
Incremental Maintenance of Path-Expression Views

Arsany Sawires1
∗

arsany@cs.ucsb.edu
Junichi Tatemura2

tatemura@sv.nec-labs.com
Oliver Po2

oliver@sv.nec-labs.com

Divyakant Agrawal2

agrawal@sv.nec-labs.com
K. Selçuk Candan2

candan@sv.nec-labs.com

1Department of Computer Science 2NEC Laboratories America
University of California Santa Barbara 10080 North Wolfe Road, Suite SW3-350

Santa Barbara, CA 93106 Cupertino, CA 95014

ABSTRACT
Caching data by maintaining materialized views typically re-
quires updating the cache appropriately to reflect dynamic
source updates. Extensive research has addressed the prob-
lem of incremental view maintenance for relational data but
only few works have addressed it for semi-structured data.
In this paper we address the problem of incremental main-
tenance of views defined over XML documents using path-
expressions. The approach described in this paper has the
following main features that distinguish it from the previous
works: (1) The view specification language is powerful and
standardized enough to be used in realistic applications. (2)
The size of the auxiliary data maintained with the views de-
pends on the expression size and the answer size regardless
of the source data size.(3) No source schema is assumed to
exist; the source data can be any general well-formed XML
document. Experimental evaluation is conducted to assess
the performance benefits of the proposed approach.

Keywords
Caching, Incremental View Maintenance, XML Views, Path
Expressions

1. INTRODUCTION
Caching data by maintaining materialized views has many

well-known benefits. One of the main benefits is improv-
ing query performance by answering queries from the cache
instead of querying the source data. To be useful, a ma-
terialized view needs to be continuously maintained to re-
flect dynamic source updates. It has been shown that in-

∗The work has been done during the author’s summer in-
ternship at NEC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005 June 14-16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06 $5.00.

cremental maintenance generally outperforms full view re-
computation. The problem of efficient incremental view
maintenance has been addressed extensively in the context
of relational data models [4, 8, 9, 10] but only few works
have addressed it in the context of semi-structured data
models [2, 7, 11, 13, 18].

The XML semi-structured data model has become the
choice both in data and document management systems [5]
because of its capability of representing irregular data while
keeping the data structure as much as it exists. Thus, XML
has become the data model of many of the state-of-the-art
technologies and applications. In general scenarios, XML
source data can be dynamically updated; this requires up-
dating any cached views to reflect the source updates. In
this paper, we present a novel technique for maintaining
XML views by incorporating the source updates in the ma-
terialized views incrementally.

Currently, XML caching applications follow a simple time
based invalidation scheme in which the cached view results
are invalidated after a pre-specified time period (lifetime).
The drawbacks of such a scheme are: (1) the cached re-
sults are likely to be over-invalidated since the invalidation
process does not take into account the relevance of the source
updates to the cached results, (2) the invalidation operation
implies recomputing the views whenever they are required
again; this re-computation process is generally an expen-
sive one, and (3) the “freshness” of the cached results is
not guaranteed because source updates may take place just
after a result has been cached; the effect of such updates
will not be reflected in the cache before the lifetime of the
cache expires. This might be unacceptable for critical appli-
cations which require a high level of consistency between the
source and the cache. The approach proposed in this paper
incrementally maintains the cache by analyzing the source
updates and updating the cache based on the relevance of
these updates to the cached results.

The XML views maintained at the cache are assumed to
be the results of certain queries (view specifications) issued
against a source XML document. The W3C consortium [1] is
currently working towards standardizing XPath and XQuery
as XML query and view specification languages. Path ex-
pressions form the core of the XPath and XQuery languages;
they are the language constructs which are used to select and

retrieve data from XML data sources. The retrieved data
is then manipulated by other language constructs to form
the final XML query result. Therefore, caching the results
of path expressions could be potentially beneficial to answer
general XML queries efficiently. Recent research [3] has ad-
dressed the problem of using materialized path expression
views to answer XML queries. Thus, we have chosen the
view specification language to be the language of path ex-
pressions. We discuss how to efficiently and incrementally
maintain the results of such expressions to reflect dynamic
source updates.

The main features of the presented approach that distin-
guish it from the previous related works are as follows: (1)
The view specification language, which is the language of
path expressions, is powerful and standardized enough for a
large class of real life applications. (2) The size of the aux-
iliary data maintained beside the view result depends only
on the expression size (the number of steps) and the actual
result size. (3) No source schema is assumed to exist; the
source data can be any general well-formed XML document.

Generally, in order to maintain cached views, a mainte-
nance algorithm needs to issue queries to the data source.
Querying the source is generally an expensive operation in
terms of time and processing since the data source is usually
huge in size. The main theme of our approach is to minimize
the number and the size of the source queries which are used
to maintain the cached results.

The rest of this paper is organized as follows. In the next
section, we summarize related work in the area of XML view
maintenance. Section 3 presents the XML data and update
model as well as the view specification model for specifying
XML views. Section 4 presents the incremental view main-
tenance algorithm for XML path expressions. In Section 5,
we report the results of a performance study we conducted
using the XMark benchmark. We conclude with a discussion
of our results in Section 6.

2. RELATED WORK
Some previous research has addressed the problem of in-

cremental maintenance of views in the context of semistruc-
tured data models. Different data models and view specifica-
tion languages have been assumed by different researchers.
In this section we briefly describe and comment on these
works.

One of the earliest papers that has addressed the problem
is [18]. This work has identified some of the main challenges
of the problem and proposed a solution assuming a general
tree data model. However, the view specification language
assumed in this early work is very limited. For example,
the selection path expressions are not allowed to have wild
cards, and the predicates are very simple conditions which
are restricted only to the last step of path expressions.

The work in [2] addresses the problem assuming a graph
data model. The main idea of the approach presented in this
work is to incrementally maintain the views by issuing effi-
cient source queries. The efficiency of the queries is quanti-
fied relative to the efficiency of the original view specification
query based on the number of nodes processed during the
query processing. Theoretical analysis reveals that the pro-
posed incremental maintenance approach outperforms the
approach of recomputing the view in many cases. However,
the view specification language of this work is also limited;
for example, the selection conditions are not allowed to in-

clude negations. Excluding some language features, such
as negation, makes the view maintenance operation easier
because it guarantees that the views are monotonic in the
sense that addition updates in the source document can not
cause deletions in the view result. To achieve more effi-
ciency, the approach suggests using auxiliary data to detect
the relevance of the updates to the cached views. However,
the size of the proposed auxiliary data can grow arbitrarily
regardless of the size of the cached view results.

