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Abstract

With the rapid growth of XML-document traffic on the
Internet, scalable content-based dissemination of XML
documents to a large, dynamic group of consumers has
become an important research challenge. To indicate
the type of content that they are interested in, data
consumers typically specify their subscriptions using
some XML pattern specification language (e.g., XPath).
Given the large volume of subscribers, system scalabil-
ity and efficiency mandate the ability tmggregatethe

set of consumer subscriptions to a smaller set of con-
tent specifications, so as to both reduce their storage-
space requirements as well as speed up the document-
subscription matching process. In this paper, we pro-
vide the first systematic study of subscription aggre-
gation where subscriptions are specified wite pat-
terns(an important subclass of XPath expressions). The
main challenge is to aggregate an input set of tree pat-
terns into a smaller set of generalized tree patterns such
that: (1) a giverspace constrainon the total size of the
subscriptions is met, and (2) thess in precisiondue

to aggregation) during document filtering is minimized.
We propose an efficient tree-pattern aggregation algo-
rithm that makes effective use of document-distribution
statistics in order to computepgeciseset of aggregate
tree patterns within the allotted space budget. As part
of our solution, we also develop several novel algo-
rithms for tree-pattern containment and minimization,
as well as “least-upper-bound” computation for a set of
tree patterns. These results are of interest in their own
right, and can prove useful in other domains, such as
XML query optimization. Extensive results from a pro-
totype implementation validate our approach.
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on the Internet, including e-Business transactions in both
Business-to-Business (B2B) and Business-to-Consumer
(B2C) applications. Given the rapid growth of XML traf-

fic on the Internet, the effective and efficient delivery of
XML documents has become an important issue. Con-
sequently, there is growing interest in the area of XML
content-based filtering and routin@.g., [4]), which ad-
dresses the problem of effectively directing high volumes
of XML-document traffic to interested consumers based
on documentontents Unlike conventional routing, where
packets are routed based on a limited, fixed set of attributes
(e.g., source/destination IP addresses and port numbers),
content-based routing is based on general patterns of the
document contents, which is significantly more flexible and
demanding. Consumers typically specify theirbscrip-
tions indicating the type of XML content that they are
interested in, using some XML pattern specification lan-
guage (e.g., XPath [15]). For each incoming XML docu-
ment, acontent-based routematches the document con-
tents against the set of subscriptions to identify the (sub)set
of interested consumers, and then routes the document to
them. Thus, in content-based routing, the “destination” of
an XML document is generally unknown to the data pro-
ducer, and is computatynamicallybased on the document
contents and the active set of subscriptions.

Effective support for scalable, content-based XML rout-
ing is crucial to enabling efficient and timely delivery of
relevant XML documents to a large, dynamic group of con-
sumers. Given the large volume of potential consumers,
system scalability and efficiency madate the ability to ju-
diciouslyaggregatethe set of consumer subscriptions to a
smaller set of content specifications. The goal, of course,
is to both reduce the subscriptions’ storage space require-
ments (e.g., so that the routing table fits in main memory),
as well as speed up the filtering of incoming XML traf-
fic. For instance, a core router in a B2B application may

XML (eXtensible Markup Language) [16] has become choose to aggregate subscriptions based on geographical
the dominant standard for data encoding and exchang@cation, affiliation, or domain-specific information (e.g.,
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involves aggregating an initial set of subscriptichmto a
smaller setd such that any document that matches some

Permission to copy without fee all or part of this material is granted pro- subscription inS also matches some subscription 4h
vided that the copies are not made or distributed for direct commercial However, since there is typically“boss of precision” as-

advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of th

e

sociated with such aggregation, the documents matched by

Very Large Data Base Endowment. To copy otherwise, or to republishtn€ aggregated set is, in general, a superset of those
requires a fee and/or special permission from the Endowment.
Proceedings of the 28th VLDB Conference,

Hong Kong, China, 2002

matched by the original sef. As a result, a document
may be routed to consumers who have not subscribed to
it, thus resulting in an increase in the amount of unwanted



T does not have a parent element labeled “CD". For ef-
ficiency reasons, one might want to aggregate the set of
tree patterns{p,,py} into a single tree pattern. Two ex-
amples of aggregate tree patterns f,, p»} are p. and

pq (in Figure 1) since any document that satisfiesor

pp also satisfies botp,. and p,. Although bottp. andp,
have the same number of nodesis intuitively “more pre-
cise” thanp, with respect td p,, py } Sincep. preserves the
ancestor-descendant relationship between the “CD” and
“Bach” elements as required by, andp,. Indeed, any
XML document that satisfies also satisfiep, (and thus

i “ H ” ). D
Figure 1. Example Tree Patterns and XML Document TreeWe say thap, “contains” p.)
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document traffic. In order to avoid such spurious forward- 10 the best of our knowledge, our work is the first to
ing of documents, it is desirable to minimize the number ofaddress this timely subscription aggregation problem for
such “false matches” (i.e., minimize the loss in precision)XML data dissemination. Our main contributions can be

with respect to the given space constraint for the aggregatelmmarized as follows.

subscriptions. o e We study the properties of tree patterns and develop
~ So far, there has only been limited work on subscrip-  efficient algorithms for deciding tree pattern contain-
tion aggregation, mainly for very simple subscriptionmod-  ment, minimizing a tree pattern, and computing the

els. For example, in [12], each subscription is a set of
attribute-predicate pairs (e.gfissue = “GE”,price <

120, volume > 1000}), and an aggregated subscription is
allowed to contain wildcard values, indicating the entire set
of domain values for certain attribute’sIn this paper, we
provide the first systematic study of the subscription aggre-
gation problem where subscriptions are specified using the
much more expressive model tiée patterns Tree pat-
terns represent an important subclass of XPath expressions
that offers a natural means for specifying tree-structured
constraints in XML and LDAP applications [3]. Compared

to earlier work based on attribute/predicate-based subscrip-
tions, effectively aggregating tree-patterns poses a much
more challenging problem since subscriptions involve both
content information (node labels) as well as structure in-
formation (parent-child and ancestor-descendant relation-
ships). Briefly, ourtree pattern aggregation problegan

be stated as follows: Given an input set of tree pattéfns
and a space constraint, aggregédteto a smaller set of
generalized tree patterns that meets the space constrai
and for which the loss in precision due to aggregation i
minimized.

