
GRAPE: Parallelizing Sequential Graph Computations

Wenfei Fan1,2, Jingbo Xu1,2, Yinghui Wu3, Wenyuan Yu2, Jiaxin Jiang4

1University of Edinburgh 2Beihang University 3Washington State University 4Hong Kong Baptist University
{wenfei@inf, jingbo.xu@}ed.ac.uk, yinghui@eecs.wsu.edu, yuwenyuan@act.buaa.edu.cn, jxjian@comp.hkbu.edu.hk

ABSTRACT

We demonstrate GRAPE, a parallel GRAPh query Engine.
GRAPE advocates a parallel model based on a simultaneous
fixed point computation in terms of partial and incremen-
tal evaluation. It differs from prior systems in its ability to
parallelize existing sequential graph algorithms as a whole,
without the need for recasting the entire algorithms into
a new model. One of its unique features is that under a
monotonic condition, GRAPE parallelization guarantees to
terminate with correct answers as long as the sequential al-
gorithms “plugged in” are correct. We demonstrate its par-
allel computations, ease-of-use and performance compared
with the start-of-the-art graph systems. We also demon-
strate a use case of GRAPE in social media marketing.

1. INTRODUCTION
Graph queries have found prevalent use in transportation

network analysis, knowledge extraction, Web mining, social
networks and social marketing. Our familiar graph queries
include (a) graph traversal, e.g., shortest distance queries,
(b) keyword search in graphs, (c) pattern matching via sub-
graph isomorphism or simulation. On real-life graphs that
easily have billions of nodes and edges, graph queries are
costly even for reachability (linear-time), not to mention
subgraph isomorphism (NP-complete).

To support graph queries on large-scale graphs, several
parallel systems have been developed [5,6,9,11]. These sys-
tems, however, require users to recast graph algorithms into
their models. While graphs have been studied for decades
and a number of sequential algorithms are already in place,
to use Pregel [6], for instance, one has to “think like a ver-
tex” and recast the entire existing algorithms into a vertex-
centric model; similarly when programming with other sys-
tems, e.g., [11], which adopts vertex-centric programming
by treating blocks as vertices. The recasting is nontrivial
for people who are not very familiar with their models. This
makes these systems a privilege for experienced users only.

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 21508097/17/08.

System Category Time(s) Comm.(MB)

Giraph vertex-centric 10126 1.02 × 105

GraphLab vertex-centric 8586 1.02 × 105

Blogel block-centric 226 2.8 × 103

GRAPE auto-parallelization 10.5 0.05

Table 1: Graph traversal on parallel systems

Is it possible to have a system such that we can plug se-
quential graph algorithms into it, and it parallelizes the com-
putations across multiple processors, without drastic degra-
dation in performance or functionality of existing systems?

GRAPE. This motivates us to develop GRAPE [2], a par-
allel GRAPh query Engine. It has the following unique fea-
tures that differ from previous parallel graph systems.

(1) Ease of programming. GRAPE provides a simple pro-
gramming model. For a class Q of graph queries, users only
need to provide three (existing) sequential (incremental) al-
gorithms for Q with only minor changes. This makes paral-
lel computations accessible to users who know conventional
graph algorithms covered in undergraduate textbooks.

(2) Semi-automated parallelization. GRAPE parallelizes the
sequential algorithms based on a combination of partial eval-
uation and incremental computation. It guarantees to ter-
minate with correct answers under a monotonic condition,
as long as the sequential algorithms plugged in are correct.

(3) Graph-level optimization. GRAPE inherits optimization
strategies available for sequential algorithms and graphs,
e.g., indexing, compression and partitioning. These strate-
gies are hard to implement for vertex-centric programs.

(4) Scale-up. In addition to the ease of programming, the
performance of GRAPE is comparable to the state-of-the-art
systems, such as vertex-centric systems Giraph 1(Pregel) and
GraphLab [5], and block-centric Blogel [11], outperforming
these systems in most of the cases [2]. As an example, Ta-
ble 1 shows the performance of the systems for shortest-path
queries (SSSP) over US road network with 24 processors.