The work in [11] elegantly applies the property of mul-
tilinearity or distributivity to implement incremental view
maintenance. This property applies for a view V if and only
if for every data source D and for every source update U , the
following holds: V(D � U) = V (D) � V (U). This property
is desirable since it enables the incremental maintenance of
the view V using the update U without querying the data
source. In this work, the operator � is defined as the deep
tree union. Although applying this property sounds very
promising to achieve very efficient view maintenance, there
are some problems with this approach: (1) this property ap-
plies only for monotonic views, i.e. views for which a source
addition can not cause view deletions and a source deletion
can not cause view additions, this limits the power of the
view specification language, and (2) as shown in the same
work, to apply this property, some views would have to be
rewritten by duplicating the same data source in the view
parameter list. Further analysis of this rewriting issue re-
veals that the maintenance process in this case must issue
source queries anyway, which cancels the main advantage of
applying the multilinearity property.

An approach based on using auxiliary data is introduced
in [13], another more general approach is introduced in [7].
The latter approach has a special strength in that it is based
on a formal XQuery algebra, which enables it to support a
very powerful query language. The cost, however, is storing
all the intermediate results of the query processing as auxil-
iary data. The size of such auxiliary data is not bounded, it
can be arbitrarily large regardless of the size of the cached
view results.

Other approaches [15, 16] address the problem based on
an XML schema or a relational schema which they use to
determine the appropriate view maintenance actions.

3. DATA AND VIEW MODEL
In this section we present a formal model for XML data

and for the language of path expressions which will be used
for specifying XML views. In the following we use the no-
tation S = (a, b, c, d) to denote an ordered sequence S . In
any sequence of XML nodes, the order of the nodes corre-
sponds to the pre-order traversal of the source XML tree.
We use the following operators on sequences: subseqence:
�, member-of: ∈, intersection: �, union: �, and difference:
−.

3.1 XML Data Model

3.1.1 XML Nodes
An XML document is represented as an ordered tree in

which every node n is a pair 〈n.id, n.label〉 where n.id is a
node identifier that uniquely identifies the node among all
the nodes in the XML tree. Several approaches to assign-
ing node identifiers have been proposed in literature; recent
approaches [6, 12, 17] guarantee the following properties:

R

B1

A1

B2

C1 C2

D2 D1

C6 C3 E1

C4

D3

A2

B3

E2

A3

B4

E3 C5

B5

D4

D5

E4

X1 X2

X3

Figure 1: An Example XML Tree

1. Dynamic; i.e. adding and deleting nodes in the source
tree do not require reassignment of node identifiers.
This property is essential for caching applications be-
cause it preserves the source node identities.

2. Reflecting the document order; i.e. given the identi-
fiers of any two nodes ni and nj , it can be determined
if ni is before or after nj in the pre-order traversal of
the source tree. This property is required to keep the
order of nodes in the cached view in correspondence
with the original document order of nodes.

3. Reflecting the containment relationships among the
nodes; i.e. given the identifiers of two nodes ni and
nj , it can be determined if ni and nj have ancestor or
descendant relationship. This property is widely used
by XML query processors.

The node label n.label is a string that describes the node
type and the node name or value. In particular:

• if n corresponds to an XML element then label repre-
sents the element name;

• if n corresponds to an XML attribute then label rep-
resents the attribute name and value;

• if n corresponds to a value of any data type then label
is the value representation.

Based on the above definition of node labels, any selection
condition in a query involving the node type, name, or value
is represented as a label test. For example; a condition that
retrieves “book” elements is a label test and a condition that
retrieves nodes storing values greater than “5” is also a label
test. A label test could also be the wildcard character “∗”
which matches all labels.

To maintain the brevity of the examples we will adhere
to the following notation: we will use upper-case letters to

represent the node labels. For example, A, B, and C are
node labels. In contrast, we will not use node identifiers
explicitly, instead, we will use numeric subscripts to distin-
guish different nodes that have the same label. Thus, Ai and
Aj refer to two distinct nodes with the same label A. We
will rely on pictorial illustrations of the examples to capture
the ancestor and descendant relationships among the nodes.
The tree order will be assumed to be from left to right in the
pictorial illustrations. Figure 1 shows the XML source doc-
ument that will be used as a running example throughout
this paper.

3.1.2 XML Source Updates
A source update is a transformation of the source XML

document. Although the transformation could be in the
form of changes to the leaf nodes as well as internal nodes
in the tree, we restrict ourselves to primitive transformations
that operate at the level of the leaf nodes in an XML tree.
It can be easily shown that any arbitrary transformation
to the source tree, e.g. adding or deleting a sub-tree from
the source, can be expressed in terms of the following two
primitive operations: (1) Add a leaf node, and (2) Delete a
leaf node.

More formally, an update U is a pair 〈U .type,U .path〉
where U .type is the type of the update: Add (add a leaf
node) or Delete (delete a leaf node). U .path is the path of
all the ancestors of the added or deleted node starting with
the document root and ending with the added or deleted
node itself. The added or deleted node is referred to as
U .node

For example, U = 〈Add, (R, X1, A1, B1, Z)〉 represents the
addition of node Z as a child node of node B1 in the XML
document shown in Figure 1.

Note that every node in U .path is given by both its label
and its id, this path information will be used by the main-
tenance algorithm presented in the next section.

3.2 The View Specification Language

3.2.1 Path Expressions
As mentioned in the introduction, path expressions are

the basic building blocks of XML queries. In this paper
we focus on a subset of the path expression language as
defined in XPath 1.0 [1]. A path expression E of size N is
a sequence of N steps: (s1, s2, · · · sN). A step si is a triple
〈si.axis, si.label, si.pred〉 where:

• si.axis is an axis test; it is either a child selector (de-
noted by “/”) or a descendant selector (denoted by
“//”). The axis test selects nodes based on the tree
structure.

• si.label is a label test; it selects some of the nodes that
passed the axis test. The label test is evaluated by
examining only the node label without examining any
other nodes or structures in the tree.

• si.pred is an optinal predicate test; it further filters
the nodes that passed both the axis and the label
tests. Unlike the label test, the predicate test can be
any complex condition examining the labels and the
structure of the nodes in the subtree of the node being
tested. A predicate can use aggregate functions, user
defined functions, operators, quantifiers . . . , etc.

/A//B[Count(//E) ≥ 1 ∨ Count(/D) ≥ 1]//C[Count(//E) = 0]//D

Figure 2: An Example path-expression E

Processing the first step s1 starts at a pre-specified se-
quence of nodes in the source tree called the expression con-
text C. Given an expression E , a document tree D, and a
sequence of context nodes C (a sequence of some of the nodes
of D), a query, Q, denoted as

Q = q(E ,C,D)

returns a sequence of nodes R as a result. Conceptually, the
execution of si (i > 1) starts at the sequence outputted from
executing si−1. Thus, we define the intermediate result of
step si (1 ≤ i ≤ N) as:

Ri = q(si,Ri−1,D),R0 = C

Every Ri, (1 ≤ i ≤ N) is a sequence of nodes ordered by the
document order. The final result R is defined as the result
of the last step; i.e. R = RN .