S

Example 1.1 Consider the two similar tree-pattern-based
subscriptionsp, and p, shown in Figure 1, where,
matches any document with a root element labeled “CD”
that has both a sub-element labeled “SONY” as well as
a sub-element (with an arbitrary label) that in turn has
a sub-element labeled “Bach”; ang, matches any doc-
ument that has some element labeled “CD” with a sub-
element labeled “Bach”. Here the node labeled (wild-
card) matches any label, while the node labeléd (de-
scendant) matches some (possibly empty) path. The X
documentl” shown in Figure 1(e) matches (or satisfies)
p. but notp, because the sub-element labeled “Bach” i

of

1Due to space constraints, a more detailed overview of related worHO
can be found in the appendix.

b
Qe
extends to other application domains such as the optimiza-
tion of XML queries involving tree patterns and the pro-
cessing/dissemination of subscription queries in a multicast
environment [9] (where aggregation can be used to reduce
server load and network traffic). Further, our work and
results are complementary to recent work on efficient in-

dexing structures for XPath expressions [2, 6]. The focus

most precise aggregate (i.e., the “least upper bound”)
for a set of patterns. Our results are not only interest-
ing in their own right, but also provide solutions for

special cases of our tree pattern aggregation problem.

e We propose a novel, efficient method that exploits
coarse statistics on the underlying distribution of
XML documents to compute a “precise” set of aggre-
gate patterns within the allotted space budget. Specif-
ically, our scheme employs the document statistics to
estimate theselectivityof a tree pattern, which is also
used as a measure of the pattern’s preciseness. Thus,
our aggregation problem reduces to that of finding a
compact set of aggregate patterns with minimal loss
in selectivity, for which we present a greedy heuristic.

e We demonstrate experimentally the effectiveness of
our approach in computing a space-efficient and pre-
cise set of aggregate tree patterns.

e usefulness of our results on tree patterns and their ag-
gation is not limited to content-based routing, but also

this earlier research is to speed up document filtering

with a given set of XPath subscriptions using appropriate

indexing schemes. In contrast, our work focuse®ffac-

tively reducing the volume of subscriptidimat need to be
atched in order to ensure scalability given bounded stor-

e resources for routing. Clearly, our techniques can be

used as a pre-processing step for the indexes of [2, 6] when
"N hard constraints on the size of the index must be met. Due

space limitations, the proofs of all theoretical results can

be found in the full version of this paper [5].



2 Problem Formulation havec-descendant elements. |

2.1 Definitions A tree patterrp is said to beconsistenif and only if

A tree patternis an unordered node-labeled tree that specithere exists an XML document that satisfies We only

fies content and structure conditions on an XML documenteonsider consistent tree patterns in our work. Further, the

More specifically, a tree pattepmhas a set of nodes, de- tree patterns defined above can be naturally generalized

noted byNodes(p), where each nodein Nodes(p) hasa o accommodate simple conditions and predicates (e.g.,

label, denoted byubel (v), which can either be a tag name, ;ss,e = “GE” and price < 1000). To simplify the dis-

a “«” (wildcard that matches any tag), or #/" (the de-  cyssion, we do not consider such extensions in this paper.

scendant operator). In particular, the root node has a spe- |t js worth mentioning that a tree pattern can be easily

cial label */.". We useSubtree(v, p) to denote the subtree conyerted to an equivalent XPath expression [15] in which

of p rooted atv, referred to as gub-patternof p. Some  each sub-pattern is expressed as a condition/qualifier [5].

example; of tree pattern; are depicted in Flgurg 2. _ Thus, our tree patterns are graph representations of a class
To define the semantics of a tree pattgrme firstgive  of XpPath expressions, which are similar to the tree patterns

the semantics of a sub-pattefubiree(v, p), wherev is  that have been studied for XML queries (e.g., [3, 17]). It

not the root node op. Recall that XML documents are s tempting to consider using a larger fragment of XPath

typically represented as node-labeled trees, referred to 8§ express subscription patterns. However, it turns out that

XML trees LetT' be an XML tree and be a node ifl’.  even a mild generalization of our tree patterns (e.g., with

We say thafl” satisfiesSubtree(v, p) at nodet, denoted by the addition of union/disjunction operators) leads to a much

(T,t) = Subtree(v,p), if the following conditions hold:  higher complexity (coNP-hard or beyond) for basic opera-

(1) if label(v) is a tag, thert has a child node’ labeled  tions such as containment computation (e.g., see [10]).

label(v) such that for each child nodé€ of v, (T, ') |= A tree patterny is said to becontainedin another tree

Subtree(v', p); (2) if label(v) = =, thent has a child node  patterrp, denoted by C p, if and only if for any XML tree

t' labeled with an arbitrary tag such that for each child noder if T satisfiesy thenT also satisfiep. If ¢ C p, we refer

v' ofw, (T',1') |= Subtree(v', p); and (3) iflabel(v) = //,  top as thecontainer patterrandg as thecontained pattern

thent has a descendant notlgpossiblyt’ = ¢) such that  \we say thap andq areequivalent denoted by = g, if

for each childv’ of v, (T',t') = Subtree(v', p). p C gandg C p. This definition can be generalized to
We next define the semantics of tree patterns.ILée  setsof tree patterns: a set of tree patteiss contained

an XML tree with roott,,.:, andp be a tree pattern with in another set of tree patter$4, denoted by C S’ if

root v, We say thatl” satisfiesp, denoted byl |= p,  for eachp € S, there existg/ € S’ such thay C p'.

iff for each child nodev of v,o0t, (1) if label(v) is @atag  Containment for sub-patterns is defined similarly.

a, thent,,.: is labeled witha and for each child node’ The sizeof a tree pattermp, denoted by|p|, is simply

of v, (T, tro0t) |E Subtree(v', p) (herelabel(v) specifies  the cardinality of its node set. For example, referring to

the tag oft,..t); (2) if label(v) = x, thent,.,,: may have Figure 2,|p,| = 7 and|p,| = 8.

any label and for each child nodé of v, (T,t,00t)

Subtree(v',p); (3) if label(v) = //, thent,,,; has ade- 22 Problem Statement

scendant nod€ (possibly?’ = ,o,;) such thal” |= p',  Thetree pattern aggregation problethat we investigate

whereT" is the subtree rooted &t andp’ is identical t0 i this paper can now be stated as follows. Given a set of

Subtree(v, p) except that /" is the label for the root node yree pattern subscriptions and a space bounk on the

v (instead ofabel(v)). Observe that,,, is treated differ- - yota) size of the aggregated subscriptions, compute a set

ently from the rest of the nodes pf The motivation behind - of tree patternss” that satisfies all of the following three
this is illustrated byp; in Figure 2, which specifies the fol- gnditions:

lowing: for any XML treeT" satisfyingp;, its root must (c1) 5 C S’ (i.e.,S' is at least as general &9,
be labeled withu and moreover, it must contain two CO”'%%Z) Z_ Ip'| <k (i.e.,S" is “concise”), and
presl -~ Sy ’

secutivea elements somewhere. This cannot be express P p . . .
without our special root label “/.” (as tree patterns do nofC3) S I as “precise” as possible, in the sense that there
allow a union operator). does not exist another set of tree patte$fighat sat-

isfies the first two conditions anl’ C S'.
Example 2.1 Consider the tree pattern, in Figure 2. An  Clearly, the tree pattern aggregation problem may not nec-
XML document’ satisfieg, if its root element satisfies all essarily have a unique solution since it is possible to have
the following conditions: (1) its label ig; (2) it must have  two setsS’ andS” that satisfy the first two conditions but
a child element with an arbitrary tag, which in turn has a S’ IZ S” andS"” [Z S’. Therefore, we need to devise some
child element with a labeb; and (3) it must have a de- measure to quantify the goodness of candidate solutions in
scendant element which has both-&hild element and an terms of both their conciseness as well as preciseness.
a-child element. Thug, essentially specifies (existential)  With respect to conciseness, we are interesteahim
conjunctive conditions on XML documents. It should beimal tree patterns that do not contain any “redundant”
noted that documents satisfyipg may have tags/subtrees nodes. More precisely, we say that a tree patteisimin-
not mentioned irp,. For instance, the root element @  imizedif for any tree pattern’ such thaty’ = p, it is the
may have al-child element, and thb-elements of’ may  case thafp| < |p|. With respect to preciseness, it can be
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Figure 2: Examples of Tree Patterns.

