A Unified Constraint Model for XML

Wenfei Fan®P Gabriel M. Kuper? Jéréme Siméon P

aCIS Department, Temple University
Philadelphia, PA 19112, USA

bBell Laboratories, 600 Mountain Avenue
Murray Hill, 07974, New jersey, USA

Abstract

Integrity constraints are an essential part of modern schema definition languages.
They are useful for semantic specification, update consistency control, query opti-
mization, etc. In this paper, we propose UCM, a model of integrity constraints for
XML that is both simple and expressive. Because it relies on a single notion of keys
and foreign keys, the UCM model is easy to use and makes formal reasoning possible.
Because it relies on a powerful type system, the UCM model is expressive, capturing
in a single framework the constraints found in relational databases, object-oriented
schemas and XML DTDs. We study the problem of consistency of UCM constraints,
the interaction between constraints and subtyping, and algorithms for implementing
these constraints.

Key words: XML, XML Schema, Integrity Constraints, Keys, Reasoning.

1 Introduction

XML has become the universal format for representating and exchanging in-
formation on the Internet. In many applications, XML data is generated from
legacy repositories (relational or object databases, proprietary file formats,
etc.), or exported to a target application (Java applets, document manage-
ment systems, etc.). In this context, integrity constraints play an essential
role in preserving the original information and semantics of data. The choice
of a constraint language is a sensitive one, where the main challenge is to find
an optimal trade-off between expressive power (How many different kinds of

Email addresses: wenfei@research.bell-labs.com (Wenfei Fan),
kuper@research.bell-labs.com (Gabriel M. Kuper),
simeon@research.bell-labs.com (Jérome Siméon).

Preprint submitted to Elsevier Science 26 March 2002

constraints can be expressed?) and simplicity (Can one reason about these
constraints and their properties? Can they be implemented efficiently?). The
ID/IDREF mechanism of XML DTDs [1] (Document Type Definitions) is too
weak in terms of expressive power. On the other hand, XML Schema [2] fea-
tures a very powerful mechanism with three different forms of constraints,
using full XPath expressions, and therefore the reasoning and implementation
of XML Schema constraints has a high complexity.

In this paper, we introduce UCM, a model of integrity constraints for XML.
UCM relies on a single notion of keys and foreign keys, using a limited form
of XPath expressions. The main idea behind UCM is a tight coupling of the
integrity constraints with the schema language. This results in a model which
is both simple and expressive enough to support the classes of constraints
that are most common in practice. UCM constraints are easy to manipulate
in theory: we study the consistency of UCM schemas and how their constraints
interact with subtyping. UCM constraints are easy to manipulate in practice:
we illustrate their use with a number of examples and give simple algorithms
for their implementation. In particular, we make the following technical con-
tributions:

e We extend the type system of [3] with a notion of keys and foreign keys. This
constitutes UCM, a schema language for XML with integrity constraints.

e We show that UCM schemas can capture relational constraints, object-
oriented constraints, and the DTD’s ID/IDREF mechanism.

e We show that, as for XML Schema, deciding consistency over full UCM
schemas is a hard problem. We propose a practical restriction over UCM
schemas that guarantees consistency. This restriction is general enough to
cover both the relational and object-oriented cases.

e We propose an algorithm for propagating constraints through subtyping.
This mechanism is the basis for supporting the notion of object-identity of
object models within UCM schemas.

e We present algorithms for schema validation in the presence of UCM con-
straints

2 Integrity constraints in existing models

We start with some examples of integrity constraints in some of the most
popular data models, namely relational, object-oriented schemas and DTDs.

Capturing constraints from legacy sources

Example 2.1 Our first example is a relational database with two tables, one
for companies and one for the departments in the companies, whose schema
is defined with the following SQL statements.

CREATE TABLE Company (co CHAR(20),
stock REAL,
PRIMARY KEY (co))
CREATE TABLE Dept (dname CHAR(20),
co CHAR(20),
topic CHAR(100),
PRIMARY KEY (dname,co),
FOREIGN KEY (co)
REFERENCES Company(co))

Note that each table comes with a structural specification, as well as with
integrity constraints. The specification of keys and foreign keys is an essen-
tial part of a relational schema: they prevent erroneous updates, and are used
for the choice of indices and for query optimization [5]. In the above schema,
the name of the company (attribute co) is a key for the table Company, i.e.,
each row must have a distinct value for attribute co. Hence, the name of the
company can be used to identify the company. A foreign key imposes the re-
quirement that values of a particular (sequence of) attribute(s) in one relation
must match the values of some (sequence of) attribute(s) in another relation.
For instance, the co attribute of the table Dept must be a valid company name
in the table Company. Foreign keys provide the means to represent references
within the relational model. [

Example 2.2 The same information can be represented in an object database
using the following schema, here in an ODMG syntax [6]:

class Company class Dept

(key co) (key (dname,co))

{ attribute String co; { attribute String dname;
attribute Float stock; } attribute Company co;

attribute String topic; }
U

In the ODMG model, every object has an identifier (Oid), which is unique
across the whole database. This is a significant departure from the relational
model, where keys are local to a table: in the above example, objects of class
Dept and Company must all have distinct Oids. Oids can be used as a reference
to the object. For instance, attribute co of class Dept is a reference to an object
of class Company. The ODMG model also supports a notion of a local key (e.g.,
attribute co for the class Company).

