
Keys for XML

Peter Buneman ? Susan Davidson ? Wenfei Fan ??

Carmem Hara ? ? ? Wang-Chiew Tan ?

Abstract

We discuss the de�nition of keys for XML documents, paying particular attention
to the concept of a relative key, which is commonly used in hierarchically structured
documents and scienti�c databases.

Key words: Keys, Relative Keys.

1 Introduction

Keys are an essential part of database design [2,14]: they are fundamental to
data models and conceptual design; they provide the means by which one tuple
in a relational database may refer to another tuple; and they are important in
update, for they enable us to guarantee that an update will a�ect precisely one
tuple. More philosophically, the key provides an invariant connection between
the tuple and the real-world entity it represents.

If XML documents are to do double duty as databases, then we shall need
keys for them. In fact, a cursory examination 1 of existing DTDs reveals a
number of cases in which some element or attribute is speci�ed { in comments
{ as a \unique identi�er". Moreover a number of scienti�c databases, which
are typically stored in some special-purpose hierarchical data format which is
ripe for conversion to XML, have a well-organized hierarchical key structure.

? University of Pennsylvania, Department of Computer and Information Science,
200 South 33rd Street, Philadelphia, PA 19104, USA. Email:
fpeter,susan,wctang@saul.cis.upenn.edu. Supported in part by Digital Libraries 2
grant DL-2 IIS 98-17444 and NSF DBI99-75206.
??Bell Labs, 700 Mountain Avenue, Murray Hill, NJ 07974, USA. Email:
wenfei@research.bell-labs.com. Currently on leave from Temple University.
Supported in part by NSF IIS 00-93168.
? ? ?Universidade Federal do Parana, Departamento de Informatica, Curitiba, PR
81531-990, Brazil. Email: carmem@inf.ufpr.br.
1 We used the \DTD Inquisitor" of Byron Choi and Arnaud Sahuguet [15] [9].

Preprint submitted to Elsevier Science 26 March 2002

Various forms of key speci�cation for XML are to be found in the XML stan-
dard [22], XML Data [23], and XML Schema [25]. Through the use of ID
attributes in a DTD [22], one can uniquely identify an element within an
XML document. However, it is not clear that ID attributes are intended to be
used as keys rather than internal \pointers". For example, ID attributes are
not scoped. In contrast to keys, they are unique within the entire document
rather than among a designated set of elements. As a result, one cannot, for
example, allow a student (element) and a person (element) to use the same
SSN as an ID. Moreover using ID attributes as keys means that we are lim-
iting ourselves to unary keys and, of course, to using attributes rather than
elements. Finally, one can specify at most one ID attribute for an element type,
while in practice one may want more than one key. XML Data introduces a
notion of keys explicitly. However, its keys can only be speci�ed in types and
can only be de�ned for element types rather than for certain collections of
elements.

XML Schema has a more elaborate proposal, which is the starting point of this
paper. The proposal extends the key speci�cation of XML Data by allowing
one to specify keys in terms of XPath [24] expressions. There are a number of
technical problems in connection with XPath. XPath is a relatively complex
language in which one can not only move down the document tree, but also
sideways or upwards, not to mention that predicates and functions can be em-
bedded as well. The problem with XPath is that questions about equivalence
or inclusion of XPath expressions are, as far as the authors are aware, unre-
solved; and these issues are important if we want to reason about keys as we do
in relational databases. Yet until we know how to determine the equivalence
of XPath expressions, there is no general method of saying whether two such
speci�cations are equivalent. Another technical issue is value equality. XML
Schema restricts equality to text, but the authors have encountered cases in
which keys are not so restricted. See Section 7.1 for a more detailed discussion.

However, the main reason for writing this paper is that none of the existing key
proposals address the issue of hierarchical keys, which appear to be ubiquitous
in hierarchically structured databases, especially in scienti�c data formats. A
top-level key may be used to identify components of a document, and within
each component a secondary key is used to identify sub-components, and so
on. Moreover, the authors believe that the use of keys for citing parts of
a document is suÆciently important that it is appropriate to consider key
speci�cation independently of other proposals for constraining the structure
of XML documents.

How then, are we to describe keys for XML or, more generally, for semistruc-
tured data? From the start, how we identify components of XML documents
is very di�erent from the way we identify components of relational databases.

Consider the two structures shown in Figure 1. To identify a tuple in the
relation we need to know, say, that name and course constitute a key. In the

2

<db>

<student>

<name> Smith </name> <course> Math2 </course> <grade> B </grade>

</student>

<student>

<name> Jones </name> <course> Math2 </course> <grade> A+ </grade>

</student>

<student>

<name> Brown </name> <course> Phil5 </course> <grade> A- </grade>

</student>

</db>

name course grade

Smith Math2 B

Jones Math2 A+

Brown Phil5 A-

Fig. 1. An example of a relation and an XML representation.

absence of a key the only way we can be sure of uniquely identifying a tuple
is to give the entire tuple. For relational databases, the way we specify a key
constraint is to say that if two tuples agree on their key attributes they agree
everywhere. By contrast, XML documents are, �rst of all, documents and we
can therefore use the position in the document (say a byte o�set) to identify
some part of it, therefore the way we might constrain the XML document is
to say that if two elements agree on the name and course subelements then
they are the same element. Put in the contrapositive: two distinct student
elements must di�er on a name or course subelement. This raises two issues
that precede any discussion of the structure of keys: that of node identi�cation
and that of equality. The latter is a thorny topic, but needs some attention.

Organization. The rest of the paper is organized as follows. Section 2 in-
troduces the notion of node addresses and value equality. Node addresses are
used in node equality testing, i.e., testing whether two nodes are the same node
and value equality is used for testing whether two nodes have the same value.
Section 3 introduces our path expression language which is used in the de�-
nition of keys discussed in section 4. Section 5 addresses issues in connection
with reasoning about XML keys. The concept of relative or hierarchical keys
together with its alternative notation is discussed in section 6. In section 7,
we examine the XML-Schema proposal in some detail, discuss an alternative
form of keys and various issues concerning keys.