As proof of concept, a primitive version of GRAPE is avail-
able [4]. Below we give an overview of GRAPE (Section 2),
presenting its programming model (Section 2.1), parallel
model (Section 2.2) and architecture (Section 2.3). The
demo will walk through GRAPE and show how it supports
“plug-and-play” of sequential algorithms for various classes
of graph queries, compared with Giraph, GraphLab and Blogel

(Section 3). We will also demonstrate how GRAPE is used
in social media marketing with graph association rules [1].

2. SYSTEM OVERVIEW
We start with the foundation and architecture of GRAPE.

1
http://giraph.apache.org/

Q

(F)1Q (F)1

coordinator

P

Figure 1: Workflow of GRAPE

2.1 Programming Model
For a classQ of graph queries, a GRAPE user only needs to

specify three core functions with sequential algorithms for Q.

PEval is any sequential algorithm for Q that given a query
Q ∈ Q and a graph G, computes the answer Q(G) to Q in G.

IncEval is any sequential incremental algorithm for Q that
given Q, G, Q(G) and updates M to G, computes changes
∆O to the old output Q(G) such that Q(G⊕M) = Q(G)⊕
∆O, where G⊕M denotes graph G updated by M .

Assemble collects partial answers that are computed locally
at each worker by PEval and IncEval (see Section 2.2), and
combines them into a complete answer; it is typically simple.

As will be seen Section 2.2, PEval and IncEval extend ex-
isting sequential algorithms only with two declarations.

2.2 Parallel Model
GRAPE adopts a parallel model based on a fixed point

computation in terms of partial and incremental evaluation.

Workflow. GRAPE employs a coordinator P0 and a set of n
workers P1, . . . , Pn. It works on a graph G fragmented into
(F1, . . . , Fn) via a partition strategy P picked by the user.
Each worker Pi maintains a fraction Fi (i ∈ [1, n]) of G.
Each fragment Fi has a set of update parameters, which

are variables associated with “border nodes” of Fi, e.g.,
nodes that have edges from or to another fragment Fj . The
parameters are declared in PEval and inherited by IncEval,
along with an aggregate function to resolve conflicts (when a
variable is given multiple values by different workers). These
are the only addition to existing sequential algorithms. Mes-
sages are automatically generated from update parameters
for communication among workers (see below).
Given a query Q ∈ Q, GRAPE posts the same Q to all the

workers. As shown in Fig. 1, GRAPE computesQ(G) in three
phases following BSP (Bulk Synchronous Parallel [10]).

(1) Partial evaluation (PEval). In the first superstep, each
processor Pi executes PEval against its local data Fi, to com-
pute partial answers Q(Fi) in parallel for all i ∈ [1, n]. Func-
tion PEval facilities data-partitioned parallelism via partial
evaluation. After Q(Fi) is computed, PEval generates a mes-
sage at each Pi and sends it to coordinator P0. The messages
are simply update parameters whose values are changed.

(2) Incremental computation (IncEval). GRAPE iterates
the following supersteps until it terminates. Each super-
step has two steps, one at P0 and the other at the workers.
(a) Coordinator P0 routes messages from the last superstep
to workers, if there is any, and triggers the next superstep,
like BSP. (b) Upon receiving message Mi, worker Pi incre-
mentally computes Q(Fi ⊕Mi) with IncEval, by treating Mi

Storage System (DFS)

Fault-tolerance
Module

GRAPE Query Engine

GRAPE API

• Message

• Partition

• Index

• Graph Alg.

Query Parser Auto. Parallel Interface

MPI Control

Index Mngr.

Load Balancer

Partition Mngr.

Partial

Evaluation

Incremental

Evaluation
Assemble

developerend user

queries results sequential algs.

Play

Plug-in

Figure 2: GRAPE Architecture

as updates, in parallel for i ∈ [1, n]. It sends a message to P0

that encodes the changes to the update parameters of Fi.

(3) Termination (Assemble). At each superstep, coordi-

nator P0 checks whether for all i ∈ [1, n], Pi is inactive,
i.e., Pi is done with its local computation, and there is no
more change to any update parameter of Fi. If so, GRAPE
pulls partial results from all workers, and computes Q(G)
by Assemble at P0. It returns Q(G) and terminates.