For example, consider the query Q = q(E ,C,D) where: D
is the document tree shown in Figure 1, C = (X1, X2, X3)
(the shaded nodes in Figure 1), and the steps of E are spec-
ified in Figure 2 and the steps are enumerated below:

1. s1 = /A

2. s2 = //B[Count(//E) ≥ 1 ∨ Count(/D) ≥ 1]

3. s3 = //C[Count(//E) = 0]

4. s4 = //D

In this query, the first step s1 starts at every node in C
and selects all the children with label A; this results in
R1 = (A1, A2, A3). Then s2 starts at every node in R1 and
selects all the descendants with label B that have at least
one descendant labeled E or at least one child labeled D;
this results in R2 = (B2, B3, B4, B4, B5, B5). Note that B4

- and also B5 - occurs twice in R2 because it can be derived
in two ways from nodes of R1, one from A2 and another one
from A3. This shows the possibilities of multi-derivations in
path expression views. Starting at R2, step s3 selects all the
descendants labeled C that have no descendants labeled E;
this results in R3 = (C3, C4, C5, C5, C5). Finally, s4 starts
at R3 and selects all the descendants labeled D. Hence, the
final result of Q is R = R4 = (D3, D3, D4, D4, D4). We
differentiate between the multiple occurrences of the same
node in a sequence by using a numeric superscript. For ex-
ample, we denote the result R as R = (D1

3 , D2
3 , D1

4 , D2
4 , D3

4)

3.2.2 Definitions
The presentation of the incremental maintenance algo-

rithm in the next section uses the following definitions re-
garding path expressions.

Definition 1. Predi(n) is true if and only if (1) Node n
belongs to the source tree, and (2) si.pred evaluates to true
at node n or si does not have a predicate test.

For example, Pred3(C1) in the example query above is true
because C1 satisfies the condition s3.pred since C1 has no
descendants labeled E.

Definition 2. The Result Path of a node n in the result
R, referred to as ResultPath(n),is the sub-sequence (may
be non-contiguous) of the ancestors of n (including n) that
matched the steps of E and thus caused n to appear in R.

In the example query described above,

ResultPath(D1
3) = (X1, A1, B2, C3, D3), and

ResultPath(D2
3) = (X1, A1, B2, C4, D3)

This example shows that no two result paths are equal; even
if a single node from the source tree occurs multiple times in
R, each occurrence is associated with a different result path.
Note that all the result paths have the same size, which is
equal to N + 1, where N is the expression size. This is
because every element in a result path matches exactly one
step of E and every step of E is matched with exactly one
element in each result path; the extra 1 is because the first
node in each path result is a context node from the sequence
C which does not match any step.

Definition 3. For every node n such that n ∈ R, we
define ResultPathi(n), i ≥ 0 as the ith element in the result
path of n.

By this definition, ∀n ∈ R
ResultPath0(n) ∈ C, ResultPathN(n) = n

3.2.3 Restrictions
Although we admit a large class of path expressions de-

fined by XPath 1.0 [1], we also enforce some restrictions to
achieve efficient view maintenance:

• We handle only child and descendant axes in the axis
test. The other axis types, such as parent and ancestor,
are not handled. However, this restriction should not
compromise the pragmatic power of the view specifica-
tion language because the child and descendant axes
are the most commonly used axes in practice.

• A Predicate can examine only the subtree of the node
being tested. In other words: Predi(n),∀i is exclu-
sively evaluated by examining the subtree rooted at n.
This assumption imposes a theoretical restriction on
the predicates, but it is reasonably supported by the
fact that a node in an XML document is semantically
described by its descendants, hence, selecting a node
should depend on its label and its descendants. Within
this restriction, we allow arbitrarily complex predi-
cates that can include aggregation functions, user de-
fined functions, negation, universal/existential quanti-
fiers . . . , etc.

4. INCREMENTAL MAINTENANCE
In this section, we develop an algorithm for incremen-

tally maintaining the cached result R of a query based on a
path-expression E in the presence of a source update U . We
start with some preliminaries and motivating examples to
describe the basic structure of the proposed algorithm. The
following subsections present the details of the algorithm.

4.1 Preliminaries
Assume that the result R of the example expression E

defined in Figure 2 is to be materialized, and subsequently
assume that the following update takes place at the source
tree of Figure 1: U = (Add, (R,X1, A1, B1, E5)). The ef-
fect of this update is that it changes Pred2(B1) from false
to true. The direct effect of this change on the evaluation
process of E is to add B1 to the intermediate result R2. Now,
since there is a new node added to R2, there is a possibility
that this addition can induce other indirect additions in the
subsequent intermediate results Ri, i > 2. This is indeed
the case in this scenario since nodes C1 and C2 would now
qualify to be in R3 as descendants of B1. Moreover, the
inclusion of C1 and C2 causes D1 and D2 to be added to
R4, i.e. to the materialized result R.

This example illustrates that an update U can affect the
final result R by impacting any of the intermediate results
Ri. In this example, U changed Predi(n) for only one node
(n = B1) and one value of i(i = 2). This change effectively
added B1 to R2. Consequently, other nodes were added to
other intermediate results but without U changing any more
predicate values; these are nodes C1, C2, D1, and D2. Thus,
an update U causes a node n to be added to an intermediate
result Ri under one of two possible scenarios:

1. U changes Predi(n) from false to true;

2. U does not affect Predi(n).

We refer to the first case as a direct addition and to the
second one as an indirect addition because it is caused indi-
rectly through a direct addition.

Similarly, we use the term direct deletion when U changes
Predi(n) from true to false causing n to be deleted from
Ri. And we use the term indirect deletion when n is deleted
from Ri without U affecting Predi(n). For example, if
U = (Add, (R, X1, A1, B2, C3, E6)) then U directly deletes
C3 from R3 because it changes Pred3(C3) from true to false.
This direct deletion induces the indirect deletion of the first
occurrence of D3 from R.

In addition to illustrating the notions of direct and in-
direct deletions, this example shows that unlike other ap-
proaches [2, 11], we do not restrict view definitions to be
monotonic. That is, we handle cases where an addition
in the source could result in additions or deletions in the
view. Similarly, we handle cases where a deletion in the
source could result in additions or deletions in the view re-
sults. For example, deleting E3 from the source tree directly
deletes all the occurrences of B4 from R2 while deleting E4

directly adds C6 to R3.
For brevity of the presentation, we use the following sim-

ple definitions: δ+
i is the sequence of all nodes that U directly

adds to Ri. δ−i is the sequence of all nodes that U directly
deletes from Ri, and δi = δ+

i � δ−i .
Notice that each of δ+

i and δ−i could have repetition in
it due to multiderivation possibilities. Also notice that δ+

i

and δ−i are mutually disjoint because a node n can not be
directly added to and deleted from Ri at the same time; that
is because U can not change Predi(n) from false to true and
from true to false at the same time.