Reasoning with XML constraints Integrity constraints have been exten-
sively studied in the relational database context [8,5], which is a much simpler
model than XML. Despite this, relational experience shows that reasoning
about constraints is a non-trivial task, and simple constraint languages can
have high complexity.

In the context of information integration, both of the above models, along with
documents exported from other sources, may occur in a single XML database.
This means that the constraint model must deal with several different sorts
of constraints in the same framework. Hence, the results presented in [7] are
not directly applicable.

For DTDs, determining whether a specification is consistent or not requires a
complex analysis of the interaction between structural constraints, keys, and
foreign key constraints [9]. A number of restricted cases with good complexity
properties are proposed in [7], but none of the corresponding languages can
capture all of the above uses of constraints in the same framework.

The problem is made even harder by the fact that XML Schema [2] provides
three different constraint mechanisms: ID/IDREF, unique constraints, and
keys/foreign keys. Furthermore, it allows specifications using full XPath ex-
pressions, which include upward navigation as well as some form of recursion
and function calls, each of these mechanisms having been introduced to sim-
ulate some of the constraints found in traditional models. As a result of this,
even reasoning about consistency for these constraints is very hard.

3 UCM by examples

3.1 The XML Query Algebra

The UCM model relies on the XML algebra of [3]. This algebra uses a type
system that captures the structural aspects of XML schema [2]. We review
the main features of the XML Query algebra, and then extends it to support
ID values.

Documents and types

The XML algebra uses a “square brackets” notation for types and documents.
For instance, the following DTD:

<!ELEMENT company stock>
<!ATTLIST company co #PCDATA #required>
<!ELEMENT stock #PCDATA>

are represented in the XML Query Algebra as:
type Companies = companies [Companyx*]

type Company = company [@co [String 1,
stock [String 1]

A tag prefixed by @ corresponds to an attribute. The type system uses regular

expressions, as in DTDs, with a * to indicate a collection of elements. ~ is a
wildcard, meaning that any element name is allowed. Similarly, @ means that
any attribute name is allowed.

Path expressions

We will use simple XPath expressions for navigating in documents. The fol-
lowing expression accesses the content of the co attribute of each company:

query doc0/company/@co/data()
String*

The algebra supports a type inference algorithm which computes the type of
each expression. In the examples, ‘:’ indicates the type of the expression (here
sequence of strings). The ./data() notation is used to access the atomic value
of an element, playing a role similar to that of ./text () in XPath.

Representing and accessing ID types

In order to support DTDs, we need to represent the type of an object ID, a
notion that is not in the XML algebra. To do this, we simply add a new data
type, with name ID. The following example adds an attribute compid of type
ID to the previous schema and document:

type Companies’ = companies [Company’*]

type Company’ company [@compid [ID],
Q@co [String 1],
stock [String]]

An important difference between UCM and XML schema is that the semantics
of the ID type in UCM is no different from the semantics of any other data
type: we shall see later how the uniqueness of ID values is enforced by an
appropriate key constraint, and how referential integrity is enforced by an
appropriate foreign key constraint.

3.2 Keys and foreign keys in UCM

We are now ready to write our first UCM constraints. The following captures
the structural part of the relational schema from the introduction:

schema rel =
root Companies,Depts

type Companies = companies [Companyx*]

type Company company [co [String],
stock [Decimal] 1]

depts [Deptx*]

type Depts

type Dept = dept [dname [String],
co [String 1,
topic [String]]

Note that each UCM schema has a root described by a type expression, in
this example a sequence composed of the two tables. In order to represent the
corresponding integrity constraints, we just have to declare appropriate keys
and foreign keys:

key Company [| ./co/data() I]
key Dept [| ./dname/data(), ./co/data() |]

foreign key Dept [l ./co/data()]
references Company [| ./co/data() |]
end

The first declaration corresponds to table Company’s primary key. UCM con-
straints are similar in syntax and spirit to relational constraints. They are
composed of a type name and a sequence of path expressions starting at the
current node (.). Here, the key constraint states that for any two distinct
objects of type Company their co sub-elements must have two different values.
The foreign key states that any value of the co element in an object of type
Dept is also the value of the co element in some object of type Company.

As opposed to other approaches [13,14], and especially XML Schema [2], UCM
keys and foreign keys are defined over type names. The first argument for this
choice is a logical one: type names play a role similar to table names in the
relational model or to class names in object models. This makes them natural
entities on which to add additional semantics by means of integrity constraints.
The second argument is technical: (1) this approach takes advantage of the
expressive power of the type system to define the set of elements on which a
constraint applies, and (2) a minimal subset of XPath is then sufficient for the
definition of components for keys and foreign keys.

3.3 Constraints semantics

XML has a much more flexible type system than the relational model. Very
often, XML documents have optional components, alternative structures, or
allow repetition over certain sub-elements. Assume for instance, that compa-
nies and departments may have several alternative names (in attribute @co
and @dname, as well as element co):

root companies [Company*], dept [Deptx*]

type Company = company [@co [Stringx],
stock [String 1]

type Dept = dept [@dname [Stringx],
co [String*]]

let docO : Companies =
companies [company [@co ["Locent",
"Locent Corp.",
"Lo. Corp." 1,
stock ["25" 1 1],

dept [@dname ["Databases",
"BL1135"],
co ["Locent"] 1

key Company [| ./Q@co/data() |]
key Dept [l ./@dname/data(), ./co/data() |]

foreign key Dept [| ./co/data() []
references Company [| ./@co/data() |]
end

We still want to be able to identify specific companies or departments, even
though each of them may declare several variations of their name. The seman-
tics of UCM constraints is such that any one of the values of attribute @co is
considered to be a key for the company, and any pair of values (@dname,co)
is a key for the department.

In the example, "Locent" and "Locent Corp." are both keys for the elements
of type Company, while ("Databases","Locent") and ("BL1135","Locent")
are both keys for Dept. In the latter case, the foreign key then says that
"Locent" must be one of the keys for some element of type Company.

3.4 The UrSchema with ID types

It is not surprising that one can capture relational constraints with a no-
tion of keys and foreign keys. More surprising is the fact that UCM schemas
can capture the semantics of the ID/IDREF mechanism. Once again, this is
possible by exploiting the expressive power of the schema language, using a
generic schema and imposing the appropriate constraints on values of type ID.
This schema, called the UrSchema, describes all possible documents, enforcing
uniqueness of ID, and referential integrity.

schema UrSchema

type UrScalar = String|Integer|Boolean (* atomic types *)
type UrTree = [UrAttForest, UrForest] (* elements *)
type UrAtt = @~ [UrScalar*] (* attributes *)

type UrForest = (UrScalar|UrTree|UrTreeID|UrRef)*
type UrAttForest = (UrAtt|UrAttRef)*

type UrAttID = @~ [ID] (* element identified with an ID *)
type UrTreeID = ~[UrAttID, UrAttForest, UrForest]

type UrRef = &[ID] (* IDREF *)
type UrAttRef = @~ [UrRef]

root UrTreex* (* root documents *)
key UrTreeID [| ./@7/ID() 1] (x ID / key constraint *)

foreign key UrRef [| ./ID() |1 (* IDREF / foreign key *)
references UrTreeID [| ./@~/ID() |]
end

The first part is similar to the UrTree type in the XML algebra, as used to
captures XML Schema wildcards: trees are either leaves with atomic values
(UrScalar), or elements with a name (7), any attributes (UrAttForest) and
an arbitrary number of children (UrForest).

We extend the notion of UrForest to allow two other types of objects: trees
with an ID, and references. A tree with an ID (UrTreeID) is basically an
UrTree with a special attribute at the beginning corresponding to the ID of
the object. A reference is simply an ID with a special tag ‘&’. This syntactic
separation between ID values that identify elements, and ID values that refer-
ences them is necessary to avoid ambiguity in the schema, i.e.,to ensure that
a given document cannot be typed in multiple ways.

The key toward the end of the definition of UrSchema ensures that no two
distinct objects have the same ID value. Note that an attribute wildcard (@~)
is used to access the ID value of each tree without requiring one to know the
corresponding attribute name. The foreign key ensures that every reference
points to an existing ID value in the document.

3.5 Subsumption between UCM Schemas

Well-formed documents are instances of the UrSchema and all UCM schemas
are required to be smaller (in terms of subtyping) than the UrSchema. We
model subtyping using the notion of subsumption introduced in [4]. Subsump-
tion is a relation between two schemas, that relies on a mapping between their
type names, and on inclusion between regular expressions over type names.

For instance, assume a schema with type Companies’, as defined above, as
a root. This schema is subsumed by the UrSchema, under the following sub-

sumption mapping:

Companies’ <: UrTree
Company <: UrTreelD

For each two mapped types (here those in Companies and in UrTree), con-
tainment must hold between the respective element names (e.g., companies
in 7), and their corresponding regular expressions must be contained under
the given mapping (e.g., here UrTreeID* in UrAttForest,UrForest).

