Maintenance of Materialized Views: Problems,
Techniques, and Applications

Ashish Gupta Inderpal Singh Mumick
IBM Almaden Research Center AT&T Bell Laboratories
650 Harry Road 600 Mountain Avenue
San Jose, CA-95120 Murray Hill, NJ 07974
ashish@almaden.ibm.com mumick@research.att.com
Abstract

In this paper we motivate and describe materialized views, their applications, and the problems
and techniques for their maintenance. We present a taxonomy of view maintenance problems
based upon the class of views considered, upon the resources used to maintain the view, upon
the types of modifications to the base data that are considered during maintenance, and whether
the technique works for all instances of databases and modifications. We describe some of the
view maintenance techniques proposed in the literature in terms of our taronomy. Finally, we
consider new and promising application domains that are likely to drive work in materialized
views and view mainlenance.

1 Introduction

What is a view? A view is a derived relation defined in terms of base (stored) relations. A view thus
defines a function from a set of base tables to a derived table; this function is typically recomputed
every time the view is referenced.

What is a materialized view? A view can be materialized by storing the tuples of the view in the
database. Index structures can be built on the materialized view. Consequently, database accesses to
the materialized view can be much faster than recomputing the view. A materialized view is thus like
a cache — a copy of the data that can be accessed quickly.

Why use materialized views? Like a cache, a materialized view provides fast access to data; the speed
difference may be critical in applications where the query rate is high and the views are complex so
that it is not possible to recompute the view for every query. Materialized views are useful in new
applications such as data warehousing, replication servers, chronicle or data recording systems [JMS95],
data visualization, and mobile systems. Integrity constraint checking and query optimization can also
benefit from materialized views.

What is view maintenance? Just as a cache gets dirty when the data from which it is copied is
updated, a materialized view gets dirty whenever the underlying base relations are modified. The
process of updating a materialized view in response to changes to the underlying data is called view
maintenance.

What is incremental view maintenance? In most cases it is wasteful to maintain a view by recomputing
it from scratch. Often it is cheaper to use the heuristic of inertia (only a part of the view changes in
response to changes in the base relations) and thus compute only the changes in the view to update its

materialization. We stress that the above is only a heuristic. For example, if an entire base relation is
deleted, it may be cheaper to recompute a view that depends on the deleted relation (if the new view
will quickly evaluate to an empty relation) than to compute the changes to the view. Algorithms that
compute changes to a view in response to changes to the base relations are called incremental view
maintenance algorithms, and are the focus of this paper.

Classification of the View Maintenance Problem There are four dimensions along which the
view maintenance problem can be studied:

e Information Dimension: The amount of information available for view maintenance. Do you have
access to all/some the base relations while doing the maintenance? Do you have access to the
materialized view? Do you know about integrity constraints and keys? We note that the amount
of information used is orthogonal to the incrementality of view maintenance. Incrementality refers
to a computation that only computes that part of the view that has changed; the information
dimension looks at the data used to compute the change to the view.

¢ Modification Dimension: What modifications can the view maintenance algorithm handle? In-
sertion and deletion of tuples to base relations? Are updates to tuples handled directly or are
they modeled as deletions followed by insertions? What about changes to the view definition?
Or sets of modifications?

e Language Dimension: Is the view expressed as a select-project-join query (also known as a SPJ
views or as a conjunctive query), or in some other subset of relational algebra? SQL or a subset
of SQL? Can it have duplicates? Can it use aggregation? Recursion? General recursions, or only
transitive closure?

o Instance Dimension: Does the view maintenance algorithm work for all instances of the database,
or only for some instances of the database? Does it work for all instances of the modification, or
only for some instances of the modification? Instance information is thus of two types - database
instance, and modification instance.

We motivate a classification of the view maintenance problem along the above dimensions through
examples. The first example illustrates the information and modification dimensions.

Example 1: (Information and Modification Dimensions) Consider relation
part(part no,part_cost, contract)

listing the cost negotiated under each contract for a part. Note that a part may have a different price
under each contract. Consider also the view expensive_parts defined as:

expensive parts(partno) = llpart no Opart_cost>1000(Part)

The view contains the distinct part numbers for parts that cost more than $1000 under at least one
contract (the projection discards duplicates). Consider maintaining the view when a tuple is inserted
into relation part. If the inserted tuple has part_cost <1000 then the view is unchanged.

However, say part(pl, 5000, ¢15) is inserted that does have cost >1000. Different view maintenance
algorithms can be designed depending upon the information available for determining if p1 should be
inserted into the view.

e The materialized view alone is available: Use the old materialized view to determine if part no
already is present in the view. If so, there is no change to the materialization, else insert part pl
into the materialization.

e The base relation part alone is available: Use relation part to check if an existing tuple in the
relation has the same part no but greater or equal cost. If such a tuple exists then the inserted
tuple does not contribute to the view.

o [t is known that part_no is the key: Infer that part no cannot already be in the view, so it must
be inserted.