The notion of direct and indirect effects is intrinsic to our
algorithm; the algorithm depends on the fact that every in-
direct addition originates from a direct addition and every
indirect deletion originates from a direct deletion. Thus,
the algorithm first discovers the direct effects and then uses

them to discover the indirect ones. Let us assume, for now,
that we have discovered all the direct additions and dele-
tions at Ri; now the problem is how to discover the indirect
effects that are induced by the direct effects. Note that
we ultimately want to discover the indirect effects on the
cached result R; the indirect effects on all the intermediate
results Ri, i < N are not required per se, but they need
to be identified in order to determine the final effects on R.
To discover indirect effects from the direct ones, we need to
handle two cases:

1. Direct additions: when a node n is directly added to
Ri, then the maintenance algorithm has to issue a
query to the source to determine the indirect additions
that might happen due to this direct addition. For ex-
ample, when B1 is added to R2, the indirectly added
nodes C1, C2, D1, and D2 can not be retrieved without
querying the source because they had no existence in
the cached view before U occurred. In general, when a
node n is directly added to Ri then, in order to retrieve
the indirect additions at all Rj , j > i, the maintenance
algorithm needs to issue a source query with context as
the singleton sequence (n) and with the steps sequence
(si+1, si+2, · · · sN). Following our formal notation, this
query is denoted as: q((si+1, si+2, · · · , sN), (n),D).

2. Direct deletions: when a node n is directly deleted
from Ri, then all the nodes of R that came to R be-
cause n used to belong to Ri must be deleted from
R. In other words, all the nodes r of R that have
ResultPathi(r) = n must be deleted from R. In the
example, the direct deletion of C3 from R3 results in
deleting D1

3 from R because ResultPath3(D
1
3) = C3.

The reasoning used above to discover indirect deletions
shows that if we know the result path of each node of R,
then we can discover the necessary indirect deletions from
R without issuing any source queries. Motivated by this
argument, we actually keep with every node n ∈ R the result
path ResultPath(n). The collection of all the result paths
is kept as auxiliary data which is not itself a target, but it is
just used to achieve efficient incremental maintenance of the
cached result R. This is the only auxiliary data required by
the algorithm.

Note that keeping all the result paths is not equivalent to
keeping all the intermediate results Ris. In particular, if a
node n in Ri does not lead to a node in R then we do not
keep n in the auxiliary data. For example, in the case of
the expression of Figure 2: B5 ∈ R2. However, B5 did not
lead to any node in R because none of its descendants were
qualified to be in R3 or R4. Thus, B5 is not kept in the
auxiliary data. Obviously, the number of such nodes like B5

can be arbitrarily large in the source tree.
Therefore, unlike other approaches [2, 7, 13], by keeping

only the result paths as the auxiliary data, we guarantee
that the size of the auxiliary data is bounded regardless of
the source tree. To compute this size, recall that each result
path is of length N + 1; let M be the size of the cached
result R, then the size of the auxiliary data is O(M ∗ N).
Note, also, that we need to store only the node ids in the
result paths, the node labels are not needed. This limits the
size of the auxiliary data because the node ids are usually
machine-generated compact codes.

After we have described how to discover the indirect ef-
fects given the direct ones, we now turn back to the problem

of discovering the direct effects in the first place. Our ap-
proach solves this problem in two phases for every Ri: the
Axis&Label Test and the Predicate Test. The following
two subsections describe these two phases.

4.2 The Axis&Label Test
For every Ri, discovering the sequence of direct effects

δi requires querying the source because it might involve
predicate evaluations to determine the nodes n for which
Predi(n) has changed due to U . Since we want to minimize
the amount of source queries, we have developed this phase
to identify a sequence ∆i such that we guarantee, with-
out any source queries, that δi � ∆i. In the next phase,
Predicate Test, ∆i is further filtered by predicate evalua-
tions to identify the exact sequence δi. In other words, the
Axis&Label Test works as a first-level filter for identifying
δi.

The first observation on which this phase is based is that
every node n in δi must be in U .path. The following lemma
asserts this observation.

Lemma 1. �N
i=1δi � U .path. In other words: If, due to

U , a node n belongs to δi for any i, then n must also belong
to U .path.

Proof. Since n belongs to δi, then n is directly added to or
deleted from Ri. Since this is a direct effect, then Predi(n)
is changed due to U. Since Predi(n) is assumed to refer-
ence only nodes in the subtree rooted at n, then it cannot be
changed unless this subtree is changed. Therefore, n must
be an ancestor of the updated node U .node. That is, n must
belong to U .path. �

Lemma 1 limits the search space to the nodes in U .path.
In addition to that, we observe that for a node n to be
directly added to or deleted from Ri it must have an ancestor
in every Rj , (j < i). For the example shown above where
U = (Add, (R, X1, A1, B1, E5)), for node B1 to be directly
added to R2, it is not enough that U changes Pred2(B1)
from false to true but it is also necessary that:

1. B1 has an ancestor in R1; this is true because A1 ∈ R1.

2. the ancestor A1 has an ancestor in R0; this is also true
because X1 ∈ R0 (because X1 ∈ C)

A similar argument applies for the case of direct deletions.
The observation stated above shows that for every node

n in δi, n must have an ancestor m in Ri−1, and m must
have an ancestor in Ri−2, and so forth, until we reach an
ancestor in R0, i.e. in the expression context C. Note that
all these ancestors are ancestors of n. Since Lemma 1 states
that n itself belongs to U .path, then all its ancestors also
belong to U .path. This suggests that U .path has much of
the information needed to identify the nodes of δi.

In fact, U .path has all the information needed to conduct
the axes and labels tests needed to identify δi. However, it
does not have enough information to evaluate the predicates
at any of its nodes n because we allow a predicate to refer
to any node in the subtree of n; examining such a subtree
requires querying the source tree which is the only place
guaranteed to have the whole subtree of any arbitrary node.
Thus, we apply the axes and label tests to U .path ignoring
the predicate tests. As a result, we get the sequence ∆i

which is guaranteed to be a supersequence of δi as shown
below.

Computing the different ∆i’s proceeds similar to com-
puting the intermediate results Ri’s of the original view
specification query except that the latter selects from the
source tree D while the former selects from the single branch
U .path. To start, we note that, as mentioned above, any
node n in any δi must have a node of the expression context
C as an ancestor. Thus, we initialize ∆0 to be all the context
nodes that exist in U .path, i.e. ∆0 = C � U .path. After this
initialization, we proceed by computing ∆i (∀i > 1) as all
the nodes in U .path that satisfy si.axis and si.label start-
ing at nodes in ∆i−1. We conveniently denote this query as
∆i = q(si.axis&label,∆i−1,U .path).

Computing the different ∆i’s in the way described above
guarantees that δi � ∆i for all 1 ≤ i ≤ N because this
process uses a relaxed selection condition (ignoring the pred-
icate tests) over a tree branch that is guaranteed to have all
the nodes of all the δi’s, namely, this branch is U .path. The
following example shows the computation of ∆i’s.
Example. Consider an update U of adding a node D6 as a
child of D4. In this case, U .path is the tree branch that starts
with the root R and ends with D6. Computing the different
∆i’s as described above results in: ∆0 = (X2, X3), ∆1 =
(A2, A3), ∆2 = (B3, B4, , B4, B5, B5), ∆3 = (C5, C5, C5),
∆4 = (D4, D4, D4, D6, D6, D6).

Note that ∆i is just a supersequence of δi; i.e. there are
nodes in ∆i that are not directly added to or deleted from
Ri. For the example shown above, using the predicates as
defined in the example path expression of Figure 2, we see
that the only nodes that will be directly added are the three
occurrences of D6 that appear in ∆4; all the other nodes
n in all the computed ∆i’s will not be added or deleted
because U did not affect Predi(n). Note that, because D6

did not exist before U occurred, the value Predi(D6), ∀i is
false before U . Similarly, if an update deletes a node n from
the source tree, the value Predi(n), ∀i is false after U .

4.3 The Predicate Test
The goal of this test is to identify, the sequence δi from

the sequence ∆i. To accomplish this task, we need to de-
termine which nodes n in ∆i had their Predi(n) changed
due to U . Let us refer to the value of Predi(n) before U
occurred as Predbefore

i (n) and to the value after U occurred

as Predafter
i (n). To detect such changes we need to com-

pare, for every node n ∈ ∆i, the values Predbefore
i (n) and

Predafter
i (n)

Nodes for which Predafter
i (n) = Predbefore

i (n), are ex-
cluded because they are not directly affected by U . Nodes
that have their Predi(n) changing due to U are directly
added to or deleted from Ri. Hence, the question that
we need to answer now is: How to compute the values of
Predafter

i (n) and Predbefore
i (n) for every node n in ∆i?

The value of Predafter
i (n) is computed simply by query-

ing the source. This query has only one node n in its con-
text, thus its processing is relatively fast; the answer is a
single boolean value true or false. We denote this query
as: predq(si.pred, (n),D). We delegate this query to the
source query processor. The benefit of delegating predi-
cate evaluations to the source is that we do not need to
keep any auxiliary data that might be needed to evaluate
complex predicates. Since a predicate can be any complex
condition referring to any node in the subtree of the node
being tested, testing for predicates without source queries

would entail maintaining arbitrarily large amounts of aux-
iliary data with the cached view result. Furthermore, this
approach preserves the privacy of the data source by en-
abling it to hide the source data that is needed to evaluate
the predicates, and also to hide the predicate definitions
themselves.

Unlike Predafter
i (n), the value of Predbefore

i (n) cannot
be computed by a source query because the update U has
already been incorporated at the source. We deduce the
value of Predbefore

i (n) as follows: if node n appears as the
ith element in the result path of any node in R then this
implies that n was qualified for Ri before U occurred; hence,
Predbefore

i (n)=true. Let us define RPi(n) to be true if and
only if n is the ith element of the result path of some node in
R. Hence, the argument mentioned above can be formally
stated as RPi(n) ⇒ Predbefore

i (n). This shows how the
auxiliary data - which was originally intended to be used for
discovering indirect deletions - could help in the predicate
test as well.

However, if RPi(n) is false then the value of Predbefore
i (n)

cannot be determined because it may be false or true. It is
obvious how it could be false: simply, if Predbefore

i (n) is
false then n could not have qualified to be in Ri before U
occurred, and hence, RPi(n) must be false. To see how

Predbefore
i (n) could be true while RPi(n) is false, assume

an update U occurred after the original evaluation of the
expression E in Figure 2. Before U occurred, the evalua-
tion reveals that node B5 was qualified to be in R2, i.e.
Predbefore

2 (B5) was true. However, B5 did not lead to any
node in R because none of its descendants was qualified to
be in R3 or R4; and hence, RP2(B5) is false. Note that
one possible solution to this situation is to include in the
auxiliary data all the nodes that qualify to be in any in-
termediate result Ri instead of only including those nodes
that actually lead to nodes in the final result R. However,
we do not adopt this solution because it implies unbounded
amount of auxiliary data.

Thus, if RPi(n) is false, there is ambiguity about the value

of Predbefore
i (n). We solve this ambiguity by simply assum-

ing the worst case, i.e., we assume that Predbefore
i (n) is

false. Now we show that this assumption, if wrong, does
not compromise the correctness of the algorithm.

Lemma 2. if Predbefore
i (n) = true and RPi(n) = false

then assuming that Predbefore
i (n) = false does not affect

the result of discovering the indirect effects in R.
Proof. We need to prove the correctness of this state-

ment in two cases: Predafter
i (n) = true and Predafter

i (n)
= false.

1. Predafter
i (n) = true: in this case, node n would be

falsely considered as a direct addition to Ri because we
are falsely assuming that Predbefore

i (n) = false. To
retrieve the indirect additions due to this false direct
addition, the maintenance algorithm would issue the
following query:

q((si+1, si+2, · · · , sN), (n),D)

The answer sequence of this query is either empty or
non-empty; we will show that, in either case, no false
indirect additions can take place in R.

• If the answer is empty then nothing will be added
to the materialized view result and the algorithm

is trivially true.

• If the answer is not empty then this implies that U
directly added some descendants m of n to some
Rj , (j > i) such that this effect led to adding
one or more nodes r in the final result R. These
nodes r form the non-empty answer of the main-
tenance query mentioned above. We know that
none of these nodes r was in R before U because
RPi(n) = false, meaning that n did not lead
to any node in R before U happened. Consider-
ing the directly added descendants m at Rj, they
would be discovered and processed when comput-
ing δj , this would happen later in the maintenance
process (j > i). Thus, all what happened because
of the false assumption is that those directly added
descendants m were discovered and processed ear-
lier in the process (i < j). In stage j, the mainte-
nance algorithm can easily avoid duplicating this
processing 1.

2. Predafter
i (n) = false: in this case n should be directly

deleted from Ri. But this direct deletion would go un-
noticed because we are falsely assuming Predbefore

i (n)
to be false. However, we guarantee that there would
be no indirect deletions in R due to this unnoticed di-
rect deletion. The reason is that RPi(n) is false, this
means that node n is not the ith element in the result
path of any node in R. Hence, no node in R depends
on the existence of n in Ri. Hence, ignoring this direct
deletion of n does not compromise the correctness of
discovering indirect deletions.

�

Next, we present the complete algorithm for view main-
tenance of XML path expressions based on the basic ideas
described so far.