2 Node addresses and equality

The Document Object Model (DOM) [21] provides some insight into a seman-
tics for XML documents. According to the DOM, a document is a hierarchical

3

<db>

<composer>

<name> J.S. Bach </name> <born> 1685 </born>

<work num="BWV82"> <title> Ich habe genug </title> </work>

<work num="BWV552"> </work>

</composer>

<composer period="baroque">

<name> G.F. Handel </name>

<work num="HWV19"> <title> Art Thou Troubled? </title> </work>

</composer>

</db>

composer

db
2

2

1

name born

"J.S.Bach"

work

title

"Art Thou Troubled?"

"HWV19"

"baroque"

period

1

1 1
1

@period

@num

E

E

T

E

T

E

E

A

T

E

A

num"1685"

E

"Ich habe genug"

1

1

titleE

T

A

@num

work E work

numAnum

1 42 3

@num

"BWV82" "BWV552"

1

nameE

"G.F. Handel"

T

1

Ecomposer

Fig. 2. Some XML and its representation as a tree

structure of nodes. Nodes are of several types, but there are three types that
are important to this discussion: element nodes, attribute nodes, and text
nodes. As illustrated in Figure 2 text nodes (T) have no name but carry text,
attribute nodes (A) have both a name and carry text, and element nodes (E)
have a name. Element nodes may have children; attribute and text nodes are
terminal. In addition the DOM speci�es how to reach the children of an ele-
ment node. Text and element children are held in what is essentially an array,
the index in the array being determined by the order of the subelements in
the document. Attribute children are held in a dictionary. The name of the
attribute, which must be unique within an element, is used as the index. These
indexes, an integer for an element or text child, or the name pre�xed by an
\@" for attributes, are shown as edge labels in Figure 2. The important point
here is that the edge labels uniquely identify children.

A consequence of this model is that a path of edge labels from the root uniquely
identi�es a node. We shall call such paths node addresses and write them
hl1# : : :#lni, for example h1#2#1i and h1#3#@numi. Node addresses will be
our basic means of identifying nodes. Note that an attribute name can only
occur at the end of a node address. We can also talk about the address of a
subnode relative to a node. For example any subnode of a node with address
hai will have a node address of the form ha#bi where hbi is the address of the
subnode relative to hai. By a subnode of a node x we mean any node in the
subtree rooted at x, not necessarily a child node of x.

4

Value equality. Equality is essential to the de�nition of keys, and in order
to de�ne keys we need �rst to de�ne equality of the \values" associated with
nodes. XML-Schema restricts equality to text nodes, but the authors have
encountered cases in which keys are not so restricted. An immediate example
is that when one treats name as a key for person nodes, name may have a
complex structure consisting of first-name and last-name subelements. A
more general way of describing equality is to use tree equality. The value of a
node is speci�ed by giving (1) a set S of relative addresses of its subnodes, (2)
a partial function from S to names and (3) a partial function from S to strings.
Two nodes are value-equal if they agree on (1), (2) and (3). We shall use the
notation =v for value equality. With respect to the textual representation of an
XML element, this de�nition states that the order of attributes is unimportant
in de�ning equality. Observe that the order of subelements is speci�ed and
preserved by their indexes (integers).

It should be pointed out that neither equality of text nodes nor tree equality is
entirely satisfactory in the presence of types. XML-Schema does a thorough job
of de�ning base types, and one might want to use this to de�ne a coarser form
of equality. For example, hid type="int"i 0 h/idi and hid type="int"i
-0 h/idi should probably be treated as value-equal. Also, there are types such
as real numbers for which equality is problematic. A complete speci�cation of
keys would have to take account of these issues.

3 Path Expressions

A path expression is an expression involving node names (tags and attribute
names) that describes a set of paths in the document tree.

The choice of what language we use to de�ne path expressions is important
to the expressive power of keys, and there are a number of choices. In XML-
Schema, XPath [24] expressions are used, while in semistructured data regular
expressions [1] have been used. Neither subsumes the other. In the following
analysis we shall assume two properties of path expressions:

� There should be a concatenation operation: P:Q is the result of following
�rst the path P and then the path Q.

� A path should move down the tree. That is if we start at a node n1 and, by
following a path described by P , we reach a node n2 then n2 is a subnode
of n1 (the address n1 is a pre�x of the address n2.)

The second property is not enjoyed by XPath. We shall discuss the choice of
a language of path expressions later, but in the meantime adopt for illustra-
tive purposes a simple language that is a subset of both XPath and regular
expressions. Our language for path expressions has the following syntax: (1)
The empty path, \�", (2) a node name (tag or attribute name), (3) a wild card
\ ", matching any single node name, (4) an arbitrary path \ �" and, (5) the

5

concatenation of paths P:Q, where P and Q are paths de�ned by these rules.

We have chosen an alternative syntax to that of XPath because the con-
catenation operation, which is central to our understanding of keys, does not
have a uniform representation in XPath. However, the translation to XPath is
straightforward: Any path meant to start from the root is pre�xed with \/".
In XPath, \/" itself denotes the root node. \." is used as the empty path in
place of \�", *" in place of \ " and \//" in place of \ *". Also, \/" is used
as the path concatenator in place of \.". In XPath, \/" is used as a separator
between location steps. Therefore, we have to disallow certain concatenations.
For example concatenations of a=b with =c=d to get a=b==c=d is disallowed.

We shall use the notation n[[P]] to denote the set of nodes (node addresses)
reached by starting at node n and following a path that conforms to (is in the
language of) P . We shall sometimes use [[P]] as an abbreviation for root[[P]].
The syntax is borrowed from Wadler's [17] description of semantics for pat-
terns in XSL. Examples (from Figure 2):

[[composer:]] = fh1#1i, h1#2i, h1#3i, h1#4i, h2#1i, h2#2i;

h2#@periodig

h2#2i[[�]] = fh2#2i, h2#2#1i, h2#2#1#1i, h2#2#@numig

[[composer:work]] = fh1#3i, h1#4i, h2#2ig

In some cases, it will be useful to restrict the path expression language so that
paths are merely sequences of labels and do not contain or �. Such paths
are called simple paths. For example, composer.work is a simple path.