Another view maintenance problem is to respond to deletions using only the materialized view.
Let tuple part(pl,2000,c12) be deleted. Clearly part pl must be in the materialization, but we
cannot delete pl from the view because some other tuple, like part(pl, 3000, c13), may contribute pl
to the view. The existence of this tuple cannot be (dis)proved using only the view. Thus there is no
algorithm to solve the view maintenance problem for deletions using only the materialized view. Note,
if the relation part was also available, or if the key constraint was known, or if the counts of number
of view tuple derivations were available, then the view could be maintained. |

With respect to the information dimension, note that the view definition and the actual modification
always have to be available for maintenance. With respect to the modification dimension, updates
typically are not treated as an independent type of modification. Instead, they are modelled as a
deletion followed by an insertion. This model loses information thereby requiring more work and
more information for maintaining a view than if updates were treated independently within a view
maintenance algorithm [BCL89, U092, GJM94].

The following example illustrates the other two dimensions used to characterize view maintenance.

Example 2: (Language and Instance Dimensions) Example 1 considered a view definition lan-
guage consisting of selection and projection operations. Now let us extend the view definition lan-
guage with the join operation, and define the view supp_parts as the equijoin between relations
supp(supp-no, part_no,price) and part (Mpart_no represents an equijoin on attribute part no):

supp-parts(partno) = llpart no(supp Mpartno Ppart)

The view contains the distinct part numbers that are supplied by at least one supplier (the projection
discards duplicates). Consider using only the old contents of supp_parts for maintenance in response
to insertion of part(pl, 5000, c15). If supp_parts already contains part_no pl then the insertion does
not affect the view. However, if supp_parts does not contain pl, then the effect of the insertion cannot
be determined using only the view.

Recall that the view expensive parts was maintainable in response to insertions to part using
only the view. In contrast, the use of a join makes it impossible to maintain supp_parts in response
to insertions to part when using only the view.

Note, view supp_parts is maintainable if the view contains part no pl but not otherwise. Thus, the
maintainability of a view depends also on the particular instances of the database and the modification.

[

Figure 1 shows the problem space defined by three of the four dimensions; namely the information,
modification, and language dimensions. The instance dimension is not shown here so as to keep the
figure manageable. There is no relative ordering between the points on each dimension; they are listed
in arbitrary order. Along the language dimension, chronicle algebra [JMS95] refers to languages that
operate over ordered sequences that may not be stored in the database (see Section 4.3). Along the
modification dimension, group updates [GJM94] refers to insertion of several tuples using information
derived from a single deleted tuple.

We study maintenance techniques for different points in the shown problem space. For each point
in this 3-D space we may get algorithms that apply to all database and modification instances or that
may work only for some instances of each (the fourth dimension).

Expressiveness of View

Amount of Information Definition Language
ecursion

Integrity Difference
Constraints Outer-Joins
O her Vi ews ‘ChronicIeAlgebra

Union
Base Subqueries
Rel ati ons Aggregation

Arithmetic
Duplicates

Conjunctive
queries

Materi al i zed
Vi ew

Insertions
Deletions
Updates

Sets of each
Group Updates Type of Modification

Change view definition

Figure 1: The problem space

Paper Outline

We study the view maintenance problem with respect to the space of Figure 1 using the “amount
of information” as the first discriminator. For each point considered on the information dimension,
we consider the languages for which view maintenance algorithms have been developed, and present
selected algorithms in some detail. Where appropriate, we mention how different types of modifications
are handled differently. The algorithms we describe in some detail address the following points in the
problem space.

o (Section 3:) Information dimension: Use Full Information (all the underlying base relations
and the materialized view). Instance dimension: Apply to all instances of the database and all
instances of modifications. Modification dimension: Apply to all types of modifications. Language
dimension: Consider the following languages —

— SQL views with duplicates, UNION, negation, and aggregation (e.g. SUM, MIN).
— Outer-join views.
— Recursive Datalog or SQL views with UNION, stratified aggregation and negation, but no

duplicates.

o (Section 4:) Information dimension: Use partial information (materialized view and key con-
straints — views that can be maintained without accessing the base relations are said to be
self-maintainable). Instance dimension: Apply to all instances of the database and all instances
of modifications. Language dimension: Apply to SPJ views. Modification dimension: Consider
the following types of modifications —

— Insertions and Deletions of tuples.

— Updates and group updates to tuples.

We also discuss maintaining SPJ views using the view and some underlying base relations.

2 The Idea Behind View Maintenance

Incremental maintenance requires that the change to the base relations be used to compute the change
to the view. Thus, most view maintenance techniques treat the view definition as a mathematical
formula and apply a differentiation step to obtain an expression for the change in the view. We
illustrate through an example:

Example 3: (Intuition) Consider the base relation 1ink(.5, D) such that 1ink(a,b)is true if there is
a link from source node « to destination b. Define view hop such that hop(c, d) is true if ¢ is connected
to d using two links, via an intermediate node:

D: hop(X,Y)=1Ixy(link(X,V) Ny_p Llink(W,Y))

Let a set of tuples A(1link) be inserted into relation link. The corresponding insertions A(hop)
that need to be made into view hop can be computed by mathematically differentiating definition D
to obtain the following expression:

A(hop) = I x y ((A(link)(X,V) My_w 1link(W,Y)) U
(1ink(X,V) My_w A(link)(W,Y)) U
(A(link)(X,V) WMy_w A(link)(W,Y)))

The second and third terms can be combined to yield the term 1ink”(X,V) Xy—w A(link)(W,Y)
where 1ink” represents relation 1ink with the insertions, i.e., 1ink U A(1link).]

In the above example, if tuples are deleted from link then too the same expression computes
the deletions from view hop. If tuples are inserted into and deleted from relation link, then A(hop)
is often computed by separately computing the set of deletions A~ (hop) and the set of insertions
A*(hop) [QWI1, HD92]. Alternatively, by differently tagging insertions and deletions they can be
handled in one pass as in [GMS93].

3 Using Full Information

Most work on view maintenance has assumed that all the base relations and the materialized view are
available during the maintenance process, and the focus has been on eflicient techniques to maintain
views expressed in different languages — starting from select-project-join views and moving to relational
algebra, SQL, and Datalog, considering features like aggregations, duplicates, recursion, and outer-
joins. The techniques typically differ in the expressiveness of the view definition language, in their
use of key and integrity constraints, and whether they handle insertions and deletions separately or
in one pass (Updates are modeled as a deletion followed by an insertion). The techniques all work
on all database instances for both insertions and deletions. We will classify these techniques broadly
along the language dimension into those applicable to nonrecursive views, those applicable to outer-join
views, and those applicable to recursive views.

3.1 Nonrecursive Views

We describe the counting algorithm for view maintenance, and then discuss several other view mainte-
nance techniques that have been proposed in the literature.

The counting Algorithm [GMS93]: applies to SQL views that may or may not have duplicates, and
that may be defined using UNION, negation, and aggregation. The basic idea in the counting algorithm
is to keep a count of the number of derivations for each view tuple as extra information in the view.
We illustrate the counting algorithm using an example.

Example 4: Consider view hop from Example 3 now written in SQL.

CREATE VIEW hop($, D) as
(select distinct 11.5,12.D from link 11, link 12 where 11.D = 12.5)

Given link = {(a,b),(b,c),(b,€),(a,d),(d,c)}, the view hop evaluates to {(a,c),(a,e)}. The tuple
hop(a, e) has a unique derivation. hop(a,c) on the other hand has two derivations. If the view had
duplicate semantics (did not have the distinct operator) then hop(a,e) would have a count of 1 and
hop(a,c) would have a count of 2. The counting algorithm pretends that the view has duplicate
semantics, and stores these counts.

Suppose the tuple 1ink(a,b) is deleted. Then we can see that hop can be recomputed as {(a,c)}.
The counting algorithm infers that one derivation of each of the tuples hop(a, ¢) and hop(a, €) is deleted.
The algorithm uses the stored counts to infer that hop(a, ¢) has one remaining derivation and therefore
only deletes hop(a, €), which has no remaining derivation. |

The counting algorithm thus works by storing the number of alternative derivations, count(?), of each
tuple ¢ in the materialized view. This number is derived from the multiplicity of tuple ¢ under duplicate
semantics [Mum91, MS93]. Given a program 7" defining a set of views V1, ..., Vi, the counting algorithm
uses the differentiation technique of Section 2 to derive a program T'n. The program T'a uses the changes
made to base relations and the old values of the base and view relations to produce as output the set
of changes, A(V1),...,A(Vy), that need to be made to the view relations. In the set of changes,
insertions are represented with positive counts, and deletions by negative counts. The count value for
each tuple is stored in the materialized view, and the new materialized view is obtained by combining
the changes A(Vi),...,A(Vy) with the stored views Vi,..., V. Positive counts are added in, and
negative counts are subtracted. A tuple with a count of zero is deleted. The count algorithm is optimal
in that it computes exactly those view tuples that are inserted or deleted. For SQL views counts
can be computed at little or no cost above the cost of evaluating the view for both set and duplicate
semantics. The counting algorithm works for both set and duplicate semantics, and can be made to
work for outer-join views (Section 3.2).

Other Counting Algorithms: [SI84] maintain select, project, and equijoin views using counts of
the number of derivations of a tuple. They build data structures with pointers from a tuple 7 to other
tuples derived using the tuple 7. [BLT86] use counts just like the counting algorithm, but only to
maintain SPJ views. Also, they compute insertions and deletions separately, without combining them
into a single set with positive and negative counts. [Rou91] describes “ViewCaches,” materialized views
defined using selections and one join, that store only the TIDs of the tuples that join to produce view
tuples.

Algebraic Differencing: introduced in [Pai84] and used subsequently in [QW91] for view mainte-
nance differentiates algebraic expressions to derive the relational expression that computes the change
to an SPJ view without doing redundant computation. [GLT95] provide a correction to the minimal-
ity result of [QW91], and [GL95] extend the algebraic differencing approach to multiset algebra with
aggregations and multiset difference. They derive two expressions for each view; one to compute the
insertions into the view, and another to compute the deletions into the view.

The Ceri-Widom algorithm [CW91]: derives production rules to maintain selected SQL views -
those without duplicates, aggregation, and negation, and those where the view attributes functionally
determine the key of the base relation that is updated. The algorithm determines the SQL query
needed to maintain the view, and invokes the query from within a production rule.

Recursive Algorithms: The algorithms described in Section 3.3 for recursive views also apply to
nonrecursive views.

3.2 Outer-Join Views

Outer joins are important in domains like data integration and extended relational systems [MPPT93].
View maintenance on outer-join views using the materialized view and all base relations has been
discussed in [GJM94].

In this section we outline the algorithm of [GJM94] to maintain incrementally full outer-join views.
We use the following SQL syntax to define a view V' as a full outer-join of relations R and 5:

CREATE view V as select Xy,..., X, from R full outer join 5 on g(Y1,...,Y,)

where Xq,..., X, and Yi,...,Y,, are lists of attributes from relations R and 5. ¢(Y1,...,Y,) is a
conjunction of predicates that represent the outer-join condition. The set of modifications to relation
R is denoted as A(R), which consists of insertions A*(R) and deletions A~(R). Similarly, the set of
modifications to relation § is denoted as A(S). The view maintenance algorithm rewrites the view
definition to obtain the following two queries to compute A(V).

(a): select Xy,..., X, (b): select Xq,...,X,
from A(R) left outer join S from R” right outer join A(S)
on g(Y1,...,Yn) on g(Y1,...,Yn).

RY represents relation R after modification. All other references in queries (a) and (b) refer either to
the pre-modified extents or to the modifications themselves. Unlike with SPJ views queries (a) and (b)
do not compute the entire change to the view, as explained below.

Query (a) computes the effect on V of changes to relation R. Consider a tuple r* inserted into
R and its effect on the view. If r* does not join with any tuple in s, then r*.NULL (r* padded with
nulls) has to be inserted into view V. If instead, r* does join with some tuple s in S, then r*.s (r*
joined with tuple s) is inserted into the view. Both these consequences are captured in Query (a) by
using the left-outer-join. However, query (a) does not compute a possible side effect if 7+ does join
with some tuple s. The tuple NULL.s (s padded with nulls) may have to be deleted from the view V if
NULL.s is in the view. This will be the case if previously tuple s did not join with any tuple in R.

Similarly, a deletion 7~ from R not only removes a tuple from the view, as captured by Query (a),
but may also precipitate the insertion of a tuple NULL.s if before deletion r~ is the only tuple that
joined with s. Query (b) handles the modifications to table S similar to the manner in which query (a)
handles the modifications to table R, with similar possible side-effects. The algorithm of [GJM94]
handles these side effects.

3.3 Recursive Views

Recursive queries or views often are expressed using rules in Datalog [UlI89], and all the work on
maintaining recursive views has been done in the context of Datalog. We describe the DRed (Deletion
and Rederivation) algorithm for view maintenance, and then discuss several other recursive view
maintenance techniques that have been proposed in the literature.

The DRed Algorithm [GMS93]: applies to Datalog or SQL views, including views defined using
recursion, UNION, and stratified negation and aggregation. However, SQL views with duplicate seman-
tics cannot be maintained by this algorithm. The DRed algorithm computes changes to the view
relations in three steps. First, the algorithm computes an overestimate of the deleted derived tuples:
a tuple ¢ is in this overestimate if the changes made to the base relations invalidate any derivation
of ¢t. Second, this overestimate is pruned by removing (from the overestimate) those tuples that have
alternative derivations in the new database. A version of the original view restricted to compute only
the tuples in the overestimated set is used to do the pruning. Finally, the new tuples that need to be
inserted are computed using the partially updated materialized view and the insertions made to the
base relations. The algorithm can also maintain materialized views incrementally when rules defining
derived relations are inserted or deleted. We illustrate the DRed algorithm using an example.

Example 5: Consider the view hop defined in Example 4. The DRed algorithm first deletes tuples
hop(a, ¢) and hop(a, €) since they both depend upon the deleted tuple. The DRed algorithm then looks
for alternative derivations for each of the deleted tuples. hop(a,c) is rederived and reinserted into the
materialized view in the second step. The third step of the DRed algorithm is empty since no tuples
are inserted into the 1ink table. |

None of the other algorithms discussed in this section handle the same class of views as the DRed
algorithm; the most notable differentiating feature being aggregations. However, some algorithms
derive more efficient solutions for special subclasses.

The PF (Propagation/Filtration) algorithm [HD92]: is very similar to the DRed algorithm,
except that it propagates the changes made to the base relations on a relation by relation basis.
It computes changes in one derived relation due to changes in one base relation, looping over all
derived and base relations to complete the view maintenance. In each loop, an algorithm similar to
the delete/prune/insert steps in DRed is executed. However, rather than running the deletion step to
completion before starting the pruning step, the deletion and the pruning steps are alternated after
each iteration of the semi-naive evaluation. Thus, in each semi-naive iteration, an overestimate for
deletions is computed and then pruned. This allows the PF algorithm to avoid propagating some
tuples that occur in the over estimate after the first iteration but do not actually change. However,
the alternation of the steps after each semi-naive iteration also causes some tuples to be rederived
several times. In addition, the PF algorithm ends up fragmenting computation and rederiving changed
and deleted tuples again and again. [GM93] presents improvements to the PF algorithm that reduce
rederivation of facts by using memoing and by exploiting the stratification in the program. Each of
DRed and the PF algorithms can do better than the other by a factor of n depending on the view
definition (where n is the number of base tuples in the database). For nonrecursive views, the DRed
algorithm always works better than the PF algorithm.

The Kuchenhoff algorithm [Kuc91]: derives rules to compute the difference between consecutive
database states for a stratified recursive program. The rules generated are similar in spirit to those
of [GMS93]. However, some of the generated rules (for the depends predicates) are not safe, and the
delete/prune/insert three step technique of [GMS93, HD92] is not used. Further, when dealing with
positive rules, the Kuchenhoff algorithm does not discard duplicate derivations that are guaranteed not
to generate any change in the view as early as the DRed algorithm discards the duplicate derivations.

The Urpi-Olive algorithm [U092]: for stratified Datalog views derives transition rules showing
how each modification to a relation translates into a modification to each derived relation, using
existentially quantified subexpressions in Datalog rules. The quantified subexpressions may go through
negation, and can be eliminated under certain conditions. Updates are modeled directly; however since
keys need to be derived for such a modeling, the update model is useful mainly for nonrecursive views.

8

Counting based algorithms can sometimes be used for recursive views. The counting algorithm
of [GKM92] can be used effectively only if every tuple is guaranteed to have a finite number of
1. and even then the computation of counts can significantly increase the cost of com-
putation. The BDGEN system [NY83] uses counts to reflect not all derivations but only certain types
of derivations. Their algorithm gives finite even counts to all tuples, even those in a recursive view,
and can be used even if tuples have infinitely many derivations.

derivations

Transitive Closures [DT92] derive nonrecursive programs to update right-linear recursive views in
response to insertions into the base relation. [DS93] give nonrecursive programs to update the transitive
closure of specific kinds of graphs in response to insertions and deletions. The algorithm does not apply
to all graphs or to general recursive programs. In fact, there does not exist a nonrecursive program to
maintain the transitive closure of an arbitrary graph in response to deletions from the graph [DLW95].

Nontraditional Views [LMSS95a] extends the DRed algorithm to views that can have nonground
tuples. [WDSY91] give a maintenance algorithm for a rule language with negation in the head and
body of rules, using auxiliary information about the number of certain derivations of each tuple. They
do not consider aggregation, and do not discuss how to handle recursively defined relations that may
have an infinite number of derivations.

4 Using Partial Information

As illustrated in the introduction, views may be maintainable using only a subset of the underlying
relations involved in the view. We refer to this information as partial information. Unlike view main-
tenance using full information, a view is not always maintainable for a modification using only partial
information. Whether the view can be maintained may also depend upon whether the modification
is an insertion, deletion, or update. So the algorithms focus on checking whether the view can be
maintained, and then on how to maintain the view.

We will show that treating updates as a distinct type of modification lets us derive view maintenance
algorithms for updates where no algorithms exist for deletions+insertions.

4.1 Using no Information: Query Independent of Update

There is a lot of work on optimizing view maintenance by determining when a modification leaves a
view unchanged [BLT86, BCL89, E1k90, 1.593]. This is known as the “query independent of update”, or
the “irrelevant update” problem. All these algorithms provide checks to determine whether a particular
modification will be irrelevant. If the test succeeds, then the view stays unaffected by the modification.
However, if the test fails, then some other algorithm has to be used for maintenance.

[BLT86, BCL89] determine irrelevant updates for SPJ views while [Elk90] considers irrelevant up-
dates for Datalog. Further, [LS93] can determine irrelevant updates for Datalog with negated base
relations and arithmetic inequalities.

4.2 Using the Materialized View: Self-Maintenance

Views that can be maintained using only the materialized view and key constraints are called self-
maintainable views in [GJM94]. Several results on self-maintainability of SPJ and outer-join views in
response to insertions, deletions, and updates are also presented in [GIM94]. Following [GJM94], we

define:

! An algorithm to check finiteness appears in [MS93, MS94].

Definition 1: (Self Maintainability With Respect to a Modification Type) A view V is said
to be self-maintainable with respect to a modification type (insertion, deletion, or update) to a base
relation R if for all database states, the view can be self-maintained in response to all instances of a
modification of the indicated type to the base relation R.

Example 6: Consider view supp_parts from Example 2 that contains all distinct part_no supplied
by at least one supplier. Also, let part.no be the key for relation part (so there can be at most one
contract and one part_cost for a given part).

If a tuple is deleted from relation part then it is straightforward to update the view using only
the materialized view (simply delete the corresponding part o if it is present). Thus, the view is
self-maintainable with respect to deletions from the part relation.

By contrast, let tuple supp(sl,pl,100) be deleted when the view contains tuple pl. The tuple
pl cannot be deleted from the view because supp may also contain a tuple supp(s2,pl,200) that
contributes pl to the view. Thus, the view is not self-maintainable with respect to deletions from supp.
In fact, the view is not self-maintainable for insertions into either supp or part. |

Some results from [GJM94] are stated after the following definitions.

Definition 2: (Distinguished Attribute) An attribute A of a relation R is said to be distinguished
in a view V if attribute A appears in the select clause defining view V.

Definition 3: (Exposed Attribute) An attribute A of a relation R is said to be exposed in a view
V if A is used in a predicate. An attribute that is not exposed is referred to as being non-exposed.

Self-Maintainability With Respect to Insertions and Deletions [GJM94] shows that most
SPJ views are not self-maintainable with respect to insertions, but they are often self-maintainable
with respect to deletions and updates. For example:

e An SPJ view that takes the join of two or more distinct relations is not self-maintainable with
respect to insertions.

o An SPJ view is self-maintainable with respect to deletions to R; if the key attributes from each
occurrence of Ry in the join are either included in the view, or are equated to a constant in the
view definition.

o A left or full outer-join view V defined using two relations R and 5, such that:

— The keys of R and § are distinguished, and
— All exposed attributes of R are distinguished.

is self-maintainable with respect to all types of modifications to relation 5.

Self-Maintainability With Respect to Updates By modeling an update independently and not
as a deletion+insertion we retain information about the deleted tuple that allows the insertion to be
handled more easily.

Example 7: Consider again relation part(part.no,part_cost,contract) where part_no is the key.
Consider an extension of view supp_parts:

supp-parts(supp-no,part no,part_cost) = llpart no(supp ™partno Ppart)

10

The view contains the part_no and part_cost for the parts supplied by each supplier. If the part_cost
of a part pl is updated then the view is updated by identifying the tuples in the view that have
part_no = pl and updating their part_cost attribute. |

The ability to self-maintain a view depends upon the attributes being updated. In particular,
updates to non-exposed attributes are self-maintainable when the key attributes are distinguished. The
complete algorithm for self-maintenance of a view in response to updates to non-exposed attributes is
described in [GJM94] and relies on (a) identifying the tuples in the current view that are potentially
affected by the update, and (b) computing the effect of the update on these tuples.

The idea of self-maintenance is not new — Autonomously computable views were defined by [BCL89]
as the views that can be maintained using only the materialized view for all database instances, but
for a given modification instance . They characterize a subset of SPJ views that are autonomously
computable for insertions, deletions, and updates, where the deletions and updates are specified using
conditions. They do not consider views with self-joins or outer-joins, do not use key information, and
they do not consider self-maintenance with respect to all instances of modifications. The characteriza-
tion of autonomously computable views in [BCL89] for updates is inaccurate — For instance, [BCL89]
determines, incorrectly, that the view “select X from r(X)” is not autonomously computable for the

modification “Update(R(3) to R(4))”.

Instance Specific Self-Maintenance For insertions and deletions only, a database instance specific
self-maintenance algorithm for SPJ views was discussed first in [BT88]. Subsequently this algorithm
has been corrected and extended in [GB95].

4.3 Using Materialized View and Some Base Relations: Partial-reference

The partial-reference maintenance problem is to maintain a view given only a subset of the base relations
and the materialized view. Two interesting subproblems here are when the view and all the relations
except the modified relation are available, and when the view and modified relation are available.

Modified Relation is not Available (Chronicle Views) A chronicle is an ordered sequence of
tuples with insertion being the only permissible modification [JMS95]. A view over a chronicle, treating
the chronicle as a relation, is called a chronicle view. The chronicle may not be stored in its entirety
in a database because it can get very large, so the chronicle view maintenance problem is to maintain
the chronicle view in response to insertions into the chronicle, but without accessing the chronicle.
Techniques to specify and maintain such views efficiently are presented in [JMS95].

Only Modified Relation is Available (Change-reference Maintainable) Sometimes a view
may be maintainable using only the modified base relation and the view, but without accessing other
base relations. Different modifications need to be treated differently.

Example 8: Consider maintaining view supp_parts using relation supp and the old view in response
to deletion of a tuple ¢ from relation supp. If {.part_no is the same as the part_no of some other tuple
in supp then the view is unchanged. If no remaining tuple has the same part no as tuple { then we
can deduce that no supplier supplies {.part no and thus the part number has to be deleted from the
view. Thus, the view is change-reference-maintainable.

A similar claim holds for deletions from part but not for insertions into either relation. |

Instance Specific Partial-reference Maintenance [GB95, Gup94] give algorithms that success-
fully maintain a view for some instances of the database and modification, but not for others. Their
algorithms derive conditions to be tested against the view and/or the given relations to check if the
information is adequate to maintain the view.

11

5 Applications

New and novel applications for materialized views and view maintenance techniques are emerging. We
describe a few of the novel applications here, along with a couple of traditional ones.

Fast Access, Lower CPU and Disk Load: Materialized views are likely to find applications in
any problem domain that needs quick access to derived data, or where recomputing the view from base
data may be expensive or infeasible. For example, consider a retailing database that stores several
terabytes of point of sale transactions representing several months of sales, and supports queries giving
the total number of items sold in each store for each item the company carries. These queries are made
several times a day, by vendors, store managers, and marketing people. By defining and materializing
the result, each query can be reduced to a simple lookup on the materialized view; consequently it
can be answered faster, and the CPU and disk loads on the system are reduced. View maintenance
algorithms keep the materialized result current as new sale transactions are posted.

Data Warehousing: A database that collects and stores data from several databases is often de-
scribed as a data warehouse.

Materialized views provide a framework within which to collect information into the warehouse
from several databases without copying each database in the warehouse. Queries on the warehouse can
then be answered using the materialized views without accessing the remote databases. Provisioning,
or changes, still occurs on the remote databases, and are transmitted to the warehouse as a set of
modifications. Incremental view maintenance techniques can be used to maintain the materialized views
in response to these modifications. While the materialized views are available for view maintenance,
access to the remote databases may be restricted or expensive. Self-Maintainable views are thus useful
to maintain a data warehouse [GJM94]. For cases where the view is not self-maintainable and one
has to go to the remote databases, besides the cost of remote accesses, transaction management is also
needed [ZG195].

Materialized views are used for data integration in [ZHKF95, GJM94]. Objects that reside in multi-
ple databases are integrated to give a larger object if the child objects “match.” Matching for relational
tuples using outer-joins and a match operator is done in [GJM94], while more general matching condi-
tions are discussed in [ZHKF95]. The matching conditions of [ZHKF95] may be expensive to compute.
By materializing the composed objects, in part or fully, the objects can be used inexpensivelym.

[LMSS95b] presents another model of data integration. They consider views defined using some
remote and some local relations. They materialize the view partially, without accessing the remote
relation, by retaining a reference to the remote relation as a constraint in the view tuples. The model
needs access to the remote databases during queries and thus differs from a typical warehousing model.

Chronicle Systems: Banking, retailing, and billing systems deal with a continuous stream of trans-
actional data. This ordered sequence of transactional tuples has been called a chronicle [JMS95]. One
characteristic of a chronicle is that it can get very large, and it can be beyond the capacity of any
database system to even store, far less access, for answering queries. Materialized views provide a way
to answer queries over the chronicle without accessing the chronicle.

Materialized views can be defined to compute and store summaries of interest over the chroni-
cles (the balance for each customer in a banking system, or the profits of each store in the retailing
system). View maintenance techniques are needed to maintain these summaries as new transactions
are added to the chronicle, but without accessing the old entries in the chronicle [JMS95].

Data Visualization: Visualization applications display views over the data in a database. As the
user changes the view definition, the display has to be updated accordingly. An interface for such
queries in a real estate system is reported in [WS93], where they are called dynamic queries. Data

12

archaeology [BST193] is a similar application where an archaeologist discovers rules about data by
formulating queries, examining the results, and then changing the query iteratively as his/her under-
standing improves. By materializing a view and incrementally recomputing it as its definition changes,
the system keeps such applications interactive. [GMR95] studies the “view adaptation problem,” i.e.,
how to incrementally recompute a materialized view in response to changes to the view definition.

Mobile Systems: A common query in a personal digital assistant (PDA) is of the form “Which
freeway exits are within a 5 mile radius”. One model of computation sends the query to a remote
server that uses the position of the PDA to answer the query and sends the result back to the PDA.
When the PDA moves and asks the same query, data transmission can be reduced by computing only
the change to the answer and designing the PDA to handle answer differentials.

Integrity Constraint Checking: Most static integrity constraints can be represented as a set of
views such that if any of the views is nonempty then the corresponding constraint is violated. Then
checking constraints translates to a view maintenance problem. Thus, view maintenance techniques
can be used to incrementally check integrity constraints when a database is modified. The expression to
check integrity constraints typically can be simplified when the constraint holds before the modification,
i.e., the corresponding views initially are empty [BC79, Nic82, BB82, BMM92, LST87, CW90].

Query Optimization: If a database system maintains several materialized views, the query opti-
mizer can use these materialized views when optimizing arbitrary queries, even when the queries do
not mention the views. For instance, consider a query in a retailing system that wants to compute the
number of items sold for each item. A query optimizer can optimize this query to access a materialized
view that stores the number of items sold for each item and store, and avoid access to a much larger
sales-transactions table.

[RSU95, LMSS95a] discuss the problem of answering a conjunctive query (SPJ query) given a set of
conjunctive view definitions. Optimization of aggregation queries using materialized views is discussed
in [CKPS95, DJLS95, GHQ95]. The view adaptation results of [GMR95] can be used to optimize a
query using only one materialized view.

6 Open Problems

This section describes some open problems in view maintenance, in the context of Figure 1. Many points
on each of the three dimensions remain unconsidered, or even unrepresented. It is useful to extend
each dimension to unconsidered points and to develop algorithms that cover entirely the resulting space
because each point in the space corresponds to a scenario of potential interest.

View maintenance techniques that use all the underlying relations, i.e. full-information, have been
studied in great detail for large classes of query languages. We emphasize the importance of develop-
ing comprehensive view maintenance techniques that use different types of partial information. For
instance:

e Use information on functional dependencies, multiple materialized views, general integrity con-
straints, horizontal/vertical fragments of base relations (i.e., simple views).

o Extend the view definition language to include aggregation, negation, outer-join for all instances
of the other dimensions. The extensions are especially important for using partial information.

o Identify subclasses of SQL views that are maintainable in an instance independent fashion.

The converse of the view maintenance problem under partial information, as presented in Section 4
is to identify the information required for efficient view maintenance of a given view (or a set of

13

views). We refer to this problem as the “information identification (II)” problem. Solutions for view
maintenance with partial information indirectly apply to the II problem by checking if the given view
falls into one of the classes for which partial-information based techniques exist. However, direct and
more complete techniques for solving the II problem are needed.

An important problem is to implement and incorporate views in a database system. Many questions
arise in this context. When are materialized views maintained — before the transaction that updates the
base relation commits, or after the transaction commits? Is view maintenance a part of the transaction
or not? Should the view be maintained before the update is applied to the base relations, or afterwards?
Should the view be maintained after each update within the transaction, or after all the updates?
Should active rules (or some other mechanism) be used to initiate view maintenance automatically or
should a user start the process? Should alternative algorithms be tried, based on a cost based model to
choose between the options? Some existing work in this context is in [NY83, CW91, GHJ94, RC*T95].
[CWO1] considers using production rules for doing view maintenance and [NY83] presents algorithms in
the context of a deductive DB system. [GHJ94] does not discuss view maintenance but discusses efficient
implementation of deltas in a system that can be used to implement materialized views. [RCT95]
describes the ADMS system that implements and maintains simple materialized views, “ViewCaches,”
in a multi-database environment. The ADMS system uses materialized views in query optimization
and addresses questions of caching, buffering, access paths, elc..

The complexity of view maintenance also needs to be explored. The dynamic complexity classes
of [PI94] and the incremental maintenance complexity of [JMS95] characterize the computational com-
plexity of maintaining a materialized copy of the view. [P194] show that several recursive views have a
first order dynamic complexity, while [JMS95] define languages with constant, logarithmic, and poly-
nomial incremental maintenance complexity.

Acknowledgements

We thank H. V. Jagadish, Leonid Libkin, Dallan Quass, and Jennifer Widom for their insightful

comments on the technical and presentation aspects of this paper.

References

[BB82] P. A. Bernstein and B. T. Blaustein. Fast Methods for Testing Quantified Relational Calculus Asser-
tions. In SIGMOD 1982, pages 39-50.

[BBC80] P. A. Bernstein, B. T. Blaustein, and E. M. Clarke. Fast Maintenance of Semantic Integrity Assertions
Using Redundant Aggregate Data. In 6th VLDB, 1980, pages 126-136.

[BCT79] Peter O. Buneman and Eric K. Clemons. Efficiently Monitoring Relational Databases. In ACM
Transactions on Database Systems, Vol 4, No. 3, 1979, 368-382.

[BCL89] J. A. Blakeley, N. Coburn, and P. Larson. Updating Derived Relations: Detecting Irrelevant and
Autonomously Computable Updates. ACM Transactions on Database Systems, 14(3):369-400, 1989.

[BLT86] J. A. Blakeley, P. Larson, and F. Tompa. Efficiently Updating Materialized Views. In SIGMOD 1986.

[BMMO92] F. Bry, R. Manthey, and B. Martens. Integrity Verification in Knowledge Bases. In Logic Program-
ming, LNAT 592, pages 114-139, 1992.

[BST+93] R.J.Brachman, et al.. Integrated support for data archaeology. In International Journal of Intelligent
and Cooperative Information Systems, 2:159-185, 1993.

[BT88] J. A. Blakeley and F. W. Tompa. Maintaining Materialized Views without Accessing Base Data. In
Information Systems, 13(4):393-406, 1988.

14

[CKPS95] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, K. Shim. Query Optimization in the presence of

[CW90]
[CWO1]
[DILS95]

[DLW95]

[DS93]

[DT92]
[E1k90]
[GHJ94]

[GBYS5]
[GHQY5]

[GIM94]

[GKM92]

[GL95]
[GLT95]

[GM93]
[GMR95]

[GMS93]

Materialized Views. In 11th IEEE Intl. Conference on Data Engineering, 1995.
S. Ceri and J. Widom. Deriving Production Rules for Constraint Maintenance. In VLDB 1990.
S. Ceri and J. Widom. Deriving Production Rules for Incremental View Maintenance. In VLDB 1991.

S. Dar, H.V. Jagadish, A. Y. Levy, and D. Srivastava. Answering SQL queries with aggregation using
views. Technical report, AT&T, 1995.

G. Dong, L. Libkin and L. Wong. On Impossibility of Decremental Recomputation of Recursive
Queries in Relational Calculus and SQL. In Proc. of the Intl. Wksp. on DB Prog. Lang, 1995.

G. Dong and J. Su. Incