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Abstract
With the rapid growth of XML-document traffic on the
Internet, scalable content-based dissemination of XML
documents to a large, dynamic group of consumers has
become an important research challenge. To indicate
the type of content that they are interested in, data
consumers typically specify their subscriptions using
some XML pattern specification language (e.g., XPath).
Given the large volume of subscribers, system scalabil-
ity and efficiency mandate the ability toaggregatethe
set of consumer subscriptions to a smaller set of con-
tent specifications, so as to both reduce their storage-
space requirements as well as speed up the document-
subscription matching process. In this paper, we pro-
vide the first systematic study of subscription aggre-
gation where subscriptions are specified withtree pat-
terns(an important subclass of XPath expressions). The
main challenge is to aggregate an input set of tree pat-
terns into a smaller set of generalized tree patterns such
that: (1) a givenspace constrainton the total size of the
subscriptions is met, and (2) theloss in precision(due
to aggregation) during document filtering is minimized.
We propose an efficient tree-pattern aggregation algo-
rithm that makes effective use of document-distribution
statistics in order to compute apreciseset of aggregate
tree patterns within the allotted space budget. As part
of our solution, we also develop several novel algo-
rithms for tree-pattern containment and minimization,
as well as “least-upper-bound” computation for a set of
tree patterns. These results are of interest in their own
right, and can prove useful in other domains, such as
XML query optimization. Extensive results from a pro-
totype implementation validate our approach.

1 Introduction
XML (eXtensible Markup Language) [16] has become
the dominant standard for data encoding and exchange
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on the Internet, including e-Business transactions in both
Business-to-Business (B2B) and Business-to-Consumer
(B2C) applications. Given the rapid growth of XML traf-
fic on the Internet, the effective and efficient delivery of
XML documents has become an important issue. Con-
sequently, there is growing interest in the area of XML
content-based filtering and routing(e.g., [4]), which ad-
dresses the problem of effectively directing high volumes
of XML-document traffic to interested consumers based
on documentcontents. Unlike conventional routing, where
packets are routed based on a limited, fixed set of attributes
(e.g., source/destination IP addresses and port numbers),
content-based routing is based on general patterns of the
document contents, which is significantly more flexible and
demanding. Consumers typically specify theirsubscrip-
tions, indicating the type of XML content that they are
interested in, using some XML pattern specification lan-
guage (e.g., XPath [15]). For each incoming XML docu-
ment, acontent-based routermatches the document con-
tents against the set of subscriptions to identify the (sub)set
of interested consumers, and then routes the document to
them. Thus, in content-based routing, the “destination” of
an XML document is generally unknown to the data pro-
ducer, and is computeddynamicallybased on the document
contents and the active set of subscriptions.

Effective support for scalable, content-based XML rout-
ing is crucial to enabling efficient and timely delivery of
relevant XML documents to a large, dynamic group of con-
sumers. Given the large volume of potential consumers,
system scalability and efficiency madate the ability to ju-
diciouslyaggregatethe set of consumer subscriptions to a
smaller set of content specifications. The goal, of course,
is to both reduce the subscriptions’ storage space require-
ments (e.g., so that the routing table fits in main memory),
as well as speed up the filtering of incoming XML traf-
fic. For instance, a core router in a B2B application may
choose to aggregate subscriptions based on geographical
location, affiliation, or domain-specific information (e.g.,
telecommunications). Subscription aggregation essentially
involves aggregating an initial set of subscriptionsS into a
smaller setA such that any document that matches some
subscription inS also matches some subscription inA.
However, since there is typically a“loss of precision” as-
sociated with such aggregation, the documents matched by
the aggregated setA is, in general, a superset of those
matched by the original setS. As a result, a document
may be routed to consumers who have not subscribed to
it, thus resulting in an increase in the amount of unwanted
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Figure 1: Example Tree Patterns and XML Document Tree.

document traffic. In order to avoid such spurious forward-
ing of documents, it is desirable to minimize the number of
such “false matches” (i.e., minimize the loss in precision)
with respect to the given space constraint for the aggregated
subscriptions.

So far, there has only been limited work on subscrip-
tion aggregation, mainly for very simple subscription mod-
els. For example, in [12], each subscription is a set of
attribute-predicate pairs (e.g.,fissue = “GE” ; price <
120; volume > 1000g), and an aggregated subscription is
allowed to contain wildcard values, indicating the entire set
of domain values for certain attributes.1 In this paper, we
provide the first systematic study of the subscription aggre-
gation problem where subscriptions are specified using the
much more expressive model oftree patterns. Tree pat-
terns represent an important subclass of XPath expressions
that offers a natural means for specifying tree-structured
constraints in XML and LDAP applications [3]. Compared
to earlier work based on attribute/predicate-based subscrip-
tions, effectively aggregating tree-patterns poses a much
more challenging problem since subscriptions involve both
content information (node labels) as well as structure in-
formation (parent-child and ancestor-descendant relation-
ships). Briefly, ourtree pattern aggregation problemcan
be stated as follows: Given an input set of tree patternsS
and a space constraint, aggregateS into a smaller set of
generalized tree patterns that meets the space constraint,
and for which the loss in precision due to aggregation is
minimized.

Example 1.1 Consider the two similar tree-pattern-based
subscriptionspa and pb shown in Figure 1, wherepa
matches any document with a root element labeled “CD”
that has both a sub-element labeled “SONY” as well as
a sub-element (with an arbitrary label) that in turn has
a sub-element labeled “Bach”; andpb matches any doc-
ument that has some element labeled “CD” with a sub-
element labeled “Bach”. Here the node labeled ‘�’ (wild-
card) matches any label, while the node labeled ‘==’ (de-
scendant) matches some (possibly empty) path. The XML
documentT shown in Figure 1(e) matches (or satisfies)
pa but notpb because the sub-element labeled “Bach” in

1Due to space constraints, a more detailed overview of related work
can be found in the appendix.

T does not have a parent element labeled “CD”. For ef-
ficiency reasons, one might want to aggregate the set of
tree patternsfpa; pbg into a single tree pattern. Two ex-
amples of aggregate tree patterns forfpa; pbg are pc and
pd (in Figure 1) since any document that satisfiespa or
pb also satisfies bothpc andpd. Although bothpc andpd
have the same number of nodes,pc is intuitively “more pre-
cise” thanpd with respect tofpa; pbg sincepc preserves the
ancestor-descendant relationship between the “CD” and
“Bach” elements as required bypa and pb. Indeed, any
XML document that satisfiespc also satisfiespd (and thus
we say thatpd “contains” pc). 2

To the best of our knowledge, our work is the first to
address this timely subscription aggregation problem for
XML data dissemination. Our main contributions can be
summarized as follows.

� We study the properties of tree patterns and develop
efficient algorithms for deciding tree pattern contain-
ment, minimizing a tree pattern, and computing the
most precise aggregate (i.e., the “least upper bound”)
for a set of patterns. Our results are not only interest-
ing in their own right, but also provide solutions for
special cases of our tree pattern aggregation problem.

� We propose a novel, efficient method that exploits
coarse statistics on the underlying distribution of
XML documents to compute a “precise” set of aggre-
gate patterns within the allotted space budget. Specif-
ically, our scheme employs the document statistics to
estimate theselectivityof a tree pattern, which is also
used as a measure of the pattern’s preciseness. Thus,
our aggregation problem reduces to that of finding a
compact set of aggregate patterns with minimal loss
in selectivity, for which we present a greedy heuristic.

� We demonstrate experimentally the effectiveness of
our approach in computing a space-efficient and pre-
cise set of aggregate tree patterns.

The usefulness of our results on tree patterns and their ag-
gregation is not limited to content-based routing, but also
extends to other application domains such as the optimiza-
tion of XML queries involving tree patterns and the pro-
cessing/dissemination of subscription queries in a multicast
environment [9] (where aggregation can be used to reduce
server load and network traffic). Further, our work and
results are complementary to recent work on efficient in-
dexing structures for XPath expressions [2, 6]. The focus
of this earlier research is to speed up document filtering
with a given set of XPath subscriptions using appropriate
indexing schemes. In contrast, our work focuses oneffec-
tively reducing the volume of subscriptionsthat need to be
matched in order to ensure scalability given bounded stor-
age resources for routing. Clearly, our techniques can be
used as a pre-processing step for the indexes of [2, 6] when
hard constraints on the size of the index must be met. Due
to space limitations, the proofs of all theoretical results can
be found in the full version of this paper [5].



2 Problem Formulation
2.1 Definitions
A tree patternis an unordered node-labeled tree that speci-
fies content and structure conditions on an XML document.
More specifically, a tree patternp has a set of nodes, de-
noted byNodes(p), where each nodev in Nodes(p) has a
label, denoted bylabel(v), which can either be a tag name,
a “�” (wildcard that matches any tag), or a “==” (the de-
scendant operator). In particular, the root node has a spe-
cial label “=:”. We useSubtree(v; p) to denote the subtree
of p rooted atv, referred to as asub-patternof p. Some
examples of tree patterns are depicted in Figure 2.

To define the semantics of a tree patternp, we first give
the semantics of a sub-patternSubtree(v; p), wherev is
not the root node ofp. Recall that XML documents are
typically represented as node-labeled trees, referred to as
XML trees. Let T be an XML tree andt be a node inT .
We say thatT satisfiesSubtree(v; p) at nodet, denoted by
(T; t) j= Subtree(v; p), if the following conditions hold:
(1) if label(v) is a tag, thent has a child nodet0 labeled
label(v) such that for each child nodev0 of v, (T; t0) j=
Subtree(v0; p); (2) if label(v) = �, thent has a child node
t0 labeled with an arbitrary tag such that for each child node
v0 of v, (T; t0) j= Subtree(v0; p); and (3) iflabel(v) = ==,
thent has a descendant nodet0 (possiblyt0 = t) such that
for each childv0 of v, (T; t0) j= Subtree(v0; p).

We next define the semantics of tree patterns. LetT be
an XML tree with roottroot, andp be a tree pattern with
root vroot. We say thatT satisfiesp, denoted byT j= p,
iff for each child nodev of vroot, (1) if label(v) is a tag
a, thentroot is labeled witha and for each child nodev0

of v, (T; troot) j= Subtree(v0; p) (herelabel(v) specifies
the tag oftroot); (2) if label(v) = �, thentroot may have
any label and for each child nodev0 of v, (T; troot) j=
Subtree(v0; p); (3) if label(v) = ==, thentroot has a de-
scendant nodet0 (possiblyt0 = troot) such thatT 0 j= p0,
whereT 0 is the subtree rooted att0, andp0 is identical to
Subtree(v; p) except that “/.” is the label for the root node
v (instead oflabel(v)). Observe thatvroot is treated differ-
ently from the rest of the nodes ofp. The motivation behind
this is illustrated bypi in Figure 2, which specifies the fol-
lowing: for any XML treeT satisfyingpi, its root must
be labeled witha and moreover, it must contain two con-
secutivea elements somewhere. This cannot be expressed
without our special root label “/.” (as tree patterns do not
allow a union operator).

Example 2.1 Consider the tree patternpa in Figure 2. An
XML documentT satisfiespa if its root element satisfies all
the following conditions: (1) its label isa; (2) it must have
a child element with an arbitrary tag, which in turn has a
child element with a labelb; and (3) it must have a de-
scendant element which has both ac -child element and an
a-child element. Thus,pa essentially specifies (existential)
conjunctive conditions on XML documents. It should be
noted that documents satisfyingpa may have tags/subtrees
not mentioned inpa. For instance, the root element ofT
may have ad-child element, and theb-elements ofT may

havec -descendant elements. 2

A tree patternp is said to beconsistentif and only if
there exists an XML document that satisfiesp. We only
consider consistent tree patterns in our work. Further, the
tree patterns defined above can be naturally generalized
to accommodate simple conditions and predicates (e.g.,
issue = “GE” and price < 1000). To simplify the dis-
cussion, we do not consider such extensions in this paper.

It is worth mentioning that a tree pattern can be easily
converted to an equivalent XPath expression [15] in which
each sub-pattern is expressed as a condition/qualifier [5].
Thus, our tree patterns are graph representations of a class
of XPath expressions, which are similar to the tree patterns
that have been studied for XML queries (e.g., [3, 17]). It
is tempting to consider using a larger fragment of XPath
to express subscription patterns. However, it turns out that
even a mild generalization of our tree patterns (e.g., with
the addition of union/disjunction operators) leads to a much
higher complexity (coNP-hard or beyond) for basic opera-
tions such as containment computation (e.g., see [10]).

A tree patternq is said to becontainedin another tree
patternp, denoted byq v p, if and only if for any XML tree
T , if T satisfiesq thenT also satisfiesp. If q v p, we refer
to p as thecontainer patternandq as thecontained pattern.
We say thatp andq areequivalent, denoted byp � q, if
p v q andq v p. This definition can be generalized to
setsof tree patterns: a set of tree patternsS is contained
in another set of tree patternsS0, denoted byS v S0, if
for eachp 2 S, there existsp0 2 S0 such thatp v p0.
Containment for sub-patterns is defined similarly.

The sizeof a tree patternp, denoted byjpj, is simply
the cardinality of its node set. For example, referring to
Figure 2,jpaj = 7 andjpbj = 8.

2.2 Problem Statement
The tree pattern aggregation problemthat we investigate
in this paper can now be stated as follows. Given a set of
tree pattern subscriptionsS and a space boundk on the
total size of the aggregated subscriptions, compute a set
of tree patternsS0 that satisfies all of the following three
conditions:

(C1) S v S0 (i.e.,S0 is at least as general asS),
(C2)

P
p02S0 jp0j � k (i.e.,S0 is “concise”), and

(C3) S0 is as “precise” as possible, in the sense that there
does not exist another set of tree patternsS00 that sat-
isfies the first two conditions andS00 v S0.

Clearly, the tree pattern aggregation problem may not nec-
essarily have a unique solution since it is possible to have
two setsS0 andS00 that satisfy the first two conditions but
S0 6v S00 andS00 6v S0. Therefore, we need to devise some
measure to quantify the goodness of candidate solutions in
terms of both their conciseness as well as preciseness.

With respect to conciseness, we are interested inmin-
imal tree patterns that do not contain any “redundant”
nodes. More precisely, we say that a tree patternp is min-
imizedif for any tree patternp0 such thatp0 � p, it is the
case thatjpj � jp0j. With respect to preciseness, it can be



/.

a

*

b

//

c a

/.

a

a

//

b c

b c

/.

b c

a

a

/.

a

* //

* c

/.

a //

a

a

/.

a //

* // // a

* b c b c

/.

a

x *

y b

c

/.

a

b c

d

/.

a

* //

b a //

c

c(c) pa(a) p b(b) p d(d) p

i(i) ph(h) pg(g) pf(f) pe(e) p

Figure 2: Examples of Tree Patterns.

shown that the containment relationshipv on the universe
of tree patterns actually defines alattice. In particular, the
notions ofupper boundandleast upper boundare of rele-
vance to the aggregation problem and, therefore, we define
them formally here.