4.4 The Maintenance Algorithm
The maintenance algorithm, presented in this section, com-

bines the two phases described above to discover the direct
effects at every Ri and uses the discovered direct effects to
discover the ultimate effects on the cached result R. The
presentation in the previous two subsections suggests the
following straightforward algorithm:

• Initialize: ∆0 = C ∩ U .path

• FOR (i = 1; i ≤ N AND ∆i−1 is not empty; i + +)

– Compute ∆i by applying the Axis&Label test of
si starting at nodes of ∆i−1

– Compute δi by applying the Predicate test of si

to nodes of ∆i

– Use δi to find all the indirect effects on R

• Update R by incorporating the discovered additions
and deletions

In the first step of the loop, every ∆i is computed from
∆i−1. Or, in other words, every ∆i+1 is computed from ∆i.
However, it is possible to improve the algorithm performance

1The algorithm in figure 3 avoids such duplication by using
lemma 3

by excluding some nodes from ∆i before moving on to the
computation of ∆i+1 in the next loop iteration. This will
result in a smaller ∆i and hence in improved performance.
We refer to the sequence that we get by reducing ∆i as Λi.
The idea is to show that, in order to discover all the ultimate
effects on R, it is sufficient to start every iteration i+1 only
at the nodes n of the previous iteration (i) for which RPi(n)

= Predafter
i (n) = true. The following lemma asserts this

observation.

Lemma 3. Given the following definition of Λis:

• Λ0 = ∆0 = C ∩ U .path.

• Λ1 = ∆1

• for i ≥ 1: Λi+1 = q(si+1.axis&label,Xi,U .path) where
Xi is a reduction of Λi by applying the following com-
putation: Xi = (n|n ∈ Λi ∧ Predafter

i (n) = true ∧
RPi(n) = true).

Then, using the Λis instead of the ∆is will discover all the
ultimate effects of U on R.

Proof. To prove this lemma, we need to show that no
additions or deletions of nodes in R would go undiscovered
if, before every iteration i+1, we exclude from Λi the nodes
n which do not satisfy the condition RPi(n) = Predafter

i (n)
= true. Logically, there are three cases of not satisfying this
condition:

1. RPi(n) = false and Predafter
i (n) = false: in this

case, the existence of n in Λi can not lead to an addi-
tion in R because Predafter

i (n) = false. Also, it can
not lead to a deletion from R because there is no node
r in R such that ResultPathi(r) = n, we guarantee
that because RPi(n) = false.

2. RPi(n) = true and Predafter
i (n) = false: in this

case also, the existence of n in Λi can not lead to
an addition in R because Predafter

i (n) = false. We
can also show that excluding n from Λi after itera-
tion i and before iteration i + 1 can not cause a dele-
tion in R to be undiscovered: recall that RPi(n) ⇒
Predbefore

i (n), therefore, the algorithm must have con-

sidered Predbefore
i (n) to be true, and thus processed

node n as a direct deletion at iteration i. Hence, the
deletions of all the nodes of R that depend on the ex-
istence of n in Ri have already been discovered in it-
eration i, and there is no need to discover them again
in any later iterations.

3. RPi(n) = false and Predafter
i (n) = true: in this

case, the existence of n in Λi can not lead to a dele-
tion from R because Predafter

i (n) = true. We can
also show that excluding n from Λi after iteration i
and before iteration i + 1 can not cause an addition in
R to be undiscovered: because RPi(n) = false, at iter-

ation i, the algorithm has assumed that Predbefore
i (n)

= false (see lemma 2). Therefore, the algorithm must
have already processed the direct addition of n at iter-
ation i, hence, all the consequent indirect additions in
R have already been discovered and processed in itera-
tion i, and there is no need to discover them again in
any later iterations.

Hence, in all the three cases, excluding node n from Λi before
proceeding to compute Λi+1 can not compromise the correct-
ness of the algorithm because node n either has no effect
on the subsequent iterations or its effects have already been
discovered during the processing of Λi at iteration i. �

Figure 3 presents the final incremental view maintenance
algorithm. Based on Lemma 3, this algorithm computes and
uses the reduced sequences Λis instead of the ∆is. We refer
to the sequences of nodes which will be added to/deleted
from R due to U as R+/R− respectively. Step 1 of the
algorithm initializes Λ0 and the variables R+ and R−.

The loop at step 2 iterates to compute the effects of U
on each of the intermediate results Ri. The first step in
the loop, step 2-1, generates Λi from Λi−1. Step 2-2 evalu-
ates Predafter

i (n) for every node n in Λi. According to the
results of these queries, Λi is partitioned into two disjoint
sequences: T and F . Then, step 2-3 uses T and F to iden-
tify the direct additions and deletions at Ri, i.e. δ+

i and δ−i
respectively.

Step 2-4 adds to R+ the nodes that will be added to R due
to the direct additions discovered at the current iteration.
Similarly, Step 2-5 adds to R− the nodes that will be deleted
from R due to the direct deletions discovered at the current
iteration. Conforming to the process of discovering indirect
effects as shown in section 4.1, step 2-4 issues a source query
while step 2-5 only uses the auxiliary data. Instead of issu-
ing a separate source query for every direct addition, step
2-4 uses a single query with a combined context sequence
which incorporates all the direct additions at one shot, this
should perform better than issuing many queries. At the
end of each iteration, step 2-6 computes the reduced Λi to
be used directly by step 2-1 of the next iteration. Finally,
after all the iterations are executed, step 3 updates R by
incorporating the nodes of R+ and R−.

Note that the maintenance algorithm needs to maintain
the auxiliary data as well as the cached result R. For
every node n removed from R, ResultPath(n) is removed
from the auxiliary data; and for every node n added to R,
ResultPath(n) must be added to the auxiliary data. Note
that computing the result paths requires some cooperation
from the source query processor: the query processor should
return with every node n in the answer of the query in step
2-4 its result path ResultPath′(n). This result path is a par-
tial path of length N − i < N because the query in step 2-4
uses only steps si+1, si+2, · · · , sN of the original expression.
Thus, to get the full result path ResultPath(n), we con-
catenate ResultPath′(n) to the right end of a second result
path of length i. This second path is the one which led from
a node in the original expression context C to the first node
in ResultPath′(n); it can be found by tracing the sequences
Λ0, Λ1, · · ·Λi through the iterations 1, 2, . . . , i. For simplic-
ity, this secondary process of maintaining the auxiliary data
is not included in the algorithm in Figure 3.

A general look at the algorithm reveals that it issues sev-
eral source queries; however, the processing of these queries
is much less expensive than the alternative of issuing the
original view specification query. The reason is that these
queries are much smaller regarding their sizes and contexts
than the original view specification query. This advantage
of incremental maintenance over full re-computation is as-
serted by the experimental results shown in the following
section.

// Initialization
1- Λ0 = C ∩ U .path

R+ = R− =() //Empty sequences
// Loop to compute Λi and δi, ∀i ≥ 1
2- FOR (i = 1; i ≤ N AND Λi−1 is not empty; i + +)
{

// Generate Λi from Λi−1

2-1 Λi = q(si.axis&label,Λi−1,U .path)

// Evaluate Predafter
i (n) for every node n in Λi

2-2 ∀n ∈ Λi, compute Predafter
i (n) = predq(si.pred, (n),D)

Let T = (n|n ∈ Λi ∧ Predafter
i (n) = true)

Let F = (n|n ∈ Λi ∧ Predafter
i (n) = false)

// Identify δ+
i and δ−i .

2-3 δ+
i = (n|n ∈ T ∧ RPi(n) = false)

δ−i = (n|n ∈ F ∧ RPi(n) = true)
// Add to R+ all the additions that happen in R based on the direct additions δ+

i

2-4 R+ = R+ � q((si+1, si+2, · · · , sN), δ+
i ,D)

// Add to R− all the deletions that happen in R based on the direct deletions δ−i
2-5 R− = R− � (n|n ∈ R ∧ ResultPathi(n) ∈ δ−i)
// Reduce Λi.

2-6 Λi = (n|n ∈ Λi ∧ Predafter
i (n) = true ∧ RPi(n) = true)

}
// Update the cached result R by R+ and R−

3- R = R�R+

R = R−R−

Figure 3: Incremental View Maintenance Algorithm for XML Path Expressions

5. EXPERIMENTS
In this section, we evaluate the performance of our incre-

mental view maintenance algorithm. In our experiments,
the system maintains one cached object (i.e., an XPath
query result) and processes node updates one by one. For
each update we compare the time required for incremen-
tal maintenance against the time required for the full view
re-computation.

We used the XMARK benchmark [14] to generate source
documents. We have generated two data sets of different
sizes: Data set 1 (325,236 nodes), and Data set 2 (1,281,843
nodes).

The XML data is stored in a relational database. The
node ids are generated using the ORDPATHs scheme [12].
Each node is represented as a row of a table with the fol-
lowing columns:

{id, type, label, value, parent id}

where id is a node identifier and type is a node type (ele-
ment,attribute, or value). When type is ’element’, label rep-
resents the element name. When type is ’attribute’, label
represents the attribute name, and value represents the at-
tribute value. When type is ’value’, value represents the
data value. Although an ORDPATHs node id contains in-
formation about the id of the parent node, we use a column
parent id that stores the id of the parent for performance
optimization.

Experiments are done using an Oracle 9i database on a
PC with Linux 8.0, Pentium 4 1800 MHz CPU, and 1 GB
memory.

We used the following two XPath queries:

• XPath Query 1:

/site/people/person[like(@id,’person2%’)]/

name/text()

• XPath Query 2:

/site/people[person[like(@id,’person1%’)]]/

person[like(@id,’person2%’)]/name/text()

where “like” is a boolean predicate that corresponds to
SQL’s “like” operator. As we have mentioned before, the
view maintenance algorithm does not have to know the de-
finition of any predicate because the predicate evaluation is
always delegated to the source data query processor.

The XPath Query 1 is implemented as the following SQL
join query:

SELECT DISTINCT f.id

FROM x a, x b, x c, x d, x e, x f

WHERE a.type = ’element’ and a.label = ’site’

and a.parent_id = ’0’ and b.type = ’element’

and b.label = ’people’ and b.parent_id = a.id

and c.type = ’element’ and c.label = ’person’

and c.parent_id = b.id and d.type = ’attribute’

and d.label = ’id’ and d.value like ’person2%’

and d.parent_id = c.id and e.type = ’element’

and e.label = ’name’ and e.parent_id = c.id

and f.type = ’value’ and f.parent_id = e.id;

where “x” is the name of the table that contains the source
nodes. Similarly, the XPath Query 2 is also implemented as
a join query.

Data set 1 Data set 2
Query 1 Query 2 Query 1 Query 2

Full re-computation (msec) 1459.61 4412.2 6549.28 83066.25
Incremental maintenance (msec) 134.13 237.01 355.03 1108.11

Table 1: Average time of full query and incremental maintenance

The Predicate test query for the XPath query 1 is imple-
mented as the following SQL query:

SELECT *

FROM x c, x d

WHERE c.id = ?

and d.type = ’attribute’ and d.label = ’id’

and d.value like ’person2%’

and d.parent_id = c.id;

where “?” represents a context node.
For each pair of a data set and a query, 100 source updates

were randomly generated. The results of the time compari-
son for all the updates are shown in Figures 4(a), 4(b), 5(a),
and 5(b). The average time of the full re-computation and
of the incremental view maintenance for all the 100 updates
in the four different configurations are shown in Table 1.

The figures and the table clearly establish the advantage
of incremental view maintenance approach presented in this
paper. For example, for the second data set and second
query, the full query takes 80 times longer to execute. In
fact, the results also show that the proposed algorithm scales
well with both data size and query complexity. In particular,
the full re-computation time for query 1 increases by 4.5X
from data set 1 to data set 2. In contrast, the incremental
view maintenance time only increases by 2.6X. Similarly, the
full re-computation time for query 2 increases by 19X from
data set 1 to data set 2. The incremental view maintenance
time, on the other hand, increases only by 5X.

The table also shows more performance benefits for more
complex queries over larger data sets: for the small data
set and simple query (Data set 1 and Query 1), the im-
provement of incremental view maintenance is 10X over full
re-computation whereas for the large data set and complex
query (Data Set 2 and Query 2) the improvement is almost
80X.

The figures show that some updates have taken almost
no time to be processed while other updates have taken a
relatively significant time; this is because the former class
of updates did not result in any source queries being issued,
while the latter class resulted in issuing some source queries.

6. DISCUSSION
In this paper we have presented a new incremental view

maintenance approach for XML views that are expressed
by path expressions. The supported view specification lan-
guage of path expressions is standard and powerful enough
for a large class of real life applications. The size of the
auxiliary data used is bounded as O(M ∗N) where M is the
size of the cached result and N is the size of the view spec-
ification expression. The size of the auxiliary data can not
exceed this bound regardless of the complexity of the source
XML tree and regardless of the complexity of the predi-
cates used in the view specification path expression. Our
algorithm delegates any predicate evaluation to the source
query processor. The benefit of this delegation is that no

auxiliary data is maintained for the evaluation of predicates.
Without this delegation, the size of the auxiliary data can
not be bounded. The proposed algorithm does not depend
on any schemas for the source XML document, it can han-
dle any general XML document. Regarding the efficiency
of the maintenance process, the experimental results show
that incrementally maintaining path expression views using
the approach presented here is much faster than maintaining
the views by recomputing the view specification query.

We have focused on processing the two primitive update
operations of adding and deleting leaf nodes. Although these
two operations are enough to express any complex transfor-
mation, it might be more efficient to handle a complex up-
date, such as adding or deleting subtrees, holistically rather
than by decomposing it into the primitive operations. In
fact, the same ideas presented for the primitive updates can
be extended to the complex updates of adding or deleting
subtrees. In this case, the U .path becomes a branch that
ends with a subtree dangling from the last node, this is the
added or deleted subtree. Then, applying the Axis&Label
test and the Predicates test on this branch will discover the
direct effects. Once the direct effects are discovered, the in-
direct ones can be discovered in the same way as described
above.

Generally, source updates may occur concurrently with
the view maintenance process. For example, assume that
an update U1 occurs and is reported to the view manager.
Thus, the view manager initiates a view maintenance process
to update the cached views to account for U1. At this time
a new update U2 occurs at the source before the source
query processor processes the queries which the maintenance
process of U1 has issued to the source to maintain the views.
In this case, processing these queries at the source will in-
clude the effects of U2 as well as those of U1. Then, when
U2 is reported to the cache manager, a new maintenance
process will be initiated to maintain the views according to
U2. This second maintenance process will typically need to
issue queries to the source to maintain the views. However,
this second maintenance process could take advantage of the
fact that the effect of U2 has already been incorporated in the
answers of the queries that were issued in response to U1. If
such cases are detected, the view maintenance process could
be made more efficient by reducing the number of source
queries used to maintain the views. One possible approach
to detect such cases is to use timestamps for all the updates
and the query answers received from the source. With that,
the cache manager can determine which update effects have
been incorporated in which answers. This approach needs
to be investigated further in the context of caching XML
views that are based on path expressions.

Caching systems normally cache the results of multiple ex-
pressions. Upon receiving an update U the proposed main-
tenance algorithm will be initiated to maintain every expres-
sion separately. However, if many of these expressions have
significant overlap in terms of their structure, maintaining

Process Cycle Time Comparison
(Five steps, one predicate, 325236 nodes in source document, 662 nodes in answer document)

0

200

400

600

800

1000

1200

1400

1600

1800

0 10 20 30 40 50 60 70 80 90 100

Source Updates

C
yc

le
 T

im
e

(m
se

c)

View Update Through Incremental Maintenance View Update Through Full Query

(a) Query 1 on Data Set 1

Process Cycle Time Comparison
(Five steps, two predicates, 325236 node in source document, 662 nodes in answer documentroc

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 10 20 30 40 50 60 70 80 90 100

Source Updates

C
yc

le
 T

im
e

(m
se

c)

View Update Through Incremental Maintenance View Update Through Full Query

(b) Query 2 on Data Set 1

Figure 4: Incremental View Maintenance versus Full Re-Computation (Data Set 1)

Process Cycle Time Comparison
(Five steps, one predicate, 1281843 nodes in source document. 1112 nodes in answer document)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60 70 80 90 100

Source Updates

C
yc

le
 T

im
e

(m
se

c)

View Update Through Incremental Maintenance View Update Through Full Query

(a) Query 1 on Data Set 2

Process Cycle Time Comparison
(Five steps, two predicates, 1281843 nodes in source document. 1112 nodes in answer document)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 10 20 30 40 50 60 70 80 90 100

Source Updates

C
yc

le
 T

im
e

(m
se

c)

View Update Through Incremental Maintenance View Update Through Full Query

(b) Query 2 on Data Set 2

Figure 5: Incremental View Maintenance versus Full Re-Computation (Data Set 2)

such expressions collectively will be more efficient. In partic-
ular, a cache server that maintains a large number of XML
views will necessarily need a support of collective mainte-
nance. We plan to investigate the possibilities of extending
the proposed algorithm for maintaining multiple expressions
collectively.

The approach presented in this paper delegates all pred-
icate evaluations to the source query processor in order to
avoid keeping unbounded auxiliary data and to preserve the
privacy of the data provider. However, in some circum-
stances, the predicates might not need much of auxiliary
data and the data provider might be willing to disclose the
definition of some of the predicates. In this case, we could
gain more efficiency by evaluating the predicates without
source queries.

7. REFERENCES
[1] http://www.w3c.org/.

[2] Serge Abiteboul, Jason McHugh, Michael Rys, Vasilis
Vassalos, and Janet L. Wiener. Incremental
maintenance for materialized views over
semistructured data. In VLDB, pages 38–49, 1998.

[3] Andrey Balmin, Fatma Ozcan, Kevin S. Beyer,
Roberta Cochrane, and Hamid Pirahesh. A framework
for using materialized xpath views in xml query
processing. In VLDB, 2004.

[4] Jos A. Blakeley, Per ke Larson, and Frank Wm.
Tompa. Efficiently updating materialized views. In
SIGMOD Conference, pages 61–71, 1986.

[5] Donald D. Chamberlin, Jonathan Robie, and Daniela
Florescu. Quilt: An xml query language for
heterogeneous data sources. In WebDB (Selected
Papers), pages 1–25, 2000.

[6] Edith Cohen, Haim Kaplan, and Tova Milo. Labeling
dynamic xml trees. In PODS, pages 271–281, 2002.

[7] Katica Dimitrova, Maged El-Sayed, and Elke A.
Rundensteiner. Order-sensitive view maintenance of
materialized xquery views. In ER, pages 144–157,
2003.

[8] Timothy Griffin and Leonid Libkin. Incremental
maintenance of views with duplicates. In SIGMOD
Conference, pages 328–339, 1995.

[9] Ashish Gupta and Inderpal Singh Mumick.
Maintenance of materialized views: Problems and
techniques and applications. IEEE Data Eng. Bull.,
18(2):3–18, 1995.

[10] Ashish Gupta, Inderpal Singh Mumick, and V. S.
Subrahmanian. Maintaining views incrementally. In
SIGMOD Conference, pages 157–166, 1993.

[11] Hartmut Liefke and Susan B. Davidson. View
maintenance for hierarchical semistructured data. In
DaWaK, pages 114–125, 2000.

[12] Patrick E. O’Neil, Elizabeth J. O’Neil, Shankar Pal,
Istvan Cseri, Gideon Schaller, and Nigel Westbury.
Ordpaths: Insert-friendly xml node labels. In
SIGMOD Conference, pages 903–908, 2004.

[13] Luping Quan, Li Chen, and Elke A. Rundensteiner.
Argos: Efficient refresh in an xql-based web caching
system. In WebDB, pages 78–91, 2000.

[14] Albrecht Schmidt, Florian Waas, Martin L. Kersten,
MichaelJ. Carey, Ioana Manolescu, and Ralph Busse.

Xmark: A benchmark for xml data management. In
VLDB, pages 974–985, 2002.

[15] Vnia Maria Ponte Vidal and Marco A. Casanova.
Efficient maintenance of xml views using view
correspondence assertions. In EC-Web, pages 281–291,
2003.

[16] Vnia Maria Ponte Vidal, Marco A. Casanova, and
Valdiana da Silva Araujo. Generating rules for
incremental maintenance of xml view of relational
data. In WIDM, pages 139–146, 2003.

[17] Haixun Wang, Sanghyun Park, Wei Fan, and Philip S.
Yu. ViST: A dynamic index method for querying xml
data by tree structures. In SIGMOD Conference,
pages 110–121, 2003.

[18] Yue Zhuge and Hector Garcia-Molina. Graph
structured views and their incremental maintenance.
In ICDE, pages 116–125, 1998.