Fixed point. GRAPE supports a simultaneous fixed point
operator φ(R1, . . . , Rn) on n fragments defined as:

R
0
i = PEval(Q,F

0
i [x̄i]),

R
r+1

i = IncEval(Q,R
r
i , F

r
i [x̄i],Mi),

where i ∈ [1, n], r indicates a superstep, Rr
i denotes partial

results in step r at worker Pi, F
0
i = Fi, F

r
i [x̄i] is fragment

Fi at the end of superstep r carrying update parameters x̄i,
and Mi indicates changes to x̄i. More specifically, (1) in
the first superstep, PEval computes the partial answers R0

i

(i ∈ [1, n]). (2) At superstep r+1, the partial answers Rr+1

i

are incrementally updated by IncEval, taking Q, Rr
i and the

messages Mi as input. (3) The computation proceeds until
R

r0+1

i = R
r0
i at a “fixed point” r0. Assemble is then invoked

to combine all partial answers Rr0
i and get Q(G).

We demonstrate the following unique features of GRAPE,
and invite interested reader to consult [2] for details.

(1) GRAPE plugs in sequential algorithms as a whole, and
executes these algorithms on entire graph fragments, inherit-
ing all optimization strategies for the sequential algorithms.

(2) GRAPE reduces the costs of iterative graph computations
by using IncEval, to minimize unnecessary recomputations.
In particular, IncEval is bounded [7] if given Fi, Q, Q(Fi)
and messages Mi, it computes ∆Oi such that Q(Fi ⊕ Mi)
= Q(Fi)⊕∆Oi, and moreover, its cost can be expressed as
a function in |Mi|+ |∆Oi|, the size of changes in the input
and output, instead of |Fi|, no matter how big Fi is.

Example 1: For single-source shortest path (SSSP), one
can readily use the following sequential algorithms.

(1) PEval is our familiar Dijkstra’s algorithm [3] that com-
putes the distance from s to each node v, denoted by an
integer variable xv (initially ∞ if s 6= v). The update pa-
rameters of fragment Fi consist of xu’s for all border nodes u.

PEval is executed at each worker in parallel. At the end,
it collects the changed xu values for its border nodes xu, and
sends the changes to P0 as a message. Coordinator P0 picks
the smallest value for each xu by using aggregate function
min specified in PEval. The new values of xu’s are sent to
corresponding workers Pi as message Mi.

Figure 3: GRAPE User Interface

(2) IncEval is a sequential incremental SSSP algorithm in [7].
It incrementally revises the variables affected by message
Mi, and sends to P0 the update parameters as in PEval.

(3) Assemble simply takes the union of partial results, i.e.,
the value of xv for each node v, the shortest distance.

We will demonstrate the following. (a) The update pa-
rameters decrease monotonically, and the GRAPE process
terminates with correct answers. (b) The declarations of xu

and min are the only changes to the sequential algorithms
of [3,7]. (c) The communication cost is confined to variables
associated with border nodes whose values are changed, and
are quite low. (d) IncEval is bounded [7]: its cost is decided
by the size of messageMi and the nodes v in Fi with changed
xv values, not by |Fi|. The incremental steps effectively re-
duce the cost of iterative SSSP computation. ✷

Performance guarantees. As shown in [2], GRAPE has
provable guarantees on correctness and generality. (1) As-
surance Theorem. GRAPE guarantees to terminate with cor-
rect Q(G) if PEval and IncEval are correct sequential algo-
rithms for Q, Assemble correctly combines partial results,
and PEval and IncEval satisfy a monotonic condition, i.e.,
their changes to update parameters follow a partial order
defined on the domain of the variables, which is commonly
observed in a wide range of graph computations. (2) Simula-
tion Theorem. GRAPE optimally simulates parallel models
MapReduce, BSP and PRAM. That is, all algorithms in
MapRedue, BSP or PRAM with n workers (e.g., those de-
veloped based on Pregel, Giraph, GraphLab and Blogel) can
be simulated by GRAPE using n processors with the same
number of supersteps and memory cost (see [2]).

2.3 System Architecture
GRAPE adopts a four-tier architecture depicted in Fig. 2.

(1) The top layer of GRAPE is an interface that allows devel-
opers to plug in sequential graph algorithms, and end users
to parallelize the algorithms with GRAPE. We will elaborate
how to plug and play sequential algorithms in Section 3.