The reason for declaring a subsumption mapping is that it has an impact on
the constraints that hold on the new schema. In our example, the fact that
Company is subsumed by UrTreeID implies that all ID values in the company el-
ements must be distinct. This constraint is derived from the key constraint that
holds over elements of type UrTreeID. Propagation of constraints through sub-
sumption in fact provides a mechanism that captures the nature of ID /IDREFs
in DTDs (resp. object ids in object models): i.e., uniqueness across the whole
document (resp. the whole database).

Finally, consider the ODMG schema of Example 2.2. Once again, it is straight-
forward to convert the structural part of an object schema into an UCM
schema. We use one type name for each class, and map each data structure
to a simple XML equivalent. We also add a constraint for each key and a
foreign key constraint that restrict the scope of ID references. This allows us
to capture typed object references, and results in the following schema:

schema COMPANY <: UrSchema =
root Company*,Deptx*

type Company = tuple [@oid [ID],
name [String],
stock [Float] 1

type Dept = tuple [@oid [ID],
name [String],
co [&[ID] 1,
topic [String]]

key Company [| ./name/data() 1]
key Dept [| ./name/data(), ./co/data() |]

foreign key Dept [| ./co/&/ID() |]
references Company [| ./@oid/ID() 1]
end

Note the declaration of the subsuming schema (UrSchema) for the new schema
(COMPANY). Once again, propagation of constraints from UrSchema makes sure
that the @oid [ID] attributes behave like object ids, and that &[ID] elements

name a al|a2|---
attributes, element name [= a element name

| @a attribute name
element name wildcard

(&)

R

|
| @~ attribute name wildcard
| & reference tag
type name X X1|X2]---
scalar type s = Integer
| String
| Boolean
ID type ¢t »=1ID
type =X type name
| s scalar type
| i id type
| [t] element and attributes
| t,t sequence
| tIt choice
|t repetition
| O empty sequence
| 0 empty choice
Fig. 1. Types

behave like object references. The process of constraint propagation through
subsumption is described in Section 5. Together with structured types, sub-
sumption, and integrity constraints, UCM covers almost every aspect of the
ODMG model, with the notable exception of multiple inheritance which can
involve attribute renaming: this cannot be handled due to the structural na-
ture of subsumption.

4 Syntax and semantics of UCM

4.1 Syntax of UCM schemas

The first part of the syntax is the type specification, which is summarized
in Figure 1. This is similar to the syntax of types in the XML Algebra [3],
with the addition of attributes, of the type ID, and of the special tag & The
syntax of types is based on attribute and element names, scalar types, and
the ID type. One can give names to types, construct elements, attributes and
references, and build reqular expressions over types using sequence, choice,
and repetition (Kleene star).

10

o~

T
~
3

name selection
data() scalar selection
ID() ID selection
nested path
Ip single path

ps , ./p path sequence

path

i

path sequence ps :

Fig. 2. Path expressions

key name k k1 |k2|---
schema name S S1]s2]---
schema item ¢ = key X [| ps []

| keyk=X [l ps I]
| foreign key X [| ps |]references X [| ps |]
| foreign key X [| ps |]referencesk
|

type X =t
root r =roo0ot ¢
schema U :=schema S =7 ¢... iend
| schema S<:S =7 i...iend

Fig. 3. Keys, foreign keys, and UCM Schemas

The second important part of the schema language is the subset of path ex-
pressions that are used to define the components of keys and foreign keys.
Paths used in UCM are given in Figure 2. These are only very simple paths,
that perform navigation by selecting children, elements, attributes, or values
of a given node. Note the use of ./ to denote navigation from the current
node. Remember that one can use wild cards for navigation, selecting all the
elements or attributes, while disregarding their names. ./ID() accesses all
the nodes whose value is of type ID. This is indeed a very small subset of
XPath [15], notably we do not allow: navigation among ancestors or siblings,
predicates, recursive navigation (i.e., //), and function calls.

Finally, Figure 3 gives the syntax of keys, foreign keys, and top level schema
declarations. As we have seen in the introduction, the definition of keys and
foreign keys is composed of a type name and a sequence of path expressions.
A schema is composed of a root, plus a number of type, key and foreign key
declarations.

We will call element type names of a schema S, the subset of type names X
of S whose definition is of the form type X = [[t]. We will use name () and
regexp() for the operations that access, for an element type name, the tag
and the regular expression over its children.

11

4.2 Semantics of UCM schemas

We now describe the formal semantics of UCM schemas, in terms of the set
of documents that they validate.

4.2.1 Databases.

Integrity constraints are used to identify nodes in XML documents. Therefore,
we need to extend the data model of the XML algebra by a notion of node
identity. In the following, we assume o to range over an infinite set of OIDs
O. XML data is represented in the following simple data model.

Definition 4.1 [database] A database consists of a sequence of documents.
Each document has a tree structure, in which each node (value, reference,
attribute or element) has an associated OID o.

