (see a detailed
explanation in [7]). This is based on the following connections:

(1) The matching-list H for graph G1 corresponds to the product
graph G = G1 × G2, and each node v in G1 and another node u
in H[v].good or H[v].minus together correspond to the node [v, u]
in the product graph G. From these it follows that lines 1 and 2 of
greedyMatch simulate lines 1 and 2 of Ramsey, respectively.

(2) The matching-lists H+ and H− correspond to N ([v, u])
and N ([v, u]), respectively, where nodes v, u come from line 2 of
greedyMatch. Since computing the neighbors or non-neighbors of
a node on graphs is trivial, it is not explicitly addressed in Ramsey.
In greedyMatch, however, we need to distinguish neighbors from
non-neighbors in the matching-list H , instead of the product graph
directly. Procedure trimMatching in Fig. 4 is thus introduced to
solve this problem. Indeed, it is trimMatching that makes it possi-
ble to operate on the product graph directly.

(3) Procedure greedyMatch(H1, H2, H) returns (σ, I), where σ
and I correspond to a clique and an independent set in the product
graph G respectively, as defined in the proof of Theorem 5.1. From
this it follows that lines 10, 11, 12 and 13 of greedyMatch simulate
lines 3, 4, 5 and 6 of Ramsey, respectively.

Putting all these together, we have shown that compMaxCard

indeed simulates ISRemoval, i.e., given the same input, they always
produce the the same output. ✷

Appendix B: Optimization Techniques
We next propose techniques to improve the efficiency of our algo-
rithms given in Section 5, while retaining or even improving their
match quality. These techniques had been implemented when con-
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Figure 10: Reducing the graph size

ducting the experiments reported in Section 6.

Partitioning graph G1. Consider the set S1 of nodes in G1 such
that for any node v ∈ S1, mat(v, u) < ξ for each node u in G2.
That is, no node in S1 can find a p-hom match in G2. Obviously the
nodes in S1 do not contribute to any p-hom mapping from any sub-
graph of G1 to graph G2. Therefore, we only need to consider the
subgraph G1[V1 \S1] of G1 instead of entire G1, when computing
p-hom mappings from G1 to G2.

Observe that G1[V1\S1] may become disconnected even if G1 is
connected. For example, G1 depicted in Fig. 10(a) is connected, in
which node C has no p-hom nodes in G2. After removing node C
from G1, the remaining subgraph has three pairwise disconnected
components G11, G12 and G13. It is easy to show:

Proposition 1: Let graph G1 consist of k pairwise disconnected

components G11, . . ., and G1k. If σi is a maximum p-hom mapping

from a subgraph of G1i to G2, then
⋃i=k

i=1(σi) is a maximum p-hom

mapping from a subgraph of G1 to G2. ✷

This allows us to treat each component separately, and take
as the final mapping the union of those mappings for the com-
ponents. Better yet, if some group G1i contains a single node
v, e.g., G12 in Fig. 10(a), a match is simply {(v, u)}, where
mat(v, u) ≥ mat(v, u′) for any other node u′ in G2. Note that
finding pairwise disconnected components is linear-time equiva-
lent to finding strongly connected components, which is in linear
time [13].

The partitioning strategy may improve match quality. To see this
let us examine the approximation bound y = log2n/n. Obviously,
(1) if n = e2 ≈ 7.39, y is maximal, where e is the base of the
natural logarithms; (2) when n ≥ e2, y is monotonically decreas-
ing; and (3) if n ≤ e2, it is affordable to use an exact algorithm to
find the exact maximum p-hom mapping. Thus when n ≥ e2, the
larger n is, the worse the performance guarantee is. This tells us
that reducing G1 to G1[V1 \ S1] and partitioning G1[V1 \ S1] to
disconnected components indeed improve match quality.

Compressing graph G+
2 . Each strongly connected component

(SCC) in G2 forms a clique in its transitive closure graph G+
2 . By a

clique in G we mean a set C of nodes such that subgraph G[C] is
a complete graph (i.e., any pair of nodes is connected by an edge).

We can replace each clique in G+
2 with a single node with a self-

loop, whose label is the bag of all node labels in the clique. We
denote the compressed graph by G∗

2(V
∗

2 , E∗

2 ), where each node in
V ∗

2 represents a (maximum) clique in G+
2 , and there exists an edge

from nodes u∗

1 to u∗

2 in G∗

2 iff there is an edge from a node in clique
u∗

1 to a node in clique u∗

2 in G+
2 . For example, Figure 10(b) shows a

graph G2, its transitive closure graph G+
2 and its compressed graph

G∗

2. Note that G+
2 is often much smaller than G2.

By capitalizing on bags of labels, our algorithms can be mod-
ified such that any strong (1-1) p-hom mapping they find from a
subgraph of G1 to G+

2 is also a strong (1-1) p-hom mapping from a
subgraph of G1 to G2, with the same quality. By compressing G2

to G+
2 , the performance of the algorithms is significantly improved.

The compressing process incurs little extra cost since SCCs of G2

can be identified during the computation of G+
2 [22].