(2) At the core of the system is a parallel query engine.
It manages sequential algorithms registered in GRAPE API
library, constructs parallel workflow for GRAPE programs,
and executes the workflow for query answering.

(3) Underlying the query engine are (a) an MPI Controller
(Message Passing Interface) for communications between co-
ordinator and workers; it makes use of MPICH2, a standard
package that implements MPI for parallel and distributed
systems such as GraphLab; (b) an Index Manager for load-
ing indices, (c) a Partition Manager to partition graphs, and
(d) a Load Balancer to balance workload across workers.

(4) The storage layer manages graph data in DFS (dis-
tributed file system). It is accessible to the query engine,
Index Manager, Partition Manager and Load Balancer.

3. DEMONSTRATION OVERVIEW
The demonstration consists of two parts. (1) We walk

through GRAPE to demonstrate its ease-of-use and perfor-
mance compared with the state-of-the-art parallel graph
query engines. (2) To further demonstrate its scalability,
we demonstrate how GRAPE is used in social media market-
ing. The target audience of the demo includes anyone who
is interested in large-scale graph querying and analytics.

Environment. Our prototype GRAPE [4] is implemented
in C++. We demonstrate GRAPE and its applications in
a cluster of 16 Aliyun ECS n2.large instances 3 (with one
serving as the coordinator), each equipped with an Intel
Xeon processor with 2.5GHz and 16G memory.

A walk through. We visualize and demonstrate how
GRAPE supports “plug-and-play” of sequential algorithms,
as shown in Fig. 3. Consider a class Q of graph queries.

(1) Plug (developers). As shown in Fig. 3(1), a developer
specifies PEval, IncEval and Assemble for Q in the plug panel.
These are sequential algorithms for Q, denoted as a PIE

program for Q and registered in the GRAPE library.

That is, one can plug existing algorithms into GRAPE for
Q. As shown in Example 1, the only changes to the algo-
rithms are update parameters and aggregate functions.

(2) Play (end users). In the play panel (Fig. 3(2)), a user
can pick a PIE program for Q from the GRAPE library, a
graph G, a graph partition strategy P, and a number n of
processors to work with. She can then enter queries Q ∈ Q.
GRAPE partitions G, parallelizes PEval and IncEval across

2
https://www.mpich.org/

3
https://intl.aliyun.com/

n processors, and combines partial results to get Q(G) with
Assemble, following the parallel model of Section 2.2.

The Graph Partitioner of GRAPE provides several built-
in vertex/edge cut partition strategies, including METIS,
1D/2D, and a streaming-style partition algorithm [8] that
reduces cross edges. One is also allowed to plug new strate-
gies into GRAPE as needed. As shown in Fig. 3(2), users
only need to select a registered strategy from the library.

(3) Results. Query answers Q(G) are displayed in the re-

sult panel (Fig. 3(3)). To demonstrate how GRAPE works,
we have registered PIE programs for various graph queries in
its library, including (1) single-source shortest paths (SSSP),
(2) graph pattern matching via simulation (Sim) and sub-
graph isomorphism (SubIso), (3) keyword search in graphs
(Keyword), (4) connected component detection (CC), and (5)
collaborative filtering in machine learning (CF).
We invite the audience to compare sequential algorithms

for any Q of these query classes with their correspond-
ing PIE programs, and by entering their own queries. We
also demonstrate the impact of graph partition strategies.
For example, for SSSP, GRAPE takes 18.3 seconds and
ships 7.5M messages with 16 nodes over a social network
Livejournal partitioned with a best strategy METIS. It takes
30 seconds and ships 40M messages with stream-based par-
tition, in the same setting, due to more cross edges.

(4) Analytics. We demonstrate the efficiency and scalability
of GRAPE, and the impact of key factors. The audience is
invited to configure GRAPE, and observe its scalability by
varying the number of workers, graph partition strategies,
datasets and query classes. As shown in Fig. 3(4), we vi-
sualize the performance, and report the communication and
computational costs for computing Q(G). We also provide a
fine-grained analysis, visualizing the performance of partial
evaluation (PEval) and incremental steps (IncEval).