4.2.2 Path expressions.

In the XML Algebra, path expressions are defined using the more basic oper-
ations children() (that returns the list of children of a node), for loops, and
match expressions. We will use the same static (typing) semantics for path
expressions as the one given in [3], but we extend the evaluation semantics so
it takes the notion of OID and the ID type into account.

Definition 4.2 [value, tag, and children]

Let o be an OID. We write val(o) for the value associated with the node o,
name (0) for the tag of the node o0, and children(o) for the list of OIDs that
are children of o (including attributes which appear at the begining, ordered
alphabetically by name), respectively.

Definition 4.3 [path expressions]

Now that children() is defined over OIDs, we can reuse the same definitions
for path navigation as in the XML algebra. For lack of space, we only give the
corresponding rule that deals with navigation among ID values. See again [3]
for more details about the semantics of the match expression.

e/ID() = for v; in e do
for vy in children(v;) do
match vy
case v3 : ID do w3
else ()

12

Definition 4.4 [path sequences]

Last, we need to define the semantics of values accessed by the sequence of
paths which compose keys and foreign keys. Recall from Section 3.3, that
key components are actually compared through a cross product semantics.
This is captured using a series of nested for loops that iterate over each key
component.

6/[| P1s---5Pn |:| == 6[' -/pl,..., /pn |:|
= for v; in e/ p; do

for v, in e/ p, do
klvy , ..., v,]

This results in a sequence of key elements k, each containing a sequence of
values that participate in the definition of a key or foreign key.

4.2.3 FEquality.

Finally, our constraints rely on two different notions of equality: node equality,
which is used to identify nodes in the document, and value equality, which is
used to compare values of keys. Node equality is defined to be equality on
OIDs. We assume that value equality is defined over atomic values in the
straightfoward way.

Definition 4.5 [value equality]

Let 0, and o0y be OIDs. 0; =, 09 iff 0; and 0, contain two atomic values that
are equal, or

(1) o, and o0, have the same tag,
(2) attributes(o;) = attributes(oy), and

(3) if children(o;) = (0{ s, 0’{) and children(o;) = (0% s, og),
then k =1 and o} =, o}, for all 1 <i < k.

4.2.4 Typing.

Typing corresponds to the structural part of schema validation. Following the
approach of [10,4], typing consists of finding a mapping, or type assignment
from OIDs to type names for which names match, and for which the children
verify the regular expression defining the type of the parent.

Definition 4.6 [Typing]
Let D be a database and S a schema. We say D is of type S under the type

assignment 6, and write D :y S, iff # is a function from the set of OIDs in D to

13

the set of element type names X1, ..., Xn in S such that for each OID o

(1) name (o) satisfies the label (wildcard) of type (o), and

(2) if children(o) = (01, ..., On), then the word 0(o1) , ..., 0(0y) is in
the language defined by the regular expression of 6(o) over its element
type names components.

Note that all the types involved in that definition must be element type names
(i.e., describing elements), and require regular expressions to be over each
element type names. The user syntax, however, allows the use of anonymous
types, by nesting sub-elements, and therefore typing also requires type names
to be generated. But as type assignment is only an internal structure, this can
be done by the system, transparently for the user. Whenever we need to talk
about such system-generated type names, we use strings preceded by ’_’. For
example, the definition of the type Company could be mapped to:

type Company = company[_tl, _t2, _t3]

type _t1 = @compid[ID]
type _t2 = Qco[String]
type _t3 = stock[String]

We assume that each schema is unambiguous, i.e., if 0 exists, it is unique. This
is a necessary assumption for the semantics of constraints, reasoning, and any
practical implementation.

We write Models(S) for the set of databases of type S, i.e., {D | 3¢,D :4 S}.

We write extp(X) for the extension of type X (with respect to schema S), i.e.,
the set of objects of D of type X, or extp(X) = {o | 0 € D,0(0) = X}.

4.2.5 Key and foreign key.
We now give the notion of satisfaction for keys and foreign keys.
Definition 4.7 [Key satisfaction]

Let S be a schema, X a type of S, and k a key of S defined over type X with
key component [| ./p;, ..., ./p, 1].

A database D satisfies the key k iff, for all OIDs 0; and o0, in extp(X), if there
exist ke; in o /[l pl,...p, |1 and key in 0o/ [| pl, ...p, 11, such that
ke; =, kes, then o1 = 0o.

Definition 4.8 [Foreign key satisfaction]

Let S be a schema, X and X’ types of S.

14

Let fk a foreign key of S from type X with component [| ./p;, ..., ./pp 1]
to X’ with component [| ./p}, ..., ./p, |].

A database D satisfies fk iff:

for all OIDs o in extp(X), and all ke in o/[| pl,...p, |1, then there exists
o in exty(X?) and ke’ in o'/[| pl,...p, 1], such that ke =, ke'.