An upper boundof two tree patternsp andq is a tree
patternu such thatp v u andq v u, i.e., for any XML tree
T , if T j= p or T j= q thenT j= u. Theleast upper bound
(LUB) of p andq, denoted byp t q, is an upper boundu
of p andq such that, for any upper boundu0 of p andq,
u v u0. Once again, we generalize the notion of LUBs to a
setS of tree patterns. Anupper boundof S is a tree pattern
U , denoted byS v U , such thatp v U for everyp 2 S.
The LUB ofS, denoted bytS, is an upper boundU of S
such that for any upper boundU 0 of S, U v U 0.

Clearly, if p is an aggregate tree patternfor a set of tree
patternsS (i.e., S v p), thenp is an upper bound ofS.
Observe that, ifp is the LUB ofS, thenp is themost precise
aggregate tree pattern forS. In fact, it can be shown that
tS exists and is unique up to equivalence for any setS of
tree patterns [5]; thus, it is meaningful to talk abouttS as
the most precise aggregate tree pattern.

Example 2.2 Consider again the tree patterns in Figure 2.
Observe thatpb � pc; and sincejpbj > jpcj, pb is not a
minimized pattern. In fact, except forpb, all the tree pat-
terns in Figure 2 are minimized patterns. Note thatpa 6v pc
because the root node ofpa does not have a tag-a child
node; andpc 6v pa because there exists no node inpc that
is a parent node of both a tag-a-node and a tag-c-node. Ob-
serve thatpa v pd andpc v pd; i.e., pd is an upper bound
of pa andpc. However,pd 6= patpc since we have another
tree pattern,pe, which is an upper bound ofpa andpc such
thatpe v pd. Indeed,pe = pa t pc with jpej < jpaj+ jpcj.
Note, however, that the size of an LUB is not necessarily
always smaller than the size of its constituent patterns. For
example,ph = pc t pf but jphj > jpcj+ jpf j. Note thatpd
is an upper bound offpa; pb; pc; pe; pf ; pg; phg. 2

We conclude this section by presenting some additional
notation used in this paper. For a nodev in a tree patternp,
we denote the set of child nodes ofv in p by Child(v; p).

We also define a partial ordering� on node labels such
that if x and x0 are tag names, then (1)x � � � ==
and (2)x � x0 iff x = x0. Given two nodesv andw,
MaxLabel(v; w) is defined to be the “least upper bound”
of their labelslabel(v) andlabel(w) as follows:

MaxLabel(v;w) =

8><
>:

label(v) if label(v) = label(w);
== if (label(v) = ==)

or (label(w) = ==);
* otherwise.

For example,MaxLabel(a; b) = � andMaxLabel(�; ==)
= ==. For notational convenience, we refer to a nodev in a
tree pattern as aǹ-node if label(v) = `, and refer tov as
a tag-nodeif label(v) 62 f=:; �; ==g.

3 Computing the Most Precise Aggregate
In this section, we consider a special case of our tree pat-
tern aggregation problem, namely, when the aggregate set
S0 consists of a single tree pattern and there is no space con-
straint. For this case, we provide an algorithm to compute
themost preciseaggregate tree pattern (i.e., LUB) for a set
of tree patterns. Some of the algorithms given in this sec-
tion are also key components of our solution for the general
problem, which is presented in the next section.

Given two input tree patternsp andq, AlgorithmLUB in
Figure 3 computes the most precise aggregate tree pattern
for fp; qg (i.e., the LUB ofp andq). It traversesp andq
top-down and computes thetightest container sub-patterns
for each pair of sub-patternsp0 = Subtree(v; p) andq0 =
Subtree(w; q) encountered, wherev andw are nodes inp
andq, respectively. The tightest container sub-patterns of
p0 andq0 are a setR of sub-patterns such that:

(1) R consists of container sub-patterns2 of p0 andq0, i.e.,
for any XML documentT and any elementt in T , if
(T; t) j= p0 or (T; t) j= q0 then(T; t) j= r for each
r 2 R; and,

2Note that a sub-pattern of tree patternsp andq is an upper-bound of
p andq, and we use these two terms interchangeably.



Algorithm LUB(p; q)
Input : p andq are tree patterns.
Output : A tree pattern representing the LUB ofp andq.
1) if (q v p) then returnp;
2) if (p v q) then returnq;
3) InitializeTCSubPat[v;w] = ;,
8 v 2 Nodes(p); 8 w 2 Nodes(q);

4) Letvroot andwroot denote the root nodes ofp andq, resp.;
5) for eachv 2 Child(vroot; p) do
6) for eachw 2 Child(wroot; q) do
7) TCSubPat[v;w] = LUB SUB (v; w; TCSubPat);
8) Create a tree patternx with root node label=: and

the set of child sub-patterns[
v2Child(vroot ;p);w2Child(wroot ;q)

TCSubPat[v; w];

9) return MINIMIZE (x);

Algorithm LUB SUB(v; w; TCSubPat)
Input : v, w are nodes in tree patternsp, q (respectively),

TCSubPat is a 2-dimensional array such that
TCSubPat[v; w] is the set of tightest container
sub-patterns ofSubtree(v; p) andSubtree(w; q).

Output : TCSubPat[v;w].
1) if (TCSubPat[v;w] 6= ;) then
2) return TCSubPat[v; w];
3)else if(Subtree(w; q) v Subtree(v; p)) then
4) return fSubtree(v; p)g;
5)else if(Subtree(v; p) v Subtree(w; q)) then
6) return fSubtree(w; q)g;
7)else
8) InitializeR = ;; R0 = ;; R00 = ;;
9) for eachv0 2 Child(v; p) do
10) for eachw0 2 Child(w; q) do
11) R = R [ LUB SUB (v0; w0; TCSubPat);
12) for eachv0 2 Child(v; p) do
13) R0 = R0 [ LUB SUB (v0; w; TCSubPat);
14) for eachw0 2 Child(w; q) do
15) R00 = R00 [ LUB SUB (v; w0; TCSubPat);
16) Letx be the pattern with root node labelMaxLabel(v;w)

and set of child subtree patternsR;
17) Letx0 be the pattern with root node label==

and set of child subtree patternsR0;
18) Letx00 be the pattern with root node label==

and set of child subtree patternsR00;
19) return TCSubPat[v; w] = fx; x0; x00g;

Figure 3: Least-Upper-Bound Computation Algorithm.

(2) R is tightest in the sense that for any other set of con-
tainer sub-patternsR0 of p0 andq0 that satisfies condi-
tion (1), any XML documentT and any elementt in
T , if (T; t) j= r for eachr 2 R then(T; t) j= r0 for
all r0 2 R0.

Intuitively,R is a collection of conditions imposed by both
p0 andq0 such that ifT satisfiesp0 or q0 att, thenT also sat-
isfies the conjunction of these conditions att. We now show
how the LUB forp andq can be computed from the tightest
container sub-patterns. Letvroot andwroot be the roots of
patternsp andq, respectively. Note that a documentT that
satisfiesp also satisfies, for eachv 2 Child(vroot; p), the
restriction ofp to the root node and onlySubtree(v; p).
Consequently, a documentT that satisfiesp or q must

also satisfy the patternx consisting of a root node (with
label /.) whose children are the tightest container sub-
patterns for each pairSubtree(v; p) andSubtree(w; q),
wherev 2 Child(vroot; p) andw 2 Child(wroot; q). This
patternx is thus an LUB ofp andq.

The main subroutine in our LUB computation (Al-
gorithm LUB SUB) computes the tightest container sub-
patterns ofp0 and q0 as follows. If q0 v p0 (resp.
p0 v q0), thenp0 (resp. q0) is the tightest container sub-
pattern; otherwise, the tightest container sub-patterns are
a setfx; x0; x00g of sub-patterns, which are defined in the
following manner. The root node ofx is labeled with
MaxLabel(v; w) and the child subtrees ofx are the tight-
est container sub-patterns of each child subtree ofp0 and
each child subtree ofq0. Intuitively, the root ofx corre-
sponds to the roots ofp0 andq0 (with a label equal to the
least upper bound of that ofp0 and q0). In other words,
x preserves the positions of the corresponding nodes inp0

andq0. However, this “position-preserving” generalization
is not sufficient sincep0 and q0 may have common sub-
patterns at different positions relative to their roots. For
example,pc andpf in Figure 2 have a common sub-pattern
rooted at ana-node that has both ab-child and ac-child, but
this pattern is located at different positions relative to the
roots ofpc andpf . To capture these “off-position” common
sub-patterns, we need to computex0 andx00. The child sub-
trees ofx0 are the tightest container sub-patterns ofq0 itself
and each child subtree ofp0; and the label of the root node
of x0 is == to accommodate common sub-patterns at differ-
ent positions relative to the roots ofp0 andq0. Similarly, the
root node ofx00 has label==, and the child subtrees ofx00

are the tightest container sub-patterns ofp0 itself and each
child subtree ofq0.

By computing the tightest container sub-patterns recur-
sively, the algorithm computes the LUB of the input tree
patternsp andq. By induction on the structures ofp andq,
we can show the following result [5].

Proposition 3.1: Given two tree patternsp and q, Algo-
rithm LUB(p; q) computesp t q. 2

Example 3.1 Given pc and pf in Figure 2, Algorithm
LUB returns ph, which is indeedpc t pf . To help ex-
plain the computation ofph, we use the notationxn
to refer thenth node (in some tree pattern) that is la-
beled “x”, where each collection of nodes sharing the
same label are ordered based on their pre-order se-
quence; for example, inph, we use==1 and ==3 to
refer to the leftmost and rightmost==-nodes, respec-
tively. AlgorithmLUB SUB (invoked by AlgorithmLUB)
first extracts the “position preserving” tightest container
sub-patterns forSubtree(a1; pc) and Subtree(a; pf ),
which yields the sub-patternSubtree(a1; ph) (in Steps 9–
11). Note that the root node ofSubtree(a1; ph) is la-
beleda because both the root nodes ofSubtree(a1; pc)
and Subtree(a; pf ) are labeled a. The sub-patterns
Subtree(a2; pc) andSubtree(b; pf), however, have quite
different structures and thus a “position-preserving” at-
tempt to extract their common sub-patterns only yields



Subtree(�1; ph). In particular, the common sub-pattern
consisting of ana-node with both ab-child-node and
c-child-node is not captured by the above process be-
cause they occur at different positions relative to the root
nodes ofSubtree(a2; pc) and Subtree(b; pf). To ex-
tract such “off-position” common sub-patterns, Algorithm
LUB SUBcomparesSubtree(a1; pc) with Subtree(b; pf )
andSubtree(c; pf ), as well as comparesSubtree(a; pf )
with Subtree(a2; pc) (in Steps 12–15). Indeed, this yields
Subtree(==3; ph) which has a==-root since this com-
mon sub-pattern occurs at different positions relative to
the root nodes ofSubtree(a1; pc) and Subtree(a; pf ).
It should be mentioned that bothSubtree(==1; ph) and
Subtree(==2; ph) are also produced by the “off-position”
processing, as AlgorithmLUB SUBrecursively processes
the sub-patternSubtree(a2; pc) with Subtree(b; pf ) and
Subtree(c; pf ), respectively. Finally, the algorithm re-
moves the redundant nodes in the result tree pattern by
using a minimization algorithm (which will be explained
shortly) to generate the LUBph. 2

It is straightforward to show that our LUB operator “t”,
considered as a binary operator, iscommutativeandasso-
ciative, i.e., p1 t p2 = p2 t p1 and p1 t (p2 t p3) =
(p1tp2)tp3. As a result, AlgorithmLUBcan be naturally
extended to compute the LUB of any set of tree patterns.
We next explain the details of the two auxiliary algorithms
used in AlgorithmLUB.

Algorithm LUB needs to check the containment of tree
patterns, which is implemented by AlgorithmCONTAINS
in Figure 4. Given two input tree patternsp andq, the algo-
rithm determines ifq v p. It maintains a two-dimensional
array Status, which is initialized withStatus[v; w] =
null to indicate thatv 2 Nodes(p) andw 2 Nodes(q)
have not been compared; otherwise,Status[v; w] 2
ftrue; falseg such thatStatus[v; w] = true if and only
if Subtree(w; q) v Subtree(v; p). Clearly,q v p if and
only if Status[vroot; wroot] = true, wherevroot andwroot

denote the root nodes ofp andq, respectively.
The main subroutine in our containment algorithm is

Algorithm CONTAINSSUB. Abstractly,CONTAINSSUB
traversesp andq top-down and updatesStatus[v; w] for
each pair of nodesv 2 Nodes(p) andw 2 Nodes(q)
visited as follows. Letp0 and q0 denoteSubtree(v; p)
andSubtree(w; q), respectively. IfStatus[v; w] has al-
ready been computed (i.e.,Status[v; w] 6= null), then its
value is returned. Otherwise, our algorithm determines
whetherq0 v p0, as follows. If label(v) 6= ==, then
Status[v; w] = true iff label(w) � label(v) and each
child subtree ofv contains some child subtree ofw. Oth-
erwise, if label(v) = ==, two additional conditions need
to be taken into account. This is because unlike a�-node
or a tag-name-node, a==-node in a container tree pattern
can also be “mapped” to a (possibly empty) chain of nodes
in a contained tree pattern. For example, consider the tree
patternspd andpf in Figure 2. Note thatpf v pd, and
the==-node inpd is not mapped to any node inpf in the
sense thatpf would still be contained inpd if the ==-node

Algorithm CONTAINS(p; q)
Input : p andq are two tree patterns.
Output : Returnstrue if q v p; false otherwise.
1) InitializeStatus[v; w] = null,
8 v 2 Nodes(p); 8 w 2 Nodes(q);

2) Letvroot andwroot denote the root nodes ofp andq, resp.;
3) if (Child(vroot; p) = ;) then
4) return true;
5)else
6) return CONTAINSSUB(vroot; wroot; Status);

Algorithm CONTAINSSUB(v; w; Status)
Input : v, w are nodes in tree patternsp, q (respectively),

Status is a 2-dimensional array such that each
Status[v; w] 2 fnull; false; trueg.

Output : Status[v;w].
1) if (Status[v;w] 6= null) then
2) return Status[v; w];
3) if (v is a leaf node inp) then
4) Status[v; w] = (label(w) � label(v));
5)else if(label(w) 6� label(v)) then
6) Status[v; w] = false;
7)else
8) Status[v; w] =

^
v02Child(v;p)

0
@ _

w02Child(w;q)

CONTAINS SUB (v0; w0; Status)

1
A;

9) if (Status[v;w] = false) and (label(v) = ==) then
10) Status[v; w] =V

v02Child(v;p) CONTAINS SUB (v0; w; Status);
11) if (Status[v;w] = false) and (label(v) = ==) then
12) Status[v; w] =

_
w02Child(w;q)

CONTAINS SUB (v; w0; Status);

13)return Status[v;w];

Figure 4: Tree-Pattern Containment Algorithm.

in pd is deleted. On the other hand, for the tree patterns
pd andpg in Figure 2,pg v pd and the==-node inpd is
mapped to both the�- andb-nodes inpg in the sense that
Subtree(�; pg) v Subtree(==; pd) andSubtree(b; pg) v
Subtree(==; pd). These two additional scenarios are han-
dled by Steps 10 and 12 in AlgorithmCONTAINSSUB:
Step 10 accounts for the case where a==-node (v itself)
is mapped to an empty chain of nodes, and Step 12 for
the case where a==-node (v itself) is mapped to a non-
empty chain. Note that in Steps 8 and 12, the expres-
sion

W
w0inChild(w;q) CONTAINS SUB (x;w0; Status) re-

turnsfalse if Child(w; q) = ;.
By induction on the structures ofp andq, we can show

the following result.

Proposition 3.2: Given two tree patternsp and q, Algo-
rithm CONTAINS(p; q) determines ifq v p in O(jpj � jqj)
time. 2

The quadratic time complexity of our tree-pattern con-
tainment algorithm is due to, among other things, the fact
that each pair of sub-patterns inp andq is checked at most
once, because of the use of theStatus array. To simplify
the discussion, we have omitted from AlgorithmCON-
TAINS certain subtle details that involve tree patterns with



chains of==- and�-nodes. Such cases require some ad-
ditional pre-processing to convert the tree pattern to some
canonical form, but this does not increase our algorithm’s
time complexity.

To ensure that our tree patterns are concise, we need to
identify and eliminate “redundant” nodes in them. Given
a tree patternp, a minimized tree patternp0 equivalent
to p can be computed using a recursive algorithmMIN-
IMIZE . Starting with the root ofp, our minimization al-
gorithm performs the following two steps to minimize the
sub-patternSubtree(v; p) rooted at nodev in p: (1) For any
v0; v00 2 Child(v; p), if Subtree(v0; p) v Subtree(v00; p),
then deleteSubtree(v0; p) from Subtree(v; p); and, (2)
For eachv0 2 Child(v; p) (that was not deleted in the first
step), recursively minimizeSubtree(v0; p). The complete
details can be found in [5].

Proposition 3.3: Algorithm MINIMIZE minimizes any
tree patternp in O(jpj2) time. 2

Proposition 3.4:For any minimized tree patternsp andp0,
p � p0 iff p = p0 (i.e., they are syntactically equal). 2

Given the low computational complexities ofCON-
TAINS andMINIMIZE , one might expect that this would
also be the case for AlgorithmLUB. Unfortunately, in the
worst case, the size of the (minimized) LUB of two tree pat-
terns can be exponentially large (see [5] for a detailed anal-
ysis). Our implementation results, however, demonstrate
that ourLUB algorithm exhibits reasonably low average-
case complexity in practice.

4 Selectivity-based Aggregation Algorithm
While the LUB algorithm presented in the previous sec-
tion can be used to compute a single, most precise aggre-
gate tree pattern for a given setS of patterns, the size of
the LUB may be too large and, therefore, may violate the
specified space constraintk on the total size of the aggre-
gated subscriptions (Section 2.2). Thus, in order to fit our
aggregates within the allotted space budget, we relax the
requirement of a single precise aggregate by permitting our
solution to be asetS0 = fp1; p2; : : : ; pmg (instead of a
single pattern), such that each patternq 2 S is contained
in some patternpi 2 S0. Of course, we also require thatS0

provide the “tightest” containment for patterns inS for the
given space constraint (Section 2.2); that is, the number of
XML documents that satisfy some tree pattern inS0 but not
S, is small.

A simple measure of the preciseness ofS0 is itsselectiv-
ity, which is essentially the fraction of filtered XML docu-
ments that satisfy some pattern inS0. Thus, our objective is
to compute a setS0 of aggregate patterns whose selectivity
is very close to that ofS. Clearly, the selectivity of our tree
patterns is highly dependent on the distribution of the un-
derlying collection of XML documents (denoted byD). It
is, however, infeasible to maintain the detailed distribution
D of streaming XML documents for our aggregation—the
space requirements would be enormous! Instead, our ap-
proach is based on building aconcise synopsisofD on-line

(i.e., as documents are streaming by), and using that synop-
sis to estimate (approximate) tree-pattern selectivities. At a
high level, our aggregation algorithm iteratively computes
a setS0 that is both selective and satisfies the space con-
straint, starting withS0 = S (i.e., the original setS of pat-
terns), and performing the following sequence of steps in
each iteration:

1. Generate a candidate set of aggregate tree patternsC
consisting of patterns inS0 and LUBs of similar pat-
tern pairs inS0.

2. Prune each patternp in C by deleting/merging nodes
in p in order to reduce its size.

3. Choose a candidatep 2 C to replace all patterns in
S0 that are contained inp. Our candidate-selection
strategy is based onmarginal gains[14]: The selected
candidatep is the one that results in the minimum loss
in selectivity per unit reduction in the size ofS0 (due
to the replacement of patterns inS0 by p).

Note that our pruning step (Step 2) above makes can-
didate aggregate patterns less selective (in addition to de-
creasing their size). Thus, by replacing patterns inS0 by
patterns inC, we are effectively trying to reduce the size of
S0 by giving up some of its selectivity.

In the following subsections, we describe in more detail
our algorithm for computingS0. We begin by presenting
our approach for estimating the selectivity of tree patterns
over the underlying document distribution, which is critical
to choosing a good replacement candidate in Step 3 above.

4.1 Selectivity Estimation for Tree Patterns
The Document Tree Synopsis.As mentioned above, it is
simply impossible to maintain the accurate document dis-
tribution D (i.e., the full set of streaming documents) in
order to obtain accurate selectivity estimates for our tree
patterns. Instead, our approach is to approximateD by a
concise synopsis structure, which we refer to as thedoc-
ument tree. Our document tree synopsis forD, denoted
by DT , captures path statistics for documents inD, and
is built on-line as XML documents stream by. The doc-
ument tree essentially has the same structure as an XML
tree, except for two differences. First, the root node ofDT
has the special label “/.”. Second, each non-root nodet in
DT has a frequency associated with it, which we denote
by freq(t). Intuitively, if l1=l2= � � � =ln is the sequence of
tag names on nodes along the path from the root tot (ex-
cluding the label for the root), thenfreq(t) represents the
number of documentsT in D that contain a path with tag
sequencel1=l2= � � � =ln originating at the root ofT . The
frequency for the root node ofDT is set toN , the number
of documents inD.

As XML documents stream by,DT is incrementally
maintained as follows. For each arriving documentT , we
first construct theskeleton treeTs for documentT . In the
skeleton treeTs, each node has at most one child with a
given tag.Ts is built fromT by simply coalescing two chil-
dren of a node inT if they share a common tag. Clearly, by
traversing nodes inT in a top-down fashion, and coalescing
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Figure 5: Example Documents, Skeleton Tree, Document
Tree, and Patterns.

child nodes with common tags, we can constructTs from
T in a single pass (using an event-based XML parser). As
an example, Figure 5(d) depicts the skeleton tree for the
XML-document tree in Figure 5(a).

Next, we useTs to update the statistics maintained in
our document tree synopsisDT as follows. For each path
in Ts, with tag sequence sayl1=l2= � � � =ln, let t be the last
node on the corresponding (unique) path inDT . We in-
crementfreq(t) by 1. Figure 5(e) shows the document
tree (with node frequencies) for the XML treesT1, T2, and
T3 in Figure 5(a) to (c). Note that it is possible to further
compressDT by using techniques similar in spirit to the
methods employed by Aboulnaga et al. [1] for summariz-
ing path trees. The key idea is to merge nodes with the
lowest frequencies and store, with each merged node, the
average of the original frequencies for nodes inDT that
were merged. This is illustrated in Figure 5(f) for the doc-
ument tree in Figure 5(e), and with the label “–” used to
indicate merged nodes. Due to space constraints, in the
remainder of this subsection, we only present solutions to
the selectivity estimation problem using the uncompressed
treeDT . However, our proposed methods can be easily
extended to work even whenDT is compressed [5].

We should note here that our selectivity estimation prob-
lem for tree patterns differs from the work of Aboulnaga et
al. [1] in two important respects. First, in [1], the authors
consider the problem of estimating selectivity for only sim-
ple paths that consist of a //-node followed by tag nodes. In
contrast, we estimate selectivities of general tree patterns
with branches, and *- or //-nodes arbitrarily distributed in
the tree. Second, we are interested in selectivity at the gran-
ularity of documents, so our goal is to estimate the number
of XML documents that match a tree pattern; instead, [1]
addresses the selectivity problem at the granularity of indi-
vidual document elementsthat are discovered by a path. It
is easy to see that these are two very different estimation
problems.

Selectivity Estimation Procedure. Recall that the selec-

tivity of a tree patternp is the fraction of documentsT in
D that satisfyp. By construction, ourDT synopsis gives
accurate selectivity estimates for tree patterns comprising
a single chain of tag-nodes (i.e., with no * or //). How-
ever, obtaining accurate selectivity estimates for arbitrary
tree patterns with branches, *, and // is, in general, not pos-
sible withDT summaries. This is because, whileDT cap-
tures the number of documents containing a single path, it
does not store document identities. As a result, for a pair
of arbitrary paths in a tree pattern, it is impossible to de-
termine the exact number of documents that contain both
paths or documents that contain one path, but not the other.

Our estimation procedure solves this problem, by mak-
ing the following simplifying assumption:The distribution
of each path in a tree pattern is independent of other paths.
Thus, we estimate the selectivity of a tree pattern contain-
ing no == or � labels, simply as theproductof the selec-
tivities of each root to leaf path in the pattern. For patterns
containing== or �, we consider all possible instantiations
for == and� with element tags, and then choose as our pat-
tern selectivity the maximum selectivity value over all in-
stantiations. (This is similar to the definition of a fuzzyOR
operator in fuzzy logic [13].) We illustrate our selectivity
estimation methodology in the following example.

Example 4.1 Consider the problem of estimating the se-
lectivities of the tree patterns shown in Figures 5(g) to (i)
using the document tree shown in Figure 5(e). The total
number of documents,N , is 3. Clearly, the number of doc-
uments satisfying patternp1 which consists of a single path,
can be estimated accurately by following the path inDT
and returning the frequency for thed-node (at the end of
the path) inDT . Thus, the selectivity ofp1 is 2=3 which
is accurate since only documentsT2 andT3 satisfyp1. Es-
timating the number of documents containing patternp2,
however, is somewhat more tricky. This is because there
are two paths with tag sequencesx=a=d andx=b=a=d in
DT that matchp2 (corresponding to instantiating // with
x andx=a). Summing the frequencies for the twod-nodes
at the end of these paths gives us an answer of 4 which
over-estimates the number of documents satisfyingp2 (only
documentsT2 andT3 satisfyp2). To avoid double-counting
frequencies, we estimate the number of documents satisfy-
ing p2 to be the maximum (and not the sum) of frequencies
over all paths inDT that matchp2. Thus, the selectivity of
p2 is estimated as2=3.

Finally, the selectivity ofp3 is computed by consider-
ing all possible instantiations for // and *, and choosing
the one with the maximum selectivity. The two possible in-
stantiations for // that result in non-zero selectivities arex
andx=b, and� can be instantiated with eitherb; c or d for
== = x, andc or d for == = x=b. Choosing== = x and
� = c results in the maximum selectivity since the product
of the selectivities of pathsx=a=c andx=a=d is maximum,
and is equal to(3=3) � (2=3) = 2=3. 2

Algorithm SEL (depicted in Figure 6), invoked with in-
put parametersv = vroot (root of patternp) andt = troot
(root ofDT ), computes the selectivity for an arbitrary tree



Algorithm SEL(v, t)
Input : v is a node in tree patternp, t is a node inDT .
Output : SelSubPat[v; t].
1) if (SelSubPat[v; t] is already computed)then
2) return SelSubPat[v; t];
3)else if(label(t) 6� label(v)) then
4) return SelSubPat[v; t] = 0;
5)else if(v is a leaf)then
6) return freq(t)=N ;
7) for each childvc 2 Child(v; p) do
8) Selvc = maxtc2Child(t;DT )fSEL (vc; tc)g;
9)Sel =

Q
vc2Child(v;p)

Selvc ;
10)if (label(v) = ==) then
11) Selv =

Q
vc2Child(v;p)

SEL(vc; t);
12) Sel = maxfSel; Selvg;
13) Selv = maxtc2Child(t;DT )fSEL(v; tc)g;
14) Sel = maxfSel; Selvg;
15)return SelSubPat[v; t] = Sel

Figure 6: Tree Pattern Selectivity Estimation Algorithm.

patternp in O(jDT j � jpj) time. In the algorithm, for nodes
v 2 p andt 2 DT , SelSubPat[v; t] stores the selectivity
of the sub-patternSubtree(v; p) with respect to the subtree
ofDT rooted at nodet. This selectivity is estimated similar
to the selectivity for patternp, except that we now consider
all instantiations ofSubtree(v; p) (obtained by instantiat-
ing == and� with element tags), and the selectivity of each
instantiation is computed with respect tot as the root in-
stead of the root ofDT . For instance, suppose thatv is the
a-node inp3 (in Figure 5(i)), andt is the childa-node of
thex-node inDT (in Figure 5(e)). Then, the selectivity of
Subtree(v; p3) with respect tot is essentially the product
of the selectivity of pathsa=� anda=d with respect to node
t, which is1 � (2=3). Thus,SelSubPat[v; t] = 2=3.

Our goal is to computeSelSubPat[vroot; troot]. For
a pair of nodesv and t, Algorithm SEL computes
SelSubPat[v; t] from SelSubPat[ ] values for the chil-
dren ofv andt. Clearly, if label(t) 6� label(v) (Steps 3-4
of the algorithm), then every path inSubtree(v; p) begins
with a label different fromlabel(t) and thus the selectiv-
ity of each of the paths is0. If label(t) � label(v) and
v is a leaf (Steps 5-6), then we simply instantiatelabel(v)
(if label(v) = == or *) with label(t), giving a selectivity of
freq(t)=N . On the other hand, ifv is an internal node ofp,
then in addition to instantiatinglabel(v) with label(t), we
also need to compute, for every childvc of v, the instanti-
ation forSubtree(vc; p) that has the maximum selectivity
with respect to some childtc of t. SinceSelSubPat[vc; tc]
is the selectivity ofSubtree(vc; p) with respect totc, the
product of maxtc2Child(t;DT ) SelSubPat[vc; tc] for the
childrenvc of v gives the selectivity ofSubtree(v; p) with
respect tot. Finally, if label(v) = ==, then== can be
simplynull, in which case the selectivity ofSubtree(v; p)
with respect tot is computed as described in Step 11, or
== is instantiated to a sequence consisting oflabel(t) fol-
lowed bylabel(tc), wheretc is the child oft such that the
selectivity ofSubtree(v; p)with respect totc is maximized
(Step 13). Observe that, in Steps 8 and 13, ift has no chil-

dren, thenmaxtc2Child(t;DT )f: : :g evaluates to0.

4.2 Tree Pattern Aggregation Algorithm
We are now ready to present our greedy heuristic algo-
rithm for the tree pattern aggregation problem defined in
Section 2.2 (which is, in general, anNP-hard clustering
problem [5]). As described earlier, to aggregate an input set
of tree patternsS into a space-efficient and precise set, our
algorithm (AlgorithmAGGREGATEin Figure 7) iteratively
prunes the tree patterns inS by replacing a small subset of
tree patterns with a more concise upper-boundaggregate
pattern, until S satisfies the given space constraint. During
each iteration, our algorithm first generates a small set of
potential candidate aggregate patternsC, and selects from
these the (locally) “best” candidate pattern, i.e., the candi-
date that maximizes the gain in space while minimizing the
expected loss in selectivity.

Algorithm AGGREGATE(S; k)
Input : S is a set of tree patterns,k is a space constraint.
Output : A set of tree patternsS0 such thatS v S0

and
P

p2S0 jpj � k.
1) InitializeS0 = S;
2) while (

P
p2S0 jpj > k) do

3) C1 = fx j x = PRUNE(p; jpj � 1); p 2 S0g;
4) C2 = fx j x = PRUNE(p t q; jpj+ jqj � 1); p; q 2 S0g;
5) C = C1 [ C2;
6) Selectx 2 C such thatBenefit(x) is maximum;
7) S0 = S0 � fp j p v x; p 2 S0g [ fxg;
8) return S0;

Figure 7: Tree Pattern Aggregation Algorithm.

Candidate Generation. We now explain the process for
generating the candidate setC in Steps 3–5 of Algo-
rithm AGGREGATE. To reduce the size of individual candi-
date patterns of the formp orptq, each candidate ispruned
by invoking AlgorithmPRUNE(details in [5]). Given an
input patternp and space constraintn, Algorithm PRUNE
prunesp to a smaller tree patternp0 such thatp v p0 and
jp0j � n. The algorithm treats tag-nodes as more selective
than�- and==-nodes, and therefore tries to prune away�-
and==-nodes before the tag-nodes. Specifically, the algo-
rithm first prunes the�- and==-nodes inp by (1) replac-
ing each adjacent pair of non-tag-nodesv; w with a single
==-node, ifw is the only child ofv, and (2) eliminating
subtrees that consist of only non-tag-nodes. If the tree pat-
tern is still not small enough after the pruning of the non-
tag-nodes, we start pruning the tag-nodes. There are two
ways to reduce the size of a tree patternp by one node.
The first is to delete some leaf node inp, and the second
is to collapse two nodesv andw into a single==-node,
where label(v) 6= =: andChild(v; p) = fwg. To help
select a “good” leaf node to delete (or, pair of nodes to
collapse), we make use of the selectivity of the tag names.
More specifically, we use our document tree synopsisDT
to estimate the total number of occurrences of a tag name in
the document collectionD, and then choose the tags with
higher total frequencies (which are less selective) as candi-
dates for pruning.



Candidate Selection.Once the set of candidate aggregate
patterns has been generated, we need some criterion for
selecting the “best” candidate to insert intoS0. For this
purpose, we associate a benefit value with each candidate
aggregate patternx 2 C, denoted byBenefit(x), based
on its marginal gain[14]; that is, we defineBenefit(x)
as the ratio of the savings in space to the loss in selectivity
of usingx over fp j p v x; p 2 S0g. More formally, if
vxroot , troot, andvproot represent the root nodes ofx, DT ,
andp 2 S0, thenBenefit(x) is equal to:

�P
pvx;p2S0 jpj

�
� jxj

SEL(vxroot ; troot)�maxpvx;p2S0 SEL(vproot ; troot)

Note that we compute the selectivity loss by comparing
the selectivity of the candidate aggregate patternxwith that
of the least selective pattern contained in it. This gives a
good approximation of the selectivity loss in cases when
the patternsp; q 2 S0 used to generatex are similar and
overlap in the document treeDT . The candidate aggregate
pattern with the highest benefit value is chosen to replace
the patterns contained in it inS0 (Steps 6–7).

5 Experimental Study
To verify the effectiveness of our tree pattern aggregation
algorithms, we have conducted an extensive performance
study using real-life DTDs and large numbers of tree pat-
terns. Our results indicate that our proposed aggregation
techniques achieve significant reductions in the number as
well as total size of tree patterns with minimal loss in se-
lectivity.

5.1 Experimental Testbed and Methodology
Our general methodology for evaluating the effectiveness
of a pattern aggregation algorithmA is as follows. Given
a large input set of tree patternsS and a space constraint
k, we useA to compute a set of aggregate patternsS0 for
S, whereS v S0 and

P
p2S0 jpj � k (our space constraint

is expressed in terms of number of nodes, since patterns
can be arbitrarily large). We then measure the loss in preci-
sion when usingS0 instead ofS to filter XML documents.
Observe that whenk = 1, S0 contains a single container
pattern (“==”).

To measure the loss in precision of the aggregate setS0,
we use a subsetD0 of a representative set of XML docu-
ments, such that no document inD0 matches any tree pat-
tern in our initial pattern setS. The reason, of course,
is that XML documents that matchS are also guaranteed
to matchS0, so they are unlikely to affect our “precision-
loss” measurements. AsS0 becomes less precise, some
documents inD0 will be erroneously reported as matches.
Let Matches(D0; S0) be the number of documents inD0

that matchS0; the loss in precision ofS0 over S can be
estimated asSelLoss(S0; S) = Matches(D0; S0)=jD0j.
An aggregation algorithm is obviously more effective if
SelLoss(S0; S) remains small as

P
p2S0 jpj decreases.

XML Documents. We used two real-life DTDs to gener-
ate our XML document data set. The first one, the Extensi-
ble Hypertext Markup Language (XHTML) DTD [7], is a

reformulation of HTML as an XML application and is ar-
guably the document type most widely used over the Inter-
net. The XHTML DTD (version 1.0) contains77 elements
with 1377 attributes. The second DTD, the News Industry
Text Format (NITF) DTD[8], is supported by most of the
world’s major news agencies. The NITF DTD (version 2.5)
contains123 elements with513 attributes.

We generated our data set of XML documents using
IBM’s XML Generator tool [11]. Both the XHTML and
NITF DTDs contain recursive structures, which can be
nested to produce XML documents with arbitrary number
of levels. We added the option of generating documents
skewed according to a Zipf distribution [18], where some
tag names appear more frequently than others, as is gener-
ally the case with real-life data.

For each each DTD and each skew value�D = f0; 1; 2g,
we generated two disjoint sets of500XML documents with
approximately100 nodes and10 levels on average. The
first set corresponds to the collection of XML documents
used to construct the document treeDT for selectivity es-
timation; the second set is used to measure the loss in pre-
cision of the aggregation algorithms. Both sets were gen-
erated with the same parameters, and thus can be expected
to have similar distributions. In each experiment, we used
the combined XML documents for both the XHTML and
NITF DTDs, i.e., we used a total of1000 documents for
the document treeDT , and (a different)1000 documents
for measuring the loss in precision.

XPath Expressions.To generate the set of tree patternsS,
we implemented an XPath expression generator that takes
a DTD as input and creates a set of valid XPath expressions
based on a set of parameters that control: (1) the maximum
heighth of the tree patterns; (2) the probabilitiesp

�
andp==

of having a wildcard “�” or a descendant “==” operator at
a node of a tree pattern; (3) the probabilityph of having
more than one child at a given node; and (4) the skew�S of
the Zipf distribution used for selecting element tag names.

For each DTD and each skew value�S = f0; 1; 2g, we
generated a set of5000 tree patterns withh = 10 andp

�
=

p== = ph = 0:1. Each experiment was run with tree pat-
terns from both the XHTML and NITF DTDs, i.e.,10000
tree patterns which amounted to more than100000 nodes.

Algorithms. We compared two different aggregation algo-
rithms in our experiments. The first (“naive”) algorithm,
PRUNE, is based on simple node pruning and works as fol-
lows. At each iteration, it selects a tree patternpmax from
S with the largest number of tag-nodes, collapses multiple
�- and==-nodes, and deletes a prunable node (i.e., a leaf
node or a node located next to==-nodes) with the highest
frequency (i.e., least selective) in the document treeDT . If
there is already a tree pattern identical to the pruned pat-
tern, then the duplicate is removed fromS. The algorithm
iterates until the space constraint is satisfied. The second
algorithm, AGGR, is our greedy tree pattern aggregation
algorithm (from Figure 7) with both candidate generation
and selection (based on maximizing the benefit). Our ex-
periments were conducted on a 866 MHz Intel Pentium III
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Figure 8: Evaluation of the Aggregation Algorithms.

machine with512 MB of main memory running Linux.
Both algorithms completed the aggregation of10000 tree
patterns in approximately10 minutes.

5.2 Experimental Results
We first compare the performance of the two aggregation
algorithms by varying the skew for element tags in the
XML documents and in the XPath expressions. We ran the
experiments with no skew, with skewed XML documents,
with skewed XPath expressions, and with skew in both the
XML documents and XPath expressions. In the last case,
we skew the distribution for element names in the oppo-
site “direction” (applying the same skew to both the XML
documents and XPath expressions would yield similar re-
sults as with no skew). The experimental results are shown
in Figures 8(b), 8(a), and 8(c), where the space constraint,
expressed in terms of the number of nodes, is varied along
thex-axis, and they-axis indicates the observed loss in se-
lectivity for a given space constraint, i.e., the percentage of
XML documents that are erroneously reported as matches.

We also measure the benefits of aggregation in terms of
filtering performance, using the XTrie matching algorithm
described in [6]. Since the cost of filtering in XTrie grows
linearly with the number of XPath expressions, we expect
to observe a significant improvement in filtering speed as
the cardinality ofS decreases.

Non-skewed workload. When neither the XML data nor
the tree patterns contain skew (i.e.,�D = �S = 0), the
AGGR algorithm can aggregate tree patterns up to15% of
their original size with only a25% loss in precision (the
results for non-skewed data are reported in all graphs of
Figure 8). In contrast, the precision of PRUNE algorithm
starts to degrade much sooner, and the loss in precision
reaches almost100% at 25% of the initial space. The bet-
ter performance of AGGR can be attributed to three main
factors: (1) the upper bound computation generates good
candidates with few nodes and little loss in precision, (2)
the selectivity-based heuristics help to detect and discard
candidates that correspond to patterns with low selectivity
(i.e., frequently occurring for a given DTD), and (3) the
covering computation enables redundant tree patterns to be

eliminated early.

Skewed XML documents. Real-world XML documents
are generally not uniformly distributed among the valid
XML data for a given DTD. When XML documents are
skewed (Figure 8(a)), we observe that the effectiveness of
the AGGR algorithm increases. The reason for this is that,
as data becomes more skewed, the XML documents tend to
form clusters with documents within a cluster being more
similar than those in different clusters; this, in turn, im-
proves the accuracy of selectivity estimation. The PRUNE

algorithm also benefits from the skew (although to a lesser
extent) because of its frequency-based pruning heuristic.

Skewed tree patterns.We also observe a significant im-
provement in our aggregation algorithm when the element
names of tree patterns are skewed (Figure 8(b)). Indeed,
the skew induces a clustering of patterns such that simi-
lar tree patterns are grouped into the same cluster, which
consequently increases the proportion of patterns that de-
velop containment relationships. This permits the aggrega-
tion algorithm to reduce the size ofS with minimal loss of
selectivity, by computing tighter upper bound patterns and
discarding covered patterns.

Skewed workload. The two aggregation algorithms per-
form best when both the XML data and the tree patterns
are skewed in different “directions” (Figure 8(c)). With
high skew values, there is little overlap between the ele-
ment names of the XML documents and the tree patterns,
and AGGR remains highly selective with only a few hun-
dreds nodes. The PRUNE algorithm also exhibits signifi-
cant improvements and maintains50% selectivity even af-
ter the original number of nodes are reduced to less than a
third.

Filtering speed. As mentioned previously, the cost of
matching tree patterns against incoming XML documents
is proportional to the number of tree patterns. Since AGGR

generates candidates by computing upper bounds, the can-
didates cover more patterns, and as result, the number of
patterns inS shrinks faster with AGGR. Figure 9 shows that
the average filtering time per document decreases faster (as
space is increased) for AGGR than for the PRUNE algo-
rithm. Our aggregation algorithm is therefore more effec-
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tive both in terms of selectivity as well as filtering speed.

6 Related Work

To the best of our knowledge, our tree pattern aggregation
problem is a novel problem that has not been studied in ear-
lier work. In contrast to the “flat patterns” previously stud-
ied in the context of aggregating attribute-predicate-based
subscriptions [12], our paper focuses on hierarchical pat-
terns, which are more complex (as tree patterns consist of
both data contents and structure) and require more sophis-
ticated aggregation techniques.

A related area is the work on query merging to reduce
data dissemination costs of query subscriptions in a multi-
cast environment [9]. The motivation for query merging is
to merge multiple similar queries into a single, more gen-
eral query so as to reduce the workload of the server and
possibly the amount of traffic between the server and its
clients. However, the problem domain considered in [9] fo-
cuses on geographical queries (represented as rectangles);
furthermore, the issue of space constraint is not relevant
there.

Some forms of tree patterns have been studied as queries
for XML data [3, 17]. In particular, minimization algo-
rithms for these patterns have been developed in order to
optimize pattern queries. The tree patterns in [3] differ
from ours in two aspects. On the one hand, the tree pat-
terns of [3] do not allow�-nodes (wildcards) which, as
mentioned in Section 3, give rise to subtle problems in the
presence of==-nodes (descendants) when containment of
tree patterns is considered. On the other hand, they sup-
port selection of a set of document nodes as the result of a
pattern query, which we do not consider since what matters
for our subscription aggregation context is whether or not
a document matches a subscription; the actual set of doc-
ument nodes that matches a subscription is not relevant.
Because of these differences, the minimization algorithm
of [3] has anO(n4) complexity in contrast to ourO(n2)
complexity. Similarly, the work in [17] studies a different
class of tree patterns and their minimization algorithm is
only known to be in polynomial time.

7 Conclusions
We have provided the first systematic study oftree pat-
tern aggregation, an important problem in building next-
generation, scalable XML dissemination systems. The
main challenge is to aggregate an input set of tree patterns
into a smaller set such that: (1) a given space constraint
on the total size of the patterns is met, and (2) the loss
in precision (due to aggregation) is minimized. We have
proposed an efficient aggregation algorithm that makes ef-
fective use of document-distribution statistics in order to
compute a precise set of aggregate tree patterns within the
allotted space budget. Further, some of our algorithmic re-
sults are of interest in their own right, and can prove useful
in other domains, such as XML query optimization. Exten-
sive results from a prototype implementation have verified
the effectiveness of our approach.
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