We also demonstrate how GRAPE supports graph-level
optimization. GRAPE parallelizes sequential algorithms as a
whole, and hence naturally supports optimization strategies
developed for sequential algorithms, such as graph indexing,
compression and load balancing in terms of graph partitions
and workload estimates. For query class mentioned above,
GRAPE supports optimized PIE programs. These are not
easy to be supported by, e.g., vertex-centric programming.

(5) Performance comparison. We visualize the computation
and communication costs of different parallel graph query
engines on real-life and synthetic graphs (Fig. 3(5)). We
compare GRAPE with vertex-centric Giraph and GraphLab,
and block-centric system Blogel [11]. We demonstrate that
GRAPE achieves performance comparable the state-of-the-
art systems at the very least, and illustrate the reasons.

Applications. Using real-life graphs (e.g., Weibo), we
demonstrate how GRAPE helps in social media marketing,
an emerging application that is predicted to trump tradi-
tional marketing: “90% of customers trust peer recommen-
dations versus 14% who trust advertising”. We adopt graph
pattern association rules (GPARs) [1], which extend conven-
tional association rules by incorporating graph patterns, to
identify regularities between entities in social networks. A
GPAR is of the form Q(x, y) ⇒ p(x, y), where Q(x, y) is a
graph pattern (possibly with counting quantifiers), p(x, y)
is a predicate, and x and y are two designated nodes in Q.
It says that if the topological condition specified by Q(x, y)

Figure 4: Social media marketing

is satisfied, then x and y are likely to be associated with p.

Example 2: Figure 4 shows a GPAR ϕ: if among the people
followed by xo, (a) at least 80% of them recommend Huawei
Mate 9, and (b) no one gives it a bad rating, then the chances
are that xo will buy this mobile phone. Hence we can rec-
ommend Huawei Mate 9 to xo. Four potential customers
suggested by ϕ are shown in the result panel of Fig. 4 ✷

We demonstrate that given a set of GPARs, GRAPE ef-
ficiently finds potential customers ranked by confidence,
by parallelizing PIE programs for subgraph isomorphism
(SubIso). It offers a provable guarantee that the more work-
ers are used, the faster it finds potential customers [1].

Acknowledgments. Fan is supported in part by ERC
652976, NSFC 61421003, 973 Program 2014CB340302,
EPSRC EP/M025268/1, Shenzhen Peacock Program
1105100030834361, the Foundation for Innovative Research
Groups of NSFC, Beijing Advanced Innovation Center for
Big Data and Brain Computing. Wu is supported by NSF
IIS-1633629, and Jiang by HKRGC GRF HKBU12232716.

4. REFERENCES
[1] W. Fan, X. Wang, Y. Wu, and J. Xu. Association rules

with graph patterns. PVLDB, 8(12):1502–1513, 2015.
[2] W. Fan, J. Xu, Y. Wu, W. Yu, J. Jiang, B. Zhang,

Z. Zheng, Y. Cao, and C. Tian. Parallelizing sequential
graph computations. In SIGMOD, 2017.

[3] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and
their uses in improved network optimization algorithms.
JACM, 34(3):596–615, 1987.

[4] GRAPE. http://grapedb.io/.
[5] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,

and J. M. Hellerstein. Distributed GraphLab: A framework
for machine learning in the cloud. PVLDB, 5(8), 2012.

[6] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for
large-scale graph processing. In SIGMOD, 2010.

[7] G. Ramalingam and T. Reps. An incremental algorithm for
a generalization of the shortest-path problem. J.
Algorithms, 21(2):267–305, 1996.

[8] I. Stanton and G. Kliot. Streaming graph partitioning for
large distributed graphs. In KDD, pages 1222–1230, 2012.

[9] Y. Tian, A. Balmin, S. A. Corsten, and J. M.
Shirish Tatikonda. From “think like a vertex” to “think like
a graph”. PVLDB, 7(7):193–204, 2013.

[10] L. G. Valiant. A bridging model for parallel computation.
Commun. ACM, 33(8):103–111, 1990.

[11] D. Yan, J. Cheng, Y. Lu, and W. Ng. Blogel: A
block-centric framework for distributed computation on
real-world graphs. PVLDB, 7(14):1981–1992, 2014.