4.2.6 Subsumption.

Recall from the object-oriented examples in the previous sections that a com-
plete definition of UCM requires constraint propagation through subsumption.
We borrow the definition of subsumption from [4]. Subsumption is a relation-
ship between types that is strictly more expressive than subtyping in XML
schema, while still being easy to manipulate. Subsumption relies on an idea
similar to typing, i.e., it is defined through a mapping between type names,
called a subsumption mapping.

Definition 4.9 [Subsumption]

Let S and S’ be two schemas. We say that schema S’ subsumes S under the
subsumption mapping 0, and write S<:y S, iff f is a function from element
type names in S to element type names in S’, such that:

Y

)
);

(1) for all element type names X in S, name (X) is smaller! than name (6(X)

(2) for all element type names X in S, §(L(regexp(X))) C L(regexp(#(X))
where L(r) is the language generated by regular expression r.

(3) O(L(regexp(root(8)))) C L(regexp(root(S’))).

We write S <: S’ if there exists a # such that S <:y S’.

4.2.7 Schema validation.

Finally, we define the notion of validation of documents by UCM schemas with
constraints.

Definition 4.10 [Validation of UCM schemas]

Let D be a database and S an UCM schema whose type is subsumed by S’.
We say D validates S under the type assignment 6, and write D : :y S, iff

(1) D] S,
(2) D validates S”,
(3) for all key k in S, D satisfies k,

1 Where smaller is defined with the obvious meaning: a<a, a<”. etc.

15

(4) for all key fk in S, D satisfies fk.

The second condition is not as expensive as it may seem: we know already
that S’ subsumes S, and as a consequence we can deduce the extensions of
the types in S’ from the extensions of the types in S and from the subsumption
mapping 0 2. Therefore, we only need to check that D satisfies the constraints
in the subsuming schema.

5 Reasoning about constraints

In this section we study several forms of reasoning about constraints. As al-
ready pointed out, this is, in general, a difficult task. We therefore concentrate
on finding practical solutions for two important problems in our context. The
first problem is to tell whether a schema specified by the user makes sense or
not, i.e., whether there exists at least one nonempty database that satisfies
the schema. The second problem is the propagation of constraints through
subsumption, which, as we have seen, is needed to capture object-oriented
schemas.

5.1 Consistency

The consistency problem for UCM schemas is to determine whether a given
schema is consistent, i.e., whether there exists at least one nonempty database
that satisfies the schema. This issue is important because one wants to know
whether a schema specification makes sense.Relational schemas (with keys
and foreign keys) are always consistent if they are syntactically correct and
do not have type mismatch. Under the same assumptions, object-oriented
schemas are also consistent. But, as we have seen in Section 2, the situation
is more complicated for XML schema specifications, as a schema can impose
cardinality dependencies on elements, and these cardinality dependencies can
interact in turn with the keys and foreign keys.

Proposition 5.1 The consistency problem is undecidable for UCM schemas,
even when the paths in keys and foreign keys are restricted to be of length 1.

This undecidability result suggests that we look for restricted classes of UCM
schemas for which the problem is decidable.

Proposition 5.2

2 This is done by composition of subsumption and type mappings; see [4] for more
details.

16

(1) The consistency problem for UCM schemas is NP-hard when all keys and
foreign keys are unary.

(2) The consistency problem remains NP-hard for UCM schemas with unary
keys and foreign keys, even when we allow at most one key on each type
in the schema (the primary key assumption). O

Propositions 5.1 and 5.2 follow from similar results [9] for DTDs and (primary,
unary) key and foreign key constraints. It should be mentioned that these
results also hold for XML-Schema.

These negative results suggest that we consider restrictions on the type defini-
tions instead. In particular, we would like to identify a class of UCM schemas
that can express both relational and object-oriented schemas, but with con-
sistency being decidable.

We identify a class of consistent UCM schemas as follows.

Definition 5.3 A schema S is said to have the database property if it is of
the form:

schema S =
type root = X1%,..., Xnx*
type X1 = t1
type Xn = tn

key X [l pi1,..., pn |]

foreign key X [I p1,..., pn |]
references Y [| pl1’,...,pn’ |]

end
such that

e Xi does not appear in tj for any i, j;
e for any constraint:

foreign key X [lpl,..., pnl] references Y [|pl’,...,pn’|]
in S, X/pi and Y/pi’ have the same unit type, and the regular expression in
the definition of this type does not use the union construct ‘|’. In addition,

if type(X/pi) is ID, then pi has the form p’/&/ID() and pi does not appear
in foreign key of X referencing Z for Z # Y.

Unit types are defined as either elements, scalar types or the ID type. These
two restrictions are designed to avoid the complex interaction between typ-
ing and integrity constraints. By restricting the use of type names, the first
condition also restricts the constraints that one can define in a schema. The
second condition prevents having complex types in the key components.

17

Proposition 5.4

Let C' denote the class of UCM schemas that have the database property.
Then (1) All schemas in C' are consistent, and (2) It is decidable in quadratic
time whether a UCM schema is in C'. O

These restrictions might seem very strong, but they still cover a lot of practical
cases:

Proposition 5.5

All relational and ODMG schemas can be expressed as schemas in C. O

5.2 Constraints through subsumption

As explained above, the semantics of OIDs in an OO schema is captured in
UCM by the constraints in UrSchema, i.e., by the fact that OIDs are unique,
and that every reference is to an OID that is present in the database. The
definition of a schema permits the user to reference keys without declaring
them explicitly. For example, in Section 3.5, we described a schema where a
Dept has a foreign key that references the value of @oid in Company, relying
implicitly on the fact that UrSchema implies that the latter is a key.

In order to verify that the schema, as specified by the user, is indeed valid, we
have to study the interaction between subsumption and integrity constraints.
In order to do this, we first extend the notion of key to apply to unions of
types, rather than just to single types. For example, we want the key on
ID in UrSchema to imply that OIDs are unique over all objects in the user
schema (more precisely, over those that have an ID), rather than just be
unique over objects of a specific type. We write such keys with the syntax
key (X1l...1Xj) [l ./p1, ..., ./pn |] The definition of satisfiability for
multiple types is the same as the definition for single types, except that extppx)
is replaced by extpxi) U - - - U extp(xy)-

Let S be a schema subsumed by schema S’ (S<:S’). We have to check
whether this declaration is valid. In order to check this, we need to verify that,
for each foreign key foreign key Y [| ./p1l, ..., ./pn |] references X
[l ./q1l, ..., ./qm |] in S, the right-hand side is indeed a key.

We do this by propagating keys from S’ to S. This new set of keys, K =
K (8, 8') is defined as follows. First, K contains all the keys of S. Then, for every
key X’ [l ./pt, ..., ./pn |1in S’ let X1, ..., Xj be the set of types in
S that are mapped by 6 to the type X’. We then add the key (X1]...[Xj)
I ./p1, ..., ./pn |1 to K.

Proposition 5.6 Let S and S’ be schemas, declared as S<:S’ Then S is a

18

valid schema declaration iff, for every foreign key

foreign key Y [| ./p1l, ..., ./pn |]
references X [| ./q1l, ..., ./qgm |]

in S, there is a key of the form
key (X1]...1Xj) [l ./q1, ..., ./gm |]
in K(S,S’), where X is in {X1,...,Xj}. O

In the same way that we extended the definition of keys to include multiple
types, we could also extend the definition of foreign keys. We would then
obtain a nice correspondence between subsumption and keys. To show this,
we define FK = FK(S,8') to take foreign keys into account. Start with all
the keys and foreign keys of S in FK, and add all the keys in K(S,S') to FK.
Then, for each

foreign key (Y1|...|Ym) [| ./p1l, ..., ./pn |]

references (X1|...[|Xi) [l ./ql, ..., ./qgm |]

in S’, let X1, ..., Xn be the set of types in S which are mapped by # to types
inX1’,...,Xi’, and let Y1, ..., Yj be the set of types in S which are mapped
by 6 to types in the set Y1°, ..., Ym’. Add the foreign key

foreign key (Y1’|...1Yj’) [l ./pl,...,./pn |]

references (X1’|...|Xn’) [| ./ql,...,./qm |]

to FK.

We can then show

Proposition 5.7 Let D be a database and S an UCM schema of subsuming
type S’. Then D validates S under the type assignment 6, iff D :y S, and D
satisfies all the keys in FK(S,S').

6 UCM in practice

In this section, we describe simple algorithms for validating UCM schemas in
the presence of integrity constraints. The objective is only to demonstrate the
practical feasibility of our approach, not to present optimized algorithms.

We try to take as much advantage as possible of the coupling between integrity
constraints and type information, in order to reduce the number of passes over
the document. In a nutshell, we try to perform both typing and constraint
checking within the same algorithm.

19

Since the use of keys in UCM is quite close to their use in relational databases,
we can exploit relational techniques. In particular, while processing the keys,
we build an index which maps the values of keys to the internal node id of the
element. This index has two uses: verifying whether a given key has already
been used and checking validity of foreign keys. Still, there are several aspects
in which UCM diverges the from the relational model.

Anonymous Keys

First, we must take into account that the right-hand side of foreign keys can
contain keys that are propagated via subsumption from existing keys, as ex-
plained in 5.2, but are not declared themselves as keys, and we must build
indices for such keys as well. Note that the set of these keys can be deter-
mined at compile-time.

Cross-product semantics of constraints and typing.

Remember that because a key component can reach more than one value,
the definition of the semantics of UCM constraints uses a cross product. As
a consequence, there may be more than one key (in the same index) for the
same node, and the generation of the index must take this into account.

Equality.

Index operations are get(Index,value) and insert(Index,value,node).
These rely on value equality, not node equality.

This said, let us look at the algorithm itself. During validation, the system
assigns a type to each node. At the same time, the system also considers
all key constraints £ that apply to this type. For each such key there is a
corresponding (global) index I, r, and the system calls index_insert on these
indices. A pseudo-code description of this function is:

index_insert (m:Node, Ij;:Index, p:list(Path))
key_values := algebra_eval(n/p);

for, kv in key_ values do
n' = get(lg, kv

if (n' = Fail) then
insert ([g,kv,n)
else
if n' #n then Error;
endfor;

’

Subsumption

The constraints which need to be checked are not just those that are declared
explicitly in the schema, but also those that arise due to subsumption. We must
keep track (in compile-time) of which types get mapped to which subsuming
types, and verify the appropriate constraints on the subsuming schema as well.

20

In the following pseudo-code this is represented as a recursive procedure of
obtaining the super_type of the current type, and reiterating until we reach
the UrTree.

The pre-processing needed in order to take subsumption into account is there-
fore first to make sure that the right-hand side of the foreign keys are key
constraints, then to build the the subsumption mapping, and to hook each
type in the subsuming schema, for which a constraint holds, to the appropri-
ate indices.

This is summarized in the following pseudo-code, in which key(t) returns
true if a key has been defined for type t, and get_indices returns the set of
indices (and corresponding paths) for keys that apply to this type.

(* main procedure *)
check_node (n:Node, ¢: Type)
(* subsumption first *)
t' .= super_type(t);
if (key(t') and t # UrTree)
then check node(n,t');
izs := get_indices(t);
for iz in izs do
p := get_paths(iz);
index_insert(n, iz, p);
forend;

Foreign keys

Foreign keys are easier to handle. They are validated during a second path,
so that we already know the extension of each type, and have a full index for
all the keys.

check foreign key (n:Node, p:list(Path), iz:Index)
fkey_values := algebra_eval(n/p);
for kv in fkey_values do
n' = get(iz, kv);
if (n' = Fail) then
Error
endfor;

References

[1] T. Bray, J. Paoli, C. M. Sperberg-McQueen, Extensible markup language
(XML) 1.0, W3C Recommendation, http://www.w3.org/TR/REC-xml/ (Feb.
1998).

21

[2] H. S. Thompson, D. Beech, M. Maloney, N. Mendelsohn, XML schema part 1:
Structures, W3C Working Draft (Feb. 2000).

[3] M. F. Fernandez, J. Siméon, P. Wadler, A semi-monad for semi-structured
data, in: Proceedings of International Conference on Database Theory (ICDT),
London, UK, 2001, pp. 263-300.

[4] G. M. Kuper, J. Siméon, Subsumption for XML types, in: Proceedings of
International Conference on Database Theory (ICDT), London, UK, 2001, pp.
331-345.

[5] R. Ramakrishnan, J. Gehrke, Database Management Systems, McGraw-Hill,
2000.

6] R. G. G. Cattell, D. Barry (Eds.), The Object Data Standard: ODMG 3.0,
Morgan Kaufmann, 2000.

[7] W. Fan, J. Siméon, Integrity constraints for XML, in: Proceedings of ACM
Symposium on Principles of Database Systems (PODS), Dallas, Texas, 2000,
pp. 23-34.

[8] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley,
1995.

[9] W. Fan, L. Libkin, On XML integrity constraints in the presence of dtds, in:
Proceedings of ACM Symposium on Principles of Database Systems (PODS),
Santa Barbara, CA, 2001, pp. 114-125.

[10] C. Beeri, T. Milo, Schemas for integration and translation of structured and
semi-structured data, in: Proceedings of International Conference on Database
Theory (ICDT), Lecture Notes in Computer Science, Jerusalem, Israel, 1999,
pp- 296-313.

[11] S. Cluet, C. Delobel, J. Siméon, K. Smaga, Your mediators need data
conversion!, in: Proceedings of ACM Conference on Management of Data
(SIGMOD), Seattle, Washington, 1998, pp. 177-188.

[12] H. Hosoya, B. C. Pierce, XDuce: an XML processing language, in: International
Workshop on the Web and Databases (WebDB’2000), Dallas, Texas, 2000.

[13] P. Buneman, S. Davidson, W. Fan, C. Hara, W.-C. Tan, Keys for xml,
unpublished manuscript. (2000).

[14] P. Buneman, W. Fan, S. Weinstein, Path constraints on semistructured and
structured data, in: Proceedings of ACM Symposium on Principles of Database
Systems (PODS), Seattle, Washington, 1998, pp. 129-138.

[15] J. Clark, S. DeRose, XML path language (XPath), W3C Recommendation,
http://www.w3.org/TR/xpath/ (Nov. 1999).

[16] S. S. Cosmadakis, P. C. Kanellakis, M. Y. Vardi, Polynomial-time implication
problems for unary inclusion dependencies, Journal of the ACM 37 (1) (1990)
15-46.

22