4 De�nition of Keys

In de�ning a key we specify two things: a set on which we are de�ning the
key (in relational databases this is a relation { the set of tuples identi�ed
by a relation name) and the \attributes" (relational terminology for a set of
column names) which together uniquely identify elements in the set. This is
the motivation for our central de�nition of a key speci�cation, which is a pair
(Q; fP1; : : : ; Png) where Q is a path expression and fP1; : : : ; Png is a set of
simple path expressions. The idea is that the path expression Q identi�es a
set of nodes, which we refer to as the target set, on which the key constraint
is to hold. Let us refer to Q as the target path, and the set fP1; : : : ; Png as
the key paths. These correspond to the absolute and relative location paths
respectively in XPath terminology. Observe that for any node n 2 [[Q]] there
is a set of nodes n[[Pi]] found by following Pi from n. There is no restriction on
the size of n[[Pi]]; in particular it may be empty. The key paths constrain the
target set as follows: Take any two nodes (n1; n2) 2 [[Q]] and consider the pair
of sets of nodes found by following the key path Pi from n1 and n2, (n1[[Pi]],
n2[[Pi]]). If there is a non-empty intersection with respect to value equality for
all such pairs of sets of nodes then the nodes n1 and n2 are the same node.

6

For example, consider the following key de�nition:

(person.employees, fname.�rstname, name.lastnameg)

The target path person.employees identi�es a set of nodes in the document.
This is the target set. Each of these nodes will de�ne a subtree with an
employees label at the root. Within such a subtree we will �nd zero or more key
paths name.�rstname and zero or more key paths name.lastname. Two nodes
n1, n2 in the target set are distinct if either they do not agree on any of the
nodes reachable via key path name.�rstname or they do not agree on any of
the nodes reachable via name.lastname.

As another example, observe that the document in Figure 2 satis�es the
key (composer, fnameg): There are two nodes at the end of the target path
composer. For each node, there is one element in the set of nodes found
by following the key path name, \J.S.Bach" and \G.F.Handel". These ele-
ments are not value-equal. Less intuitively, the document also satis�es the
key (composer, fborng) since the subelement <born> only appears in the �rst
composer and is absent from the second composer.

We are now ready to give the formal de�nition of a key. For reasons which
will emerge shortly, it is useful to de�ne a key with respect to a given node in
the document rather than assuming that the target path starts at the root.

De�nition. A node n satis�es a key speci�cation (Q; fP1; : : : ; Pkg) i� for any
n1; n2 in n[[Q]], if for all i, 1 � i � k, there exist z1 2 n1[[Pi]] and z2 2 n2[[Pi]]
such that z1 =v z2, then n1 = n2. That is,

8n1 ; n2 2 n[[Q]] ((
^

1�i�k

9 z1 2 n1[[Pi]] 9z2 2 n2[[Pi]] (z1 =v z2)) ! n1 = n2)

Note that both forms of equality are used in the de�nition of a key. The �rst
deals with value-equality (=v) while the second is node equality (=). Two
nodes are node equal if they have the same node address.

When we talk about a document satisfying a key speci�cation we mean that
the root of the document satis�es the key speci�cation. The key has no impact
on those nodes at which some key path is missing, i.e. nodes n such that n[[Pi]]
is empty for some Pi. Observe that for any n1; n2 in [[Q]], if Pi is missing at
either n1 or n2 then n1[[Pi]] and n2[[Pi]] are by de�nition disjoint. This is similar
to unique constraints introduced in XML-Schema. In contrast to unique con-
straints, however, our notion of key speci�cation is capable of comparing nodes
at which a key path may lead to multiple nodes. As an example, consider a
key (A, fBg) expressed with respect to the root of the following document:

<db> <A> 1 <A> 1 2 </db>

This key asserts that an A element is uniquely identi�ed by the values of its B
subelements. The document does not satisfy the key because the B subelement
in the �rst A element and the �rst B subelement of the second A element have
the same value. With our de�nition of keys, these two A elements are required

7

to be the same element. Here are some further examples of keys, expressed
with respect to the root of a document.

(� :person; fidg) Any person element, if it has id subelements, is uniquely
identi�ed by the values of the id's. In other words, any
two person elements are disjoint on their id �elds up to
value-equality.

(person; f�g) Any two person nodes immediately under the root have
di�erent values (� is the empty path).

(employees; fg) An empty key. This means that the path employees, if it
exists, is unique at the root. That is, there is at most one
employees node immediately under the root.

(�; fidg) Any element that has id subelements is uniquely identi-
�ed by the values of the id's. That is, any two nodes are
disjoint on their id �elds up to value-equality. Note that
an id element does not have to have an id itself. This key
captures the semantics of an ID attribute in the XML
standard in that id is unique within the entire document.

As with keys in relational databases, this de�nition of a key asserts that the
values associated with key paths uniquely identify a node in the target set.
However since one cannot require XML documents to be in some kind of
�rst normal form, there are important di�erences between the two de�nitions.
First, the paths that de�ne keys need not exist 2 and do not have to be unique.
In contrast, in relational databases since key values cannot be null, the key
must exist. Moreover, �rst normal form requires attribute values to be atomic
values, not sets. Second, our key paths specify a set of addresses within a
document, unlike the relational case in which keys specify a value.

There are, of course, other ways of de�ning keys, both more and less restrictive
than what we have described. Some justi�cation of the choices is in order.

� We have used a set of key paths to de�ne a key. In order to talk about a set
(as opposed to a tuple or list) of path expressions we need to be able to talk
about equality of path expressions. The equivalence of two path expressions
in our language of path expressions is decidable, as it is for the more general
class of regular expressions.

� Given that we have de�ned equality on trees, do we need to have more than
one key path in a key speci�cation? We could always design our documents
so that all the key \attributes" are represented as subnodes of some node.
The problem here is that we would have to constrain the node to contain
only these subnodes for tree equality to have the desired e�ect. This seems

2 This might be taken as allowing null-valued keys, but whether we should equate
missing key paths with null values is arguable and depends on the semantics of the
languages we use to query XML documents.

8

to be too restrictive and constitutes unnecessary interference between key
speci�cations and data models.

� The de�nition of key satisfaction di�ers signi�cantly from the relational case
by allowing a (possibly empty) set of nodes at the end of each key path. We
shall examine a more restrictive de�nition in which key satisfaction requires
each of the key paths to exist uniquely from any node in n[[Q]] in Section 7.

� The language of path expressions may be regarded both as too weak and
too powerful. Consider the key (Q; fP1; : : : ; Pkg): For now, we have allowed
Q to be an arbitrary path expression but have restricted the Pi to be simple
paths. Would one ever want an arbitrary path (�) in one of the Pi? Also,
it is not hard to come up with examples in which one would like some-
thing more powerful to express Q, e.g., (person:(mother j father)�; fidg). This
means a person element followed by zero or more father or mother elements.
Our emphasis is that the language of path expressions is provisional, and
that allowing arbitrary path expression for the Pi merely complicates the
de�nition of key but does not change much in the way of the theory.

5 Key Inference

In relational databases one can infer some keys from the presence of others.
Indeed, if a set S of attributes is a key for a relation R, then any superset
of S is also a key for R. This obvious fact is of great importance in query
optimization. Keys are typically used as physical indexes, and this simple
inference rule tells us when we have enough information to use such an index.
For XML keys as we have presented them so far, the inference rules are far
from obvious. These rules are fully discussed in a companion paper [6]. Here
are some examples.

Fact. If (Q; S) is a key and S � S 0, then so is (Q; S 0).

This is the counterpart of the relational inference rule. Below are two examples
that have no such counterpart.

Fact. If (Q:Q0; fPg) is a key then so is (Q; fQ0:Pg).

This is sound because in a document with a tree-like structure, sharing of nodes
is not allowed. As a result, if a node is identi�ed in a tree then its ancestors
are also determined. In other words, if a key path P uniquely identi�es a node
n in [[Q:Q0]] then Q0:P is a key path for the ancestor of n in [[Q]].

Fact. If (Q; S) is a key and Q0 is contained in Q (i.e., the path language
de�ned by Q0 is included in the one de�ned by Q), then (Q0; S) is also a key.

This fact is sound because any key of the set [[Q]] is also a key for any subset
of [[Q]]. Observe that [[Q0]] is a subset of [[Q]] if Q0 is contained in Q.

The last fact requires one to reason about the inclusion of path expressions.

Key inference is closely related to the question of key implication: suppose it
is known that an XML document satis�es certain keys, does it follow that the

9

X

(a)

X X

(b)

foo foo

Fig. 3. An XML tree conforming to D, and an XML tree satisfying '

document must necessarily satisfy some other key? We have developed algo-
rithms for reasoning about the inclusion of certain classes of path expressions
as well as for determining implication of XML keys. A detailed discussion of
these algorithms as well as �nite axiomatization and complexity results in
connection with our key languages can be found in [6].

Another natural question to ask is whether key constraints are �nitely satis�-
able. In relational databases, all keys are �nitely satis�able: given any schema
S and any �nite set � of keys, one can always construct a �nite database
instance of S that satis�es �. The same holds for XML documents under our
de�nition of a key.

Fact. For any �nite set � of keys, there exists an (�nite) XML document
satisfying �.

This last fact only holds because key paths may be missing. Recall the (�; fidg)
example: if key paths were required to exist at all nodes speci�ed by the tar-
get path the XML document would have to be in�nite to satisfy the key (see
strong keys in section 7.)

Also, we note that the last fact only holds in the absence of DTDs. To illustrate
this, let us consider a simple key ' = (X; f g) and the DTD D = <!ELEMENT

foo (X, X)>. Obviously, there exists a �nite XML document that conforms
to the DTD D (see, e.g., Fig. 3 (a)), and there is a �nite XML document that
satis�es the key ' (e.g., Fig. 3 (b)). However, there is no XML document that
both conforms to D and satis�es '. This is because D requires an XML tree to
have two distinct X elements, whereas ' requires that there is at most one X
node immediately under the root. This shows that DTDs interact with XML
key constraints. It should be mentioned that keys de�ned in other proposals
for XML, such as those introduced in XML Schema [25], also interact with
DTDs or other type systems for XML. For a study of the interaction between
constraints such as keys and DTDs see [12].

6 Relative Keys

The need for relative keys is partly motivated by scienti�c data formats. Many
scienti�c databases do not use conventional database technology, and even
those that do transmit their data in one of a variety of data formats. Some of
these data formats are general purpose (such as ASN.1, used in GenBank [5],
and ACeDB [16]) while others are domain speci�c (such as EMBL [4]). These

10

data formats have easy translations to XML. XML itself is also emerging as a
standard for data exchange, especially with micro-array data (see for example
the DTDs GEML [18] and MAML [19]). All of these speci�cations have a hier-
archical structure, and typically at the top level consist of a large set of entries
(the order of which is usually unimportant). Molecular biology databases con-
tain particularly rich structures of metadata. In the protein sequence database
Swiss-prot [3] there is an accession number (a key) for each entry. Within each
entry there is a sequence of citations, each of which is identi�ed by a number
within the entry. Thus to identify a citation, we need to provide the accession
number for the entry and the number of the citation within the entry.

Another intriguing example is to be found in linguistic databases 3 . In this
case the data sets (typically recordings of speech) are held in �les, but the
metadata is provided in part by the directory structure [20]:

/timit/train/dr1/fcjf0/sa1.wav

(TIMIT corpus, training set, dialect region 1, female speaker, speaker-ID
"cjf0", sentence text "sa1", speech waveform �le.) It would be quite reason-
able to represent such metadata in XML, but it is immediately obvious that
it requires a non-trivial hierarchical key structure.

In relational database design we also �nd the notion of a hierarchical key
structure in weak entities. The key of a weak entity consists of the parent key
and some additional identi�cation of the dependent entity [14] (e.g. course
Math120, section B).

To describe hierarchical key structures we �rst describe a relative key, which
consists of a pair (Q;K) where Q is a path expression and K is a key.

De�nition. A document satis�es a relative key speci�cation (Q, (Q',S)) i�
for all nodes n in [[Q]], n satis�es the key (Q0; S).

In other words (Q;K) is a relative key if K is a key for every \sub-document"
rooted at a node in [[Q]]. Examples:

� (bible.book.chapter; (verse; fnumberg)). A verse number uniquely identi�es a
verse within a chapter.

� (bible.book; (chapter; fnumberg)). Chapter numbers uniquely identify a chap-
ter within a book.

� (bible; (book; fnameg)). If there is only one bible node immediately under
the root, this is the same as specifying a key (bible.book; fnameg).

Observe that in a relative key (Q; (Q0; S)), Q starts from the root whereas Q0

starts at a node in [[Q]]. It is for this reason that we de�ned key satisfaction
at arbitrary nodes.

3 We are grateful to Mark Liberman and Steven Bird of the Linguistic Data Con-
sortium at the University of Pennsylvania for providing us with this example.

11

Transitivity of relative keys. The purpose of keys is to uniquely specify
certain components of a document. Obviously, a relative key such as
(bible.book.chapter; (verse,fnumberg)) alone does not uniquely identify a par-
ticular verse in the bible. However we believe that if we give a book name,
a chapter number, and a verse number, we have speci�ed a verse. It is this
intuition that we need to formalize.

First observe that the relative key (�; (Q0; S)) is equivalent to the key (Q0; S).
Thus keys de�ned in section 4 are a special case of relative keys. To distinguish
these two notions we refer to the former as absolute keys or simply keys. Now
consider two relative keys. We say that (Q1; (Q

0
1
; S1)) immediately precedes

(Q2; (Q
0
2
; S2)) if Q2 = Q1:Q

0
1
. Also, any absolute key immediately precedes

itself. De�ne the precedes relation as the transitive closure of the immediately
precedes relation.

De�nition. A set � of relative keys is transitive if for any relative key (Q1; (Q
0
1
; S1)) 2

� there is a key (�; (Q0
2
; S2)) 2 � which precedes (Q1; (Q

0
1
; S1)).

As an example, this set of keys is transitive:

(�; (bible.book; fnameg)), (bible.book; (chapter; fnumberg))

This set is not:

(�; (bible.book; fnameg)), (bible.book.chapter; (verse; fnumberg))

Any transitive set of relative keys must contain some absolute key.

Insertion-friendly relative keys. Consider the following (transitive) key
speci�cation:

(�; (university; fnameg)), (university; (dept.employee; femp-idg))

To identify an employee node in this database, we need only to specify a
university name and an emp-id within that university. However, to add a new
employee to the database, we clearly need to specify a department for the
employee. However, although this key speci�cation is transitive, there is no
way to identify a department and hence there could be many ways to add
an employee. This motivates our �nal de�nition of insertion-friendliness as
shown below: With insertion-friendly keys, one can always insert an element
in the \keyed" part of the document unambiguously by specifying where to
insert the element using keys.

De�nition. A set � of relative keys is insertion-friendly if it is transitive and
whenever (Q1; (Q2:n; S1)) 2 � there is a relative key (Q0

1
; (Q0

2
; S2)) 2 � where

jQ0
2
j > 0 and Q1:Q2 = Q0

1
:Q0

2
. Here n is a node name.

Informally, this de�nition gives us the property that every element with a
pre�x along the path Q1:Q2 can be identi�ed through some keys. There-
fore, it is easy to see that the addition of the following key will make the
previous example insertion-friendly. In particular, to insert an employee, we
now can specify which department they are in (in addition to the university).

12

(university; (dept; fdept-nameg))

Even though we can now add new employees, there is still something anoma-
lous: Although employees are nested under departments, nothing about the
department is necessary to identify them. This is reminiscent of the anomalies
that occur in non-second normal form of relational databases. There is some-
thing wrong with the design of this document in that employees should not
be children of department nodes, but only of university nodes. The linkage
between employees and departments should be expressed through a foreign
key. Formalizing the concept of a well-designed document with respect to its
key speci�cation is beyond the scope of this paper.

6.1 A notation for relative keys

If a system of relative keys is transitive, it forms a hierarchical structure. We
can therefore create a compressed syntax for such systems. The basic syntac-
tic form is: Q1fP

1

1
; : : : ; P 1

k1
g:Q2fP

2

1
; : : : ; P 2

k2
g: : : : :QnfP

n

1
; : : : ; P n

kn
g. This de-

scribes a system of relative keys: a relative key (Q1: : : : :Qi�1; (Qi; fP
i

1
; : : : ; P i

ki
g))

is de�ned for each i, 1 � i � n. It should be noted that the �rst of these is of
the form (�; (Q1; fP

1

1
; : : : ; P 1

k1
g)) and is a key.

For example, biblefg.bookfnameg.chapterfnumberg.versefnumberg speci�es the
insertion-friendly system of keys:

(�; (bible; fg)); (bible; (book; fnameg)),

(bible.book; (chapter; fnumberg)), (bible.book.chapter; (verse; fnumberg))

So far the key hierarchies we have speci�ed are linear. Consider the following
two speci�cations:

companyfnameg.employeefidg, companyfnameg.departmentfnameg.

It is helpful to fold these into a single speci�cation:

companyfnameg[.employeefidg, .departmentfnameg]

This is simply a syntactic shorthand: R[R1; : : : ; Rn] for RR1, . . . , RRn. As a
further example, consider

universityfnameg.school[fnameg, .department[fnameg, .studentfidg]]

This is another example of a transitive set of relative keys. It is worthwhile
to remark again that for identifying student nodes, one does not need to be
aware of which school the student belongs to. However, to insert a new student
into the document, one needs specify under which school (in addition to which
university) to insert the student element so as to avoid ambiguity.

Speci�cations such as these are reasonably compact and understandable. Their
importance is not only to ensure the internal consistency of a document, but
also to tell others how to cite a component of our document. This is especially
important if the document is subject to change.

13

Even though we have constructed a minimal system for describing hierarchical
key structures, it turns out that this takes us some way towards describing
a data model. Contrast the relational database speci�cation and XML key
speci�cation below:

Relational: student(snum, name, major), enroll(snum,cnum,grade)

XML: [studentfsnumg[.namefg, .majorfg], enrollfsnum,cnumg.gradefg]

They describe closely related structures. The speci�cation [.namefg, .majorfg]
ensures that under a student node there is at most one name and at most
one major node. However the key speci�cation allows other unspeci�ed nodes
to occur under a student node and, of course, it does not require any kind
of �rst normal form. Nevertheless, we can specify that our documents have a
structured \core" somewhat akin to the complex object or nested relational
structures that have been studied in databases [2]. Not surprisingly there is
close interaction between key constraints and data models which requires much
further study.

7 Discussion

Our main reason for writing this document was to clarify the notion of a
relative key and to understand the hierarchical key structure that appears to
occur naturally in a variety of data formats. What we have described here is
a proposal for a key de�nition, and there are a number of variations on this
de�nition which should be considered. This section contains a brief review of
those alternatives, starting with the proposals in XML-Schema.

7.1 XML-Schema

XML-Schema includes a syntax for specifying keys which is related to our
de�nition, but there are some substantive di�erences, even if we ignore the
issue of relative keys. Possibly the most important of these is that the language
for path expressions is XPath. As mentioned before, XPath is a language used
for accessing parts of XML documents. XPath supports a variety of axes that
allows one not only to move down an XML document tree from a node, but also
to move to its ancestors and siblings. Moreover, one can embed predicates or
even functions in XPath. For example /A/B[last()]/C/D/E/ancestor::* selects
all ancestor nodes along the path A.B.C.D.E starting from the root. Observe
that a predicate (quali�er) is speci�ed in the expression: B must be the last B
child of A. With such complex functionality, questions about the equivalence or
inclusion of XPath expressions remains open. As demonstrated by examples in
Section 5, these issues are important if we want to reason about keys as we do {
for quite practical purposes { in relational databases. Here is a brief summary
of the other salient di�erences between our de�nitions and the XML-Schema.

Equality. We have used a more general form of equality than that in XML-

14

Schema. However, as pointed out in Section 2 a full treatment of equality
might involve types or even some form of user-de�ned equality.

De�nition of the target set. In XML-schema the path expression that de-
�nes the target set is taken to start at arbitrary nodes. Recall that in a
key (Q; (Q0; S)) of our notation, the target path Q always starts from the
root (also recall that an absolute key (Q0; S) is equivalent to (�; (Q0; S))).
But it is straightforward to let Q start from an arbitrary node: one needs
simply to substitute �:Q for Q in our notation. More speci�cally, we write
(�:Q; (Q0; S)) (observe that �:Q starts from the root). It is, of course,
possible to \root" a path expression in XML-Schema.

De�nition of key paths. XML-Schema talks about a list (not a set) of
key paths. While this avoids issues of equivalence of XPath expressions,
one can construct keys that are, presumably, equivalent, but have di�erent
or anomalous presentations. For example (temporarily using [...] for lists):
(person,[�rstname, lastname]), (person,[lastname, �rstname]),
(person,[lastname, lastname, �rstname])
impose the same constraint. Since the issue of equivalence of XPath expres-
sions is unresolved, there is no general method of checking whether two such
speci�cations are equivalent.

Relative keys. While there is no direct notion of a relative key in XML-
Schema, in certain circumstances one can achieve a related e�ect. Consider
for example: bookfnameg.chapterfnameg.versefnumberg. In XML-Schema
one can specify a key for verse (this is not XML-Schema syntax) as
(book.chapter.verse, [number, up.name, up.up.name])Here \up" is the XPath
instruction to move up one node. Thus part of the key is outside of the value
of a verse node. One of the inferences one could make for such a speci�ca-
tion is that (book.chapter, [name,up.name]) is a key provided the nodes in
the target set all contain at least one verse child node. Again, it is not clear
how to reason generally about such speci�cations.

7.2 Some alternative de�nitions of keys

The de�nition of keys we have adopted in this paper is quite weak, which we
believe is in keeping with the semi-structured nature of XML. This certainly
does not mirror the requirements imposed by a key in relational databases,
i.e. the uniqueness of a key and existence of key values, i.e., each tuple must
have a key value. We now explore a de�nition which captures both these
requirements.

Strong Keys. In a strong key de�nition, we require that the keys paths exist
and are unique, i.e. n[[Pi]] contains exactly one node for 1 � i � k. The key
paths constrain the target set as follows: Take any two nodes (n1; n2) 2 [[Q]]
and consider the pairs of nodes found by following a key path Pi from n1 and
n2. If all such pairs of nodes are value-equal, then the nodes n1 and n2 are the

15

same node.

As an example of what it means for a path expression to be unique, consider
Figure 2: name is unique at h1i, but work and num are not unique at this node.
The de�nition of satisfaction for strong keys now becomes the following.

De�nition. A node n satis�es a key speci�cation (Q; fP1; : : : ; Pkg) if

� For all n0 in n[[Q]] and for all Pi(1 � i � k), Pi is unique at n
0.

� For any n1; n2 in n[[Q]], if n1[[Pi]] =v n2[[Pi]](1 � i � k) then n1 = n2.

To distinguish the two de�nitions of keys let us refer to keys de�ned above as
strong keys and the keys de�ned in Section 4 as weak keys. Given this strong
notion of keys, let us re-examine some examples given before.

(� :person; fidg) Any two person elements, no matter where they occur,
have unique id subelements and di�er on those elements.

(person; f�g) The interpretation of this key remains unchanged under
a strong key semantics.

(employees; fg) Again, the semantics of this key is the same with respect
to the strong and weak key speci�cations.

(�; fkg) This requires that every element has a key k, including
any element whose name is k.

The last example illustrates that under a strong key semantics, �nite satis�a-
bility (the �nite model property) does not hold for all keys: The key (�; fkg)
imposes an in�nite chain of k nodes and therefore, there is no �nite docu-
ment satisfying it. The problem arises because we require that key paths must
exist. It should be mentioned that the corresponding key in XML-Schema,
(==�; [id]), is not meaningful either, because an id node cannot have a base
type if it is to have an id subelement itself.

Due to the existence requirement on key paths in the de�nition of strong
keys, a strong key imposes certain structural (typing) constraints which are
typically found in schema speci�cations in a traditional database system. For
example, the following document does not satisfy the strong key (A, fBg) since
the key requires that B elements must exist under every A element (and be
unique). In other words, it does not allow keys paths to have a \null" value.
In contrast, the same document satis�es the weak key (A, fBg) as a weak key
permits \null" value. Observe, however, the weak key clearly does not allow
one to distinguish between these A elements.

<ROOT> <A> 1 <A> 2 </ROOT>

It should be mentioned that the distinction between (traditional) structural
constraints (types) and (traditional) integrity constraints is not always well-

16

de�ned. It is dictated largely by what conventional programming languages
treat as types. See [7] for detailed discussion on this topic.

The concept of relative keys can be naturally adapted for strong keys as well.
We say a document satis�es a strong relative key speci�cation (Q; (Q0; S)) i�
for all nodes n in [[Q]], n satis�es the strong key (Q0; S).

The strong notion and weak notion of keys impose di�erent restrictions on
key paths. At one end of the spectrum, all key paths must exist and be unique
(strong keys). At the other end, no structural constraints are imposed on
key paths (weak keys). There are also possibilities in between; for example,
adopting a slightly stronger notion of weak keys which substitutes equality for
value intersection of the node sets reachable by a simple key path.

Keys that determine value equality. So far we have assumed that key
equality implies node identity; however David Maier has pointed out to us
that occasionally we want key equality to imply value equality. This happens
in \non-second-normal-form" keys discussed briey in Section 6. Consider a
scienti�c database that consists of a sequence of entries (each entry describes
some structure, e.g. a gene) and within each entry there is a list of citations.
The key for citations would be: (db.entry.citation, fISBNg). This is not
insertion-friendly. More importantly two entries may contain citations with
the same ISBN. Here we do not want to insist that the two citations are the
same node, but rather that they are value-equal. Of course, such a database
now has redundancy, but allowing occasional redundancies of this kind may
be preferable to having a separate list of citations and doing a join in order
to recover the citations relevant to an entry. An analog of this happens in
relational databases where, for eÆciency purposes, it is sometimes useful to
have non-second-normal-form relations. We have yet to investigate inference
properties for such keys.

7.3 Choice of a path expression language

We have used a language for path expressions that contains just enough to
illustrate most of the issues that occur in connection with keys for XML. In
order to reason about keys, it is essential that equivalence and inclusion of path
expressions are decidable. This is the case for the more expressive language of
regular expressions, and we could equally well have used this language; none
of the results would be a�ected. However the examples we found that used the
added expressive power were somewhat contrived, and it is not clear whether
this larger language is of practical use.

An interesting issue is whether, in de�ning a key (Q; fP1; : : : ; Png), the lan-
guage used to describe the target path Q needs to be the same as the language
used to de�ne the key paths P1; : : : ; Pn. One could choose a simpler language
for key paths that is a sublanguage of the language for target paths. In fact,

17

we only require that the composition Q:Pi of a target path and a key path
should be in the language of target paths.

To simplify the discussion, so far we have required key paths to be simple
paths. However, we could see no other bene�t to simplifying the language of
key paths. Below we extend the current proposal by allowing key paths to
include and �, i.e., to be expressed in the same language that de�nes target
paths. To do so, we �rst de�ne a notion of value intersection. Observe that
the regular language de�ned by a path expression is a set of simple paths. Let
us use � to range over simple paths. Given a path expression P , we use � 2 P
to denote the simple path � in the language de�ned by P .

Value intersection. Let n1 and n2 be two nodes in an XML tree T and P be
a path expression in the language de�ned in Section 3. The value intersection

of n1[[P]] and n2[[P]], denoted by n1[[P]] \v n2[[P]], is de�ned as follows:

n1[[P]] \v n2[[P]] = f(z; z0) j 9 � 2 P; z 2 n1[[�]]; z
0 2 n2[[�]]; z =v z

0g

Intuitively, n1[[P]] \v n2[[P]] consists of pairs of nodes that are value equal and
are reachable by following the same simple path in the language de�ned by P
starting from n1 and n2, respectively.

Using this notation, we extend our key speci�cation as follows.

Key speci�cation. A key is a pair (Q; fP1; : : : ; Png), where Q and Pi's are
path expressions in the language de�ned in Section 3. A node n satis�es the
key i� for any n1; n2 in n[[Q]], if for all i, 1 � i � k, the value intersection of
n1[[Pi]] and n2[[Pi]] is not empty, then n1 = n2. That is,

8n1 n2 2 n[[Q]] ((
^

1�i�k

(n1[[Pi]] \v n2[[Pi]] 6= ;) ! n1 = n2):

It should be mentioned that the complexity results of [6] were developed for
this general de�nition of keys.

7.4 Node names as key values

The choice of an appropriate de�nition for keys for XML will ultimately be
determined by practice. The aim of setting out a key speci�cation is to cover
the practical cases without using de�nitions that are too complex to allow any
kind of reasoning about keys. Have the proposals in this paper covered the
practical cases? There is one issue that may arise in \unconstrained" XML.
Consider the database

<db>

<parts>

<widget> <id> 123 </id> <weight> 1.5 </weight> </widget>

<widget> <id> 234 </id> <weight> 2.5 </weight> </widget>

<gadget> <id> 123 </id> <weight> 3.2 </weight> </gadget>

</parts>

</db>

18

The type of a part { widget or gadget { is expressed in the tag. In alternative
XML representations it might be expressed as an attribute or subelement of
a part element. The key for a part is to be taken as its type together with
its id. With our current machinery, the key constraint can be expressed as
partsfg[.widgetfidg, .gadgetfidg]. However, if we introduce a new part type, a
thingy, the key speci�cation will have to be changed to include a key path
involving thingy. No change would be needed in the alternative representa-
tions. The problem arises because we are interchanging structure (the names)
with data (their values); but the ability to do this is supposed to be one of
the strong points of semistructured data and XML.

Our de�nition of a key (weak or strong) can be extended to express this by
adding a \virtual" subelement, node-name to each named node, whose value
consists of the node name. With this extension, the key for our example can
be expressed as partsfg. .fnode-name, idg.

This does not alter any of the properties we expect to hold for keys and appears
to account for any practical use of tag names in keys.

7.5 Applications

Keys have also proven to be useful in for indexing [10], archiving XML data [8]
as well as for designing relational storage [11]. The constraints and structure
given by keys are often exploited in such systems in order to provide a more
e�ective implementation. Keys are also �nding their way into the data model
of XQuery [26]. Since indices are typically built on keys and keys provide
information on the structure of the data, it would be interesting to investigate
how keys can be applied in the general framework of query optimization [13].

Acknowledgements.We are grateful to Serge Abiteboul, Chris Brew, Byron
Choi, Hartmut Liefke, David Maier, Arnaud Sahuguet, Keishi Tajima, and
Henry Thompson for a number of useful comments and discussions.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web. From Relations to

Semistructured Data and XML. Morgan Kaufman, 2000.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[3] A. Bairoch and R. Apweiler. The SWISS-PROT protein sequence database
and its supplement TrEMBL. In Nucleic Acids Research, 28:45-48, 2000.

[4] W. Baker, A. van den Broek, E. Camon, P. Hingamp, P. Sterk, G. Stoesser,
and M. A. Tuli. The EMBL Nucleotide Sequence Database. In Nucleic Acids

Research, 28(1):19-23, 2000.

[5] D. Benson, I. Karsch-Mizrachi, D. Lipman, J. Ostell, B.A. Rapp and D.
Wheeler. GenBank. In Nucleic Acids Research, 28(1):15-18, 2000.

19

[6] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Reasoning about
keys for XML. In Database and Programming Languages, 2001.

[7] P. Buneman, W. Fan, J. Sim�eon, and S. Weinstein. Constraints for
Semistructured Data and XML. In SIGMOD Record 30(1), March 2001.

[8] P. Buneman, S. Khanna, K. Tajima, and W. Tan. Archiving Scienti�c Data.
Technical Report, University of Pennsylvania. 2001.

[9] B. Choi and A. Sahuguet. DTD Inquisitor Demonstration.
http://xml.cis.upenn.edu/DTDi/.

[10] S. Davidson, Y. Chen, and Y. Zheng. Indexing Keys in Hierarchical Data.
Technical Report, University of Pennsylvania. 2001.

[11] S. Davidson, W. Fan, and C. Hara. Propagating XML Keys to Relations.
Technical Report MIS-CIS-01-33, University of Pennsylvania. 2001.

[12] W. Fan and L. Libkin. On XML Integrity Constraints in the Presence of
DTDs. In Principles of Database Systems, 2001.

[13] L. Popa, A. Deutsch, A. Sahuguet, V. Tannen. A Chase too Far? In ACM

SIGMOD Intl. Conf. on Management of Data, 2000.

[14] R. Ramakrishnan and J. Gehrke. Database Management Systems.
McGraw-Hill Higher Education, 2000.

[15] A. Sahuguet. Everything You Ever Wanted to Know About DTDs, But Were
Afraid to Ask. In WebDB, 2000.

[16] J. Sulston, Z. Du, K. Thomas, R. Wilson, L. Hillier, R. Staden,
N. Halloran, P. Green, J. Thierry-Mieg, and L. Qiu. The C. elegans genome
sequencing project: A beginning. In Nature, 356(6364):37-41, 1992.

[17] P. Wadler. A Formal Semantics for Patterns in XSL. Technical report,
Computing Sciences Research Center, Bell Labs, Lucent Technologies, 2000.
http://www.cs.bell-labs.com/who/wadler/xml.html

[18] GEML. http://www.geml.org/

[19] MAML. http://www.oasis-open.org/cover/maml.html

[20] TIMIT. CDROM TIMIT Directory and File Structure.
http://www.ldc.upenn.edu/readme files/timit.readme.html.

[21] W3C. Document Object Model (DOM) Level 1 Speci�cation.
Recommendation, October 1998. http://www.w3.org/TR/REC-DOM-Level-1/.

[22] W3C. Extensible Markup Language (XML) 1.0. Feb 1998.
http://www.w3.org/TR/REC-xml.

[23] W3C. XML-Data. Note, January 1998.
http://www.w3.org/TR/1998/NOTE-XML-data.

[24] W3C. XML Path Language (XPath). Working Draft, November 1999.
http://www.w3.org/TR/xpath.

[25] W3C. XML Schema Part 1: Structures. Working Draft, April 2000.
http://www.w3.org/TR/xmlschema-1/.

[26] W3C. XQuery 1.0: An XML Query Language. Working Draft, June 2001.
http://www.w3.org/TR/xquery/

20