shown that the containment relationskiipon the universe We also define a partial ordering on node labels such
of tree patterns actually definedadtice. In particular, the that if z and 2z’ are tag names, then (&) < * < //
notions ofupper bouncandleast upper boundre of rele- and (2)z <X 2z’ iff z = z'. Given two nodes) andw,
vance to the aggregation problem and, therefore, we defind! axLabel (v, w) is defined to be the *least upper bound”
them formally here. of their labeldabel(v) andlabel (w) as follows:

An upper boundof two tree patterng andq is a tree i _
patternu such thap = u andq C u, i.e., for any XML tree label(v) :f l‘;bglg“) = label(w),
T,if T |EporT k= qthenT = u. Theleast upper bound ~ MazLabel(v, w) = / Or((l'lbzl((”u)))_:/ﬁ)
(LUB) of p andq, denoted by LI ¢, is an upper bound * otherwise. ’
of p andq such that, for any upper bound of p andg,
u C u'. Once again, we generalize the notion of LUBs to a oy example)M az Label (a,b) = * andMaz Label (x, //)
setS of tree patterns. Ampper boundf S'is atree pattern  — //_ For notational convenience, we refer to a nodie a
U, denoted byS C U, such thap C U for everyp € 5. tree pattern as aftnode if label(v) = £, and refer to as
The LUB of S, denoted by S, is an upper boun@f of S atag-nodsf label(v) & {/.,*, //}.
such that for any upper boudd of S, U C U".

Clearly, if p is an aggregate tree patteffior a set of tree . .
patternsS (i.e., S C p), thenp is an upper bound of. 3 Computing the Most Precise Aggregate
Observe that, ip is the LUB of S, thenp is themost precise  In this section, we consider a special case of our tree pat-
aggregate tree pattern 6t In fact, it can be shown that tern aggregation problem, namely, when the aggregate set
LIS exists and is unique up to equivalence for any$ef S’ consists of a single tree pattern and there is no space con-
tree patterns [5]; thus, it is meaningful to talk abaft as  straint. For this case, we provide an algorithm to compute
the most precise aggregate tree pattern. themost precisaggregate tree pattern (i.e., LUB) for a set
Example 2.2 Consider again the tree patterns in Figure 2. O_f tree patterns. Some of the algorithms_given in this sec-
Observe thap, = p.; and since|p;| > |pc|, ps is ot a tion are also'key. componentspfour solution _forthe general
minimized pattern. In fact, except fpr, all the tree pat-  Problem, which is presented in the next section.
terns in Figure 2 are minimized patterns. Note thatZ p. _Given two input tree patterpsandg, AlgorithmLUBIn
because the root node f, does not have a tag-a child Figure 3 computes the most precise aggregate tree pattern
node; andp. Z p, because there exists no nodepinthat for {p,q} (i.e., the LUB ofp andg). It traversegp andq
is a parent node of both a tag-a-node and a tag-c-node. optop-down ar_wd computes thightest container sub-patterns
serve thap, C pg andp. C pa: i.€., ps is an upper bound for each pair of sub-patterps = Subtree(v, p) andq’ =
of p. andp.. Howeverp, # p, Up. since we have another Subtree(w, q) _encountere_d, Wheneandy; are nodes ip
tree patternp., which is an upper bound @f, andp. such a,nd q, rfaspecnvely. The tightest container sub-patterns of
thatp, C py. Indeedp, = p, U p. With |p.| < [pa| + |pe|- p' andq’ are a seRR of sub-patterns such that:
Note, however, that the size of an LUB is not necessarily
always smaller than the size of its constituent patterns. For
examplepy, = p. U py but|ps| > |pc| + |ps|. Note thatpy

(1) R consists of container sub-pattetud p’ andq/, i.e.,
for any XML documentl” and any elementin T, if
(T,t) E p' or (T,t) = ¢ then(T,t) = r for each

is an upper bound O{paapbapc,pe,pf,pgaph}- a r € R and
We conclude this section by presenting some additional ' '
notation used in this paper. For a nadi a tree patterp, 2Note that a sub-pattern of tree pattegnandgq is an upper-bound of

we denote the set of child nodes®in p by Child(v, p). p andg, and we use these two terms interchangeably.



Algorithm LUB (p, q)
Input: p andq are tree patterns.
Output: A tree pattern representing the LUBpfndg.
1)if (¢ C p) thenreturnp;
2)if (p C ¢) then returng;
3) Initialize TC SubPat[v, w] = 0,
Vv € Nodes(p), Vw € Nodes(q);

4) Letwvroot andw,o0+ denote the root nodes pfandgq, resp.;
5)for eachv € Child(vroot, p) dO
6) for eachw € Child(wroot,q) do
7) TCSubPat[v,w] = LUB_SUB (v, w, TCSubPat);
8) Create a tree patternwith root node labe). and

the set of child sub-patterns

TCSubPat[v, w);

vEChild(vroot ,p),wEChild(Wroot »q)
9)return MINIMIZE (x);

Algorithm LUB.SUB(v, w, TC SubPat)

Input: v, w are nodes in tree patterpsq (respectively),
TCSubPat is a 2-dimensional array such that
TCSubPat[v,w] is the set of tightest container
sub-patterns ofubtree(v, p) and Subtree(w, q).

Output: TCSubPat[v, w].

1)if (TCSubPat[v,w] # 0) then

2) return TCSubPatv, w],

3)else if(Subtree(w, q) C Subtree(v,p)) then

4) return {Subtree(v,p)};

5)else if(Subtree(v,p) C Subtree(w, q)) then

6) return {Subtree(w,q)};

7)else

8) InitializeR=0; R =0; R" =0,

9) for eachw’ € Child(v,p) do

10) for eachw’ € Child(w, q) do

11) R = RULUB_SUB (v, w', TCSubPat);

12) for eachv’ € Child(v, p) do

13) R’ = R'ULUB.SUB (v',w, TCSubPat);

14) for eachw’ € Child(w, q) do

15) R'" = R"ULUB_SUB (v,w',TCSubPat);

16) Letz be the pattern with root node lab®lax Label(v, w)

and set of child subtree patterRs

17) Letz' be the pattern with root node labgél

and set of child subtree patterRs;

18) Letz” be the pattern with root node labgl

and set of child subtree patterR¥;

19) return TCSubPat[v, w] = {z,z',z"};

Figure 3: Least-Upper-Bound Computation Algorithm.

also satisfy the patterm consisting of a root node (with
label /.) whose children are the tightest container sub-
patterns for each paifubtree(v,p) and Subtree(w, q),
wherev € Child(vyoot, p) @andw € Child(wyoot, q). This
patternz is thus an LUB ofp andg.

The main subroutine in our LUB computation (Al-
gorithm LUB_.SUB computes the tightest container sub-
patterns ofp’ and ¢’ as follows. If¢ C p’' (resp.

p' C ¢'), thenp' (resp. ¢') is the tightest container sub-
pattern; otherwise, the tightest container sub-patterns are
a set{z,z', 2"} of sub-patterns, which are defined in the
following manner. The root node of is labeled with
MazLabel(v,w) and the child subtrees afare the tight-
est container sub-patterns of each child subtreg’ @nd
each child subtree of'. Intuitively, the root ofz corre-
sponds to the roots gf andq’ (with a label equal to the
least upper bound of that gf andg¢'). In other words,

z preserves the positions of the corresponding node5 in
andq’. However, this “position-preserving” generalization
is not sufficient sincey’ and ¢’ may have common sub-
patterns at different positions relative to their roots. For
examplep. andp; in Figure 2 have a common sub-pattern
rooted at arm-node that has bothiachild and ac-child, but
this pattern is located at different positions relative to the
roots ofp. andp;. To capture these “off-position” common
sub-patterns, we need to comput@ndz’. The child sub-
trees ofr’ are the tightest container sub-patterng’afself
and each child subtree pf; and the label of the root node
of z' is // to accommodate common sub-patterns at differ-
ent positions relative to the rootsgfandq’. Similarly, the
root node ofz” has label//, and the child subtrees of’

are the tightest container sub-patterng'otself and each
child subtree of/'.

By computing the tightest container sub-patterns recur-
sively, the algorithm computes the LUB of the input tree
patterng andq. By induction on the structures pfandg,
we can show the following result [5].

Proposition 3.1: Given two tree patterng and ¢, Algo-
rithm LUB (p, ¢) computep L g. |

Example 3.1 Given p. and p; in Figure 2, Algorithm
LUB returns ps, which is indeedp. U py. To help ex-
plain the computation ofp,, we use the notatior,
to refer then!” node (in some tree pattern) that is la-

(2) Ristightestin the sense that for any other set of conbeled “z”, where each collection of nodes sharing the

tainer sub-patternB’ of p’ andq’ that satisfies condi-

tion (1), any XML document’ and any elementin

T, if (T,t) |= r for eachr € R then(T,t) |= r' for

all+ € R'.
Intuitively, R is a collection of conditions imposed by both
p' andg’ such thatifT" satisfieg' or ¢’ att, thenT" also sat-
isfies the conjunction of these conditions.aiVe now show
how the LUB forp andq can be computed from the tightest
container sub-patterns. Let,,; andw,.,,; be the roots of
patterng andg, respectively. Note that a documénthat
satisfiesp also satisfies, for each € Child(v,oot, p), the
restriction ofp to the root node and onlgubtree(v, p).
Consequently, a documefit that satisfiesp or ¢ must

same label are ordered based on their pre-order se-
quence; for example, ip,, we use//, and //, to
refer to the leftmost and rightmost/-nodes, respec-
tively. AlgorithmLUB_SUB (invoked by AlgorithnLUB)
first extracts the “position preserving” tightest container
sub-patterns for Subtree(a1,p.) and Subtree(a,py),
which yields the sub-patteriubtree(a, py) (in Steps 9—
11). Note that the root node dubtree(as,pp) is la-
beleda because both the root nodes Sfibtree(ay, p.)
and Subtree(a,py) are labeleda. The sub-patterns
Subtree(as, p.) and Subtree(b, pr), however, have quite
different structures and thus a “position-preserving” at-
tempt to extract their common sub-patterns only yields



Subtree(x1,pp). In particular, the common sub-pattern Algorithm CONTAINS(p, q)

consisting of ana-node with both ab-child-node and Input: p andq are two tree patterns.
c-child-node is not captured by the above process bet Output: Returnstrue if ¢ C p; false otherwise.
cause they occur at different positions relative to the rootf 1) Initialize Status[v, w] = nuil,

nodes ofSubtree(asz,p.) and Subtree(b,ps). To ex- Vv € Nodes(p), Vw € Nodes(q);
tract such “off-position” common sub-patterns, Algorithm | 2) Letvroot @ndw:oo: denote the root nodes pfandg, resp.;
LUB_SUBcomparesSubtree(ay, p.) With Subtree(b, py) 3)if (Child(vroot, p) = 0) then

4) return true;
5)else
6) return CONTAINSSUB(vro0t, Wroot, Status);

and Subtree(c,py), as well as compareSubtree(a, py)
with Subtree(as, p.) (in Steps 12—15). Indeed, this yields
Subtree(//5,pn) Which has a//-root since this com-
mon sub-pattern occurs at different positions relative to]  Algorithm CONTAINSSUB(v, w, Status)

the root nodes ofSubtree(a,p.) and Subtree(a,py). Input: v, w are nodes in tree patterpsq (respectively),
It should be mentioned that botfubtree(//,,ps) and Status is a 2-dimensional array such that each
Subtree(//,,pr) are also produced by the “off-position” Status[v, w] € {null, false, true}.

Output: Status[v, w].

rocessing, as AlgorithrhUB_.SUB recursively processes -
b ng gorl ursively p 1)if (Status[v, w] # null) then

the Sub-patterrﬂubtree(ag,pc) Wlth Subtree(b,pf) and 2) retun Statusv, w]

Subtree(c,py), respectively. Finally, the algorithm re- 3)if (v is a leaf node ip) then

moves the redundant nodes in the result tree pattern by 4)  Status[v,w] = (label(w) < label(v));
using a minimization algorithm (which will be explained |  5)eise if(tabel(w) £ label(v)) then ’

shortly) to generate the LUB,. O 6) Status[v,w] = false;
. . T)else
It is straightforward to show that our LUB operatar™ 8) Status[v,w] =
considered as a binary operatorcsmmutativeandasso-
ciative i.e.,py Ups = py LUp; andp; U (po U ps) = /\ \/ CONTAINS_SUB (v',w’, Status) |;
(p1 Up=) Ups. As aresult, AlgorithnLUBcan be naturally o/ €Child(v,p) \w’€Child(w,q)

extended to compute the LUB of any set of tree patterng. 9) if (Status[v,w] = false) and (label(v) = //) then
We next explain the details of the two auxiliary algorithms| 10)  Status[v,w] =

used in AlgorithmLUB. Ao ccnitaco,py CONTAINS_SUB (v', w, Status);

Algorithm LUB needs to check the containment of tree|  11) if (Statusv,w] = false) and (label(v) = //) then
patterns, which is implemented by AlgorithBONTAINS 12)  Status[v,w] = \/ CONTAINS_SUB (v,w’, Status);
in Figure 4. Given two input tree patterpsindg, the algo- w' €Child(w,q)

13)return Status[v,w];

rithm determines ify C p. It maintains a two-dimensional
array Status, which is initialized with Status[v,w] = . . )
null to indicate thaty € Nodes(p) andw € Nodes(q) Figure 4: Tree-Pattern Containment Algorithm.
have not been compared; otherwis€tatus[v,w] € in p, is deleted. On the other hand, for the tree patterns
{true, false} such thatStatus[v,w] = true if and only  p, andp, in Figure 2,p, C p, and the//-node inp, is
if Subtree(w,q) C Subtree(v,p). Clearly,q C pifand  mapped to both the- andb-nodes inp, in the sense that
only if Status[vroot, Wroot] = true, Wherev,oor aNdwyoot  Subtree(x,p,) T Subtree(//,pa) andSubtree(b, p,) C
denote the root nodes pfandg, respectively. Subtree(//,pas). These two additional scenarios are han-
The main subroutine in our containment algorithm isdled by Steps 10 and 12 in Algorith@ONTAINSSUB
Algorithm CONTAINSSUB Abstractly, CONTAINSSUB  Step 10 accounts for the case wherg¢/anode ¢ itself)
traversegp andq top-down and updateStatus|v, w] for is mapped to an empty chain of nodes, and Step 12 for
each pair of nodes € Nodes(p) andw € Nodes(q)  the case where @/-node ¢ itself) is mapped to a non-
visited as follows. Letp’ and ¢’ denoteSubtree(v,p) empty chain. Note that in Steps 8 and 12, the expres-
and Subtree(w, q), respectively. IfStatus[v,w] has al-  sion \/w,mcmld(mq) CONTAINSSUB (z,w’, Status) re-
ready been computed (i.€5tatus[v, w] # null), thenits  turns false if Child(w,q) = 0.
value is returned. Otherwise, our algorithm determines By induction on the structures pfandg, we can show
Whetherq’ C p,, as follows. |If label(v) ;é //, then the fo"owing result.
Status[v,w] = true iff label(w) <X label(v) and each
child subtree ofy contains some child subtree of Oth-
erwise, iflabel(v) = //, two additional conditions need
to be taken into account. This is because unlikereode
or a tag-name-node, &/-node in a container tree pattern  The quadratic time complexity of our tree-pattern con-
can also be “mapped” to a (possibly empty) chain of nodegainment algorithm is due to, among other things, the fact
in a contained tree pattern. For example, consider the treiat each pair of sub-patternsprandq is checked at most
patternspg andpy in Figure 2. Note thapy T pg, and  once, because of the use of thentus array. To simplify
the //-node inpy is not mapped to any node py in the  the discussion, we have omitted from Algorith@ON-
sense thap, would still be contained ip, if the //-node  TAINS certain subtle details that involve tree patterns with

Proposition 3.2: Given two tree patterng and ¢, Algo-
rithm CONTAINS(p, ¢) determines iy C p in O(|p| - |g|)
time. m|



chains of//- andx-nodes. Such cases require some ad{i.e., as documents are streaming by), and using that synop-
ditional pre-processing to convert the tree pattern to somsis to estimate (approximate) tree-pattern selectivities. At a
canonical form, but this does not increase our algorithm’shigh level, our aggregation algorithm iteratively computes
time complexity. a setS’ that is both selective and satisfies the space con-

To ensure that our tree patterns are concise, we need &fraint, starting withS” = S (i.e., the original sef of pat-
identify and eliminate “redundant” nodes in them. Giventerns), and performing the following sequence of steps in
a tree patterrp, a minimized tree patterp’ equivalent each iteration:

to p can be computed using a recursive algorithN- 1. Generate a candidate set of aggregate tree patferns
IMIZE . Starting with the root op, our minimization al- consisting of patterns i’ and LUBs of similar pat-
gorithm performs the following two steps to minimize the tern pairs inS’.

sub-patterbubtree(v, p) rooted atnode in p: (1) Forany 5 pryne each pattegnin C' by deleting/merging nodes
o', 0" € Child(v,p), if Subtree(v',p) C Subtree(v"”,p), in p in order to reduce its size.

then deleteSubtree(v’, p) from Subtree(v,p); and, (2)
For eachy’ € Child(v, p) (that was not deleted in the first
step), recursively minimiz8ubtree(v’, p). The complete
details can be found in [5].

3. Choose a candidaje € C to replace all patterns in
S’ that are contained ip. Our candidate-selection
strategy is based anarginal gaing14]: The selected
candidate is the one that results in the minimum loss

Proposition 3.3: Algorithm MINIMIZE minimizes any in selectivity per unit reduction in the size 6f (due
tree patternp in O(|p|?) time. O to the replacement of patterns$h by p).
Proposition 3.4: For any minimized tree patterpsandyp’, Note that our pruning step (Step 2) above makes can-

p=p iff p=1yp (i.e., they are syntactically equal). O didate aggregate patterns less selective (in addition to de-

Given the low computational complexities @ON- creasing'their size). Thus, by replacing pattern§’|rt_)y
TAINS andMINIMIZE , one might expect that this would patternsinC, we are effectively trying to reduce the size of

. > ) -
also be the case for AlgorithidUB. Unfortunately, in the 5" by giving up some of |ts_select|V|ty. o .
worst case, the size of the (minimized) LUB of two tree pat- In %he f(t)kI‘IOV\?ng subse;:_tlonls, \v/vve %esqr|bbe n more;jetaﬂ
terns can be exponentially large (see [5] for a detailed anafPUr a'gorithm for compu ing". We begin by presenting

ysis). Our implementation results, however, demonstrat@Ur approach for estimating the selectivity of tree patterns

that ourLUB algorithm exhibits reasonably low average- over the underlying document distribution, which is critical
case complexity in practice to choosing a good replacement candidate in Step 3 above.

o ) ) 4.1 Selectivity Estimation for Tree Patterns

4  Selectivity-based Aggregation Algorithm The Document Tree SynopsisAs mentioned above, it is
While the LUB algorithm presented in the previous sec-simply impossible to maintain the accurate document dis-
tion can be used to compute a single, most precise aggreribution D (i.e., the full set of streaming documents) in
gate tree pattern for a given sgtof patterns, the size of order to obtain accurate selectivity estimates for our tree
the LUB may be too large and, therefore, may violate thepatterns. Instead, our approach is to approxiniatey a
specified space constraikton the total size of the aggre- concise synopsis structure, which we refer to asdbe-
gated subscriptions (Section 2.2). Thus, in order to fit outument tree Our document tree synopsis f@r, denoted
aggregates within the allotted space budget, we relax they DT, captures path statistics for documentsZin and
requirement of a single precise aggregate by permitting ouis built on-line as XML documents stream by. The doc-
solution to be a&setS’" = {pi,ps,...,pm} (instead of a ument tree essentially has the same structure as an XML
single pattern), such that each patter& S is contained tree, except for two differences. First, the root nod®af
in some patterm; € S'. Of course, we also require th8t  has the special label “/.”. Second, each non-root rtoide
provide the “tightest” containment for patternsSrfor the DT has a frequency associated with it, which we denote
given space constraint (Section 2.2); that is, the number dby freq(t). Intuitively, if I, /ls/ - - - /1,, is the sequence of
XML documents that satisfy some tree patter$irbut not  tag names on nodes along the path from the roat(&x-
S, is small. cluding the label for the root), thefreq(t) represents the

A simple measure of the precisenes$bis itsselectiv-  number of documentg in D that contain a path with tag
ity, which is essentially the fraction of filtered XML docu- sequencé, /l»/--- /1, originating at the root of". The
ments that satisfy some patternSh Thus, our objectiveis frequency for the root node dpT is set toN, the number
to compute a set’ of aggregate patterns whose selectivity of documents inD.
is very close to that of. Clearly, the selectivity of our tree As XML documents stream byDT is incrementally
patterns is highly dependent on the distribution of the unmaintained as follows. For each arriving documé&ntve
derlying collection of XML documents (denoted ). It first construct theskeleton trel’s for documentl". In the
is, however, infeasible to maintain the detailed distributionskeleton treel’y, each node has at most one child with a
D of streaming XML documents for our aggregation—thegiven tag.7 is built from 7" by simply coalescing two chil-
space requirements would be enormous! Instead, our aphen of a node iff” if they share a common tag. Clearly, by
proach is based on buildingcancise synopsif D on-line  traversing nodes ifi' in a top-down fashion, and coalescing



tivity of a tree patterrp is the fraction of documentg in
/N /\ /N /\ D that satisfyp. By construction, outD7T synopsis gives

/a\ T T /a\ /b\ T /a\ T /a\ T accurate selectivity estimates for tree patterns comprising
S S AN S i a single chain of tag-nodes (i.e., with no * or //). How-
‘C L \ ever, obtaining accurate selectivity estimates for arbitrary
d

@T1 )72 ©T3 (@ skeleonree for 11 LTEE patterns with branches, *, and // is, in general, not pos-
sible with DT summaries. This is because, whild" cap-
tures the number of documents containing a single path, it

‘ ‘ does not store document identities. As a result, for a pair

x 3 X 3 /- I of arbitrary paths in a tree pattern, it is impossible to de-
/\ A X‘ /l /‘/ termine the exact number of documents that contain both
%a b3 3] b3 | | | paths or documents that contain one path, but not the other.
/\\ ./ N, . s a Our estimation procedure solves this problem, by mak-
b ¢ dz/a\ ¢ . ‘ ' d d /\d ing the following simplifying assumptiorifhe distribution
23 10 42 -1s of each path in a tree pattern is independent of other paths

(¢) Document Tree () Compressed Document Tree (@) pl () p2 () p3 Thus, we estimate the selectivity of a tree pattern contain-
ing no // or x labels, simply as theroductof the selec-

Figure 5: Example Documents, Skeleton Tree, Documeniivities of each root to leaf path in the pattern. For patterns
Tree, and Patterns. containing// or x, we consider all possible instantiations
for // and* with element tags, and then choose as our pat-
tern selectivity the maximum selectivity value over all in-
Stantiations. (This is similar to the definition of a fuzay
%perator in fuzzy logic [13].) We illustrate our selectivity
estimation methodology in the following example.

child nodes with common tags, we can constrTicfrom

T in a single pass (using an event-based XML parser). A
an example, Figure 5(d) depicts the skeleton tree for th
XML-document tree in Figure 5(a).

Next, we usel’; to update the statistics maintained in
our document tree synopsi2T” as follows. For each path Example 4.1 Consider the problem of estimating the se-
in 7%, with tag sequence sdy/l/ - - - /.., lett be the last  lectivities of the tree patterns shown in Figures 5(g) to (i)
node on the corresponding (unique) pathDid’. We in- using the document tree shown in Figure 5(e). The total
crementfreq(t) by 1. Figure 5(e) shows the document number of documentd/, is 3. Clearly, the number of doc-
tree (with node frequencies) for the XML tre®s, T», and ~ uments satisfying pattegn which consists of a single path,

Ts in Figure 5(a) to (c). Note that it is possible to further can be estimated accurately by following the patiDif
compressDT by using techniques similar in spirit to the and returning the frequency for thénode (at the end of
methods employed by Aboulnaga et al. [1] for summarizthe path) inDT. Thus, the selectivity of; is 2/3 which

ing pathtrees. The key idea is to merge nodes with theiS accurate since only documerfts and 77 satisfyp; . Es-
lowest frequencies and store, with each merged node, tHé€mating the number of documents containing pattesn
average of the Origina| frequencies for nodedfl” that however, is somewhat more tr|Cky This is because there
were merged. This is illustrated in Figure 5(f) for the doc-are two paths with tag sequencega/d andz/b/a/d in
ument tree in Figure 5(e), and with the label “~" used to D1' that matchp, (corresponding to instantiating // with
indicate merged nodes. Due to space constraints, in the andz/a). Summing the frequencies for the t@modes
remainder of this subsection, we only present solutions tdt the end of these paths gives us an answer of 4 which
the selectivity estimation problem using the uncompresse@Vver-estimates the number of documents satisfyir(gnly

tree DT. However, our proposed methods can be easilydocumentd; and7s; satisfyp,). To avoid double-counting
extended to work even wheBT is compressed [5]. frequencies, we esti_mate the number of documents sati_sfy-

We should note here that our selectivity estimation probing p- to be the maximum (and not the sum) of frequencies
lem for tree patterns differs from the work of Aboulnaga etoVver all paths inDT that matchp,. Thus, the selectivity of
al. [1] in two important respects. First, in [1], the authors P2 iS estimated a8/3. . .
consider the problem of estimating selectivity for only sim- ~ Finally, the selectivity ops is computed by consider-
ple paths that consist of a //-node followed by tag nodes. In"g all possible instantiations for // and *, and choosing
contrast, we estimate selectivities of general tree pattern&€ one with the maximum selectivity. The two possible in-
with branches, and *- or //-nodes arbitrarily distributed in Stantiations for // that result in non-zero selectivities are
the tree. Second, we are interested in selectivity at the grarindz/b, andx can be instantiated with eithéx ¢ or d for
ularity of documentsso our goal is to estimate the number // = =, andc or d for // = x/b. Choosing// = = and
of XML documents that match a tree pattern; instead, [1]* = ¢ results in the maximum selectivity since the product
addresses the selectivity problem at the granularity of indiof the selectivities of paths/a/c andz/a/d is maximum,

vidual document elementhat are discovered by a path. It andis equaltq3/3) - (2/3) = 2/3. O
is easy to see that these are two very different estimation  A|gorithm SEL (depicted in Figure 6), invoked with in-
problems. put parameters = v,.,,; (root of patterrp) andt = t,.0¢

Selectivity Estimation Procedure. Recall that the selec- (root of DT'), computes the selectivity for an arbitrary tree



Algorithm SEL(v, t) dren, themax;_ccpiiar,pm){- - -} evaluates t@.
Input: v is a node in tree pattep t is a node inDT.

Output: SelSubPat[v,t]. 4.2 Tree Pattern Aggregation Algorithm

1)if (SelSubPat[v,t] is already computedhen We are now ready to present our greedy heuristic algo-
2) return SelSubPatv,t]; rithm for the tree pattern aggregation problem defined in
3)else if(label(t) 2 label(v)) then Section 2.2 (which is, in general, aWP-hard clustering

4) return SelSubPat[v,t] = 0;
5)else if(v is a leaf)then

6) return freq(t)/N;

7)for each childv. € Child(v,p) do

problem [5]). As described earlier, to aggregate an input set
of tree patterns into a space-efficient and precise set, our
algorithm (AlgorithmAGGREGATIR Figure 7) iteratively

8) Sel,. = max, ccnia.or {SEL (ve, te)}; prunes the tree.patterns&by replacing a small subset of
9) Sel =[], eOhil;(v )Sel’yc; tree patterns with a more concise upper-boagdregate
10)if (label(v) = //) then pattern until S satisfies the given space constraint. During
11)  Sely = [1,. coniace.p) SEL(ve, ); each iteration, our algorithm first generates a small set of
12)  Sel = max{Sel, Sel, }; potential candidate aggregate pattethsaand s_elects from _
13)  Sel, = max.ccnitaqe, o) {SEL(v, te) }; these the (locally) “best” candidate pattern, i.e., the candi-
14)  Sel = max{Sel, Sel, }; date that maximizes the gain in space while minimizing the
15)return SelSubPat[v,t] = Sel expected loss in selectivity.
. . . . . Algorithm AGGREGATES, k
Figure 6: Tree Pattern Selectivity Estimation Algorithm. Ingut: S'is a set of tr[i’ p?itternk,is a space constraint.

. . . Output: Asetoft ttern§’ such thatS C S’
patternp in O(|DT| - |p|) time. In the algorithm, for nodes uipu seL ottree pafierns: such thab =
and}_ o |p| < k.

v € pandt € DT, SelSubPat[v, t] stores the selectivity 1) Initialize S’ = S

of the sub-patter§ubtree(v, p) with respect to the subtree 2) while (¥, g Ipi > k) do

of DT rooted at node. This selectivity is estimated similar 3) Cy = Iﬁ | « = PRUNE(p, |p| — 1), p € §'};

to the selectivity for patterp, except that we now consider | 4) ¢, = {z |z = PRUNE(p U ¢, |p| + |g| — 1), p,q € S'};

all instantiations ofSubtree(v, p) (obtained by instantiat- 5) C =C;UCQCy:

ing // andx with element tags), and the selectivity of each| 6) Selectr € C such thatBene fit(z) is maximum;
instantiation is computed with respect#@s the root in- 7) §'=8—{p|lpCx,peS} U {z}

stead of the root oDT'. For instance, suppose thais the 8) return S';

a-node inps (in Figure 5(i)), andt is the childa-node of

thez-node inDT (in Figure 5(e)). Then, the selectivity of Figure 7: Tree Pattern Aggregation Algorithm.

Subtree(v, p3) with respect ta is essentially the product candidate Generation. We now explain the process for
of the selectivity of patha/+ anda/d with respect to node generating the candidate sét in Steps 3-5 of Algo-
t, whichis1 - (2/3). Thus,SelSubPat[v,t] = 2/3. rithm AGGREGATETo reduce the size of individual candi-
Our goal is to comput&el SubPat[v,0t, troot]. FOr  date patterns of the forgor pLig, each candidate gruned
a pair of nodesv and t, Algorithm SEL computes by invoking Algorithm PRUNEdetails in [5]). Given an
SelSubPat[v, t] from SelSubPat[ | values for the chil- input patterrp and space constraint Algorithm PRUNE
dren ofv andt. Clearly, iflabel(t) A label(v) (Steps 3-4 prunesp to a smaller tree patterpl such thapp C p' and
of the algorithm), then every path Bubiree(v, p) begins  |p'| < n. The algorithm treats tag-nodes as more selective
with a label different fromlabel(t) and thus the selectiv- thanx- and//-nodes, and therefore tries to prune away
ity of each of the paths i8. If label(t) < label(v) and  and//-nodes before the tag-nodes. Specifically, the algo-
v is a leaf (Steps 5-6), then we simply instantiatgel (v) rithm first prunes the- and //-nodes inp by (1) replac-
(if label(v) = // or *) with label(t), giving a selectivity of  ing each adjacent pair of non-tag-nodes with a single
freq(t)/N. Onthe other hand, if is an internal node af, //-node, ifw is the only child ofv, and (2) eliminating
then in addition to instantiatin@ubel (v) with label(t), we  subtrees that consist of only non-tag-nodes. If the tree pat-
also need to compute, for every child of v, the instanti-  tern is still not small enough after the pruning of the non-
ation for Subtree(v,, p) that has the maximum selectivity tag-nodes, we start pruning the tag-nodes. There are two
with respect to some child of ¢. SinceSelSubPat|v., t.] ways to reduce the size of a tree patterby one node.
is the selectivity ofSubtree(v., p) with respect ta., the  The first is to delete some leaf nodejinand the second
product of max; ccnia,pr) SelSubPat[v., t.] for the s to collapse two nodes and w into a single//-node,
childrenv, of v gives the selectivity ofubtree(v, p) with  wherelabel(v) # /. andChild(v,p) = {w}. To help
respect tot. Finally, if label(v) = //, then// can be select a “good” leaf node to delete (or, pair of nodes to
simply null, in which case the selectivity Sfubtree(v, p) collapse), we make use of the selectivity of the tag names.
with respect tat is computed as described in Step 11, orMore specifically, we use our document tree synofsis
// is instantiated to a sequence consistindadel(t) fol- to estimate the total number of occurrences of atag name in
lowed bylabel(t.), wheret, is the child oft such that the the document collectio®, and then choose the tags with
selectivity ofSubtree(v, p) with respecttd. is maximized  higher total frequencies (which are less selective) as candi-
(Step 13). Observe that, in Steps 8 and 13 hiis no chil-  dates for pruning.



Candidate Selection.Once the set of candidate aggregatereformulation of HTML as an XML application and is ar-
patterns has been generated, we need some criterion fguably the document type most widely used over the Inter-
selecting the “best” candidate to insert in$6. For this  net. The XHTML DTD (version 1.0) containg elements
purpose, we associate a benefit value with each candidaigith 1377 attributes. The second DTD, the News Industry
aggregate pattern ¢ C, denoted byBenefit(z), based 1oyt Format (NITF) DTD[8], is supported by most of the

on its marginal gain[14]; that is, we definenefit(x) \yoriq's major news agencies. The NITF DTD (version 2.5)
as the ratio of the savings in space to the loss in Selecw'%ontainslz?, elements witfs 13 attributes

of usingz over{p | p C z,p € S’}. More formally, if

Vs poor s troot, @Ndup, ., represent the root nodes:of DT, We generated our data set of XML documents using
andp € S’, thenBenefit(z) is equal to: IBM’s XML Generator tool [11]. Both the XHTML and

NITF DTDs contain recursive structures, which can be

(Zpgwesr Ipl) — || nested to produce XML documents with arbitrary number

of levels. We added the option of generating documents

skewed according to a Zipf distribution [18], where some

Note that we compute the selectivity loss by comparin f v th h : :
the selectivity of the candidate aggregate patiemith that gt;;ﬁ]/ ?ﬁén ceassga\rl)i?i? rren;ﬂie;erggt:ent y than others, as is gener

of the least selective pattern contained in it. This gives a
good approximation of the selectivity loss in cases when For each each DTD and each skew valpe= {0, 1,2},

the patterng, ¢ € S’ used to generate are similar and we gengrated two disjoint setsiif0 XML documents with
overlap in the document trédeT'. The candidate aggregate approximatelyl00 nodes and0 levels on average. The

pattern with the highest benefit value is chosen to replacgrSt set corresponds to the collection of XML (_jo_cuments
the patterns contained in it i/ (Steps 6-7). used to construct the document ttBd’ for selectivity es-

timation; the second set is used to measure the loss in pre-
cision of the aggregation algorithms. Both sets were gen-

. . ._erated with the same parameters, and thus can be expected
To verify the effectiveness of our tree pattern aggregation, ave similar distributions. In each experiment, we used

algorithms, we have conducted an extensive performancﬁz]e combined XML documents for both the XHTML and
study using real-life DTDs and large numbers of tree pat'NITF DTDs. i.e.. we used a total d000 documents for

tems. Our resglts in(.jicgt'e that our propqsed aggregatiO{he document tre®T', and (a different)l000 documents
techniques achieve significant reductions in the number ag,, measuring the Ios,s in precision

well as total size of tree patterns with minimal loss in se-

SEL(UEroot ) tTOOt) - maXpEz,pES’ SEL(Upv‘oot ) tTOOﬁ)

5 Experimental Study

lectivity. XPa}th Expressions.To generate the'set of tree pattef)s
we implemented an XPath expression generator that takes
5.1 Experimental Testbed and Methodology a DTD as input and creates a set of valid XPath expressions

Our general methodology for evaluating the effectivenes®a@sed on a set of parameters that control: (1) the maximum
of a pattern aggregation algorithris as follows. Given heighth of the tree patterns; (2) the probabilitiesandp,,
a large input set of tree patterssand a space constraint Of having a wildcard " or a descendant//” operator at
k, we useA to compute a set of aggregate pattehdor @ node of a tree pattern; (3) the probability of having
S, whereS C S’ andy", s |p| < k (our space constraint more than one child at a given node; and (4) the skewf
is expressed in terms of number of nodes, since patterr%‘e Zipf distribution used for selecting element tag names.
can be arbitrarily large). We then measure the loss in preci- For each DTD and each skew valéie = {0, 1,2}, we
sion when usings’ instead ofS to filter XML documents. generated a set 6000 tree patterns witth = 10 andp, =
Observe that whek = 1, S’ contains a single container p,, = p» = 0.1. Each experiment was run with tree pat-
pattern (*//"). terns from both the XHTML and NITF DTDs, i.e10000

To measure the loss in precision of the aggregat§’set tree patterns which amounted to more th80000 nodes.

we use a subsdd’ of a representative set of XML docu-  Algorithms. We compared two different aggregation algo-
ments, such that no documentiif matches any tree pat- rithms in our experiments. The first (“naive”) algorithm,
tern in our initial pattern sef. The reason, of course, PrunE, is based on simple node pruning and works as fol-
is that XML documents that matchi are also guaranteed |ows. At each iteration, it selects a tree pattgfn,, from

to matchsS’, so they are unlikely to affect our “precision- g with the largest number of tag-nodes, collapses multiple
loss” measurements. AS' becomes less precise, some x- and //-nodes, and deletes a prunable node (i.e., a leaf
documents inD’ will be erroneously reported as matches. node or a node located next fg-nodes) with the highest
Let Matches(D',S') be the number of documents I frequency (i.e., least selective) in the document fpde If

that matchS’; the loss in precision ob’ over S can be  there is already a tree pattern identical to the pruned pat-
estimated asSelLoss(S',S) = Matches(D',S")/|D'|.  tern, then the duplicate is removed frafn The algorithm

An aggregation algorithm is obviously more effective if jterates until the space constraint is satisfied. The second
SelLoss(S', S) remains small aj_ o/ |p| decreases. algorithm, AGGR, is our greedy tree pattern aggregation
XML Documents. We used two real-life DTDs to gener- algorithm (from Figure 7) with both candidate generation
ate our XML document data set. The first one, the Extensiand selection (based on maximizing the benefit). Our ex-
ble Hypertext Markup Language (XHTML) DTD [7], is a periments were conducted on a 866 MHz Intel Pentium 11|
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Figure 8: Evaluation of the Aggregation Algorithms.

machine with512 MB of main memory running Linux. eliminated early.
Both algorithms completed the aggregationiof00 tree  gkewed XML documents. Real-world XML documents

patterns in approximatelb minutes. are generally not uniformly distributed among the valid
XML data for a given DTD. When XML documents are
5.2 Experimental Results skewed (Figure 8(a)), we observe that the effectiveness of
) ._the AGGR algorithm increases. The reason for this is that,
We first compare the performance of the two aggreganorés data becomes more skewed, the XML documents tend to
algorithms by varying the skew for element tags in the ’

XML documents and in the XPath expressions. We ran thé“orm clusters with documents within a cluster being more

: h . Similar than those in different clusters; this, in turn, im-
experiments with no skew, with skewed XML documents, roves the accuracy of selectivity estimation. THaRE
with skewed XPath expressions, and with skew in both thd y y '

XML documents and XPath expressions. In the last Casealgonthm also benefits from the skew (although to a lesser

S ' extent) because of its frequency-based pruning heuristic.
we skew the distribution for element names in the oppo-
site “direction” (applying the same skew to both the XML Skewed tree patterns.We also observe a significant im-
documents and XPath expressions would yield similar reProvement in our aggregation algorithm when the element
sults as with no skew). The experimental results are showRames of tree patterns are skewed (Figure 8(b)). Indeed,
in Figures 8(b), 8(a), and 8(c), where the space constrainthe skew induces a clusterlng of patterns such that simi-
expressed in terms of the number of nodes, is varied alontr tree patterns are grouped into the same cluster, which
thez-axis, and thg-axis indicates the observed loss in se-Consequently increases the proportion of patterns that de-
lectivity for a given space constraint, i.e., the percentage o¥elop containment relationships. This permits the aggrega-
XML documents that are erroneously reported as matchedion algorithm to reduce the size Sfwith minimal loss of

We also measure the benefits of aggregation in terms gfel€ctivity, by computing tighter upper bound patterns and
filtering performance, using the XTrie matching algorithm discarding covered patterns.
described in [6]. Since the cost of filtering in XTrie grows Skewed workload. The two aggregation algorithms per-
linearly with the number of XPath expressions, we expecform best when both the XML data and the tree patterns
to observe a significant improvement in filtering speed asare skewed in different “directions” (Figure 8(c)). With
the cardinality ofS decreases. high skew values, there is little overlap between the ele-

Non-skewed workload. When neither the XML data nor Ment names of the XML documents and the tree patterns,
the tree patterns contain skew (i.8p = fs = 0), the and AGGR remains highly seleptive with only a feyv h.u_n—
AGGR algorithm can aggregate tree patterns upigh of dreds nodes. TheRUNE algorlt_hm also ex_h!b|ts signifi-
their original size with only &5% loss in precision (the Cantimprovements and maintaifis’ selectivity even af-
results for non-skewed data are reported in all graphs Olier the original number of nodes are reduced to less than a
Figure 8). In contrast, the precision oRENE algorithm  third.

starts to degrade much sooner, and the loss in precisioriltering speed. As mentioned previously, the cost of
reaches almost00% at 25% of the initial space. The bet- matching tree patterns against incoming XML documents
ter performance of AGR can be attributed to three main is proportional to the number of tree patterns. SinGGR
factors: (1) the upper bound computation generates googenerates candidates by computing upper bounds, the can-
candidates with few nodes and little loss in precision, (2)didates cover more patterns, and as result, the number of
the selectivity-based heuristics help to detect and discargatterns inS shrinks faster with &GR. Figure 9 shows that
candidates that correspond to patterns with low selectivitihe average filtering time per document decreases faster (as
(i.e., frequently occurring for a given DTD), and (3) the space is increased) for@GR than for the IRUNE algo-
covering computation enables redundant tree patterns to rdéhm. Our aggregation algorithm is therefore more effec-



7 Conclusions

We have provided the first systematic studytefe pat-

tern aggregationan important problem in building next-
generation, scalable XML dissemination systems. The
main challenge is to aggregate an input set of tree patterns
into a smaller set such that: (1) a given space constraint
on the total size of the patterns is met, and (2) the loss
in precision (due to aggregation) is minimized. We have
proposed an efficient aggregation algorithm that makes ef-
fective use of document-distribution statistics in order to
compute a precise set of aggregate tree patterns within the
allotted space budget. Further, some of our algorithmic re-
sults are of interest in their own right, and can prove useful
in other domains, such as XML query optimization. Exten-
sive results from a prototype implementation have verified
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Figure 9: Filtering speed.

tive both in terms of selectivity as well as filtering speed.

the effectiveness of our approach.
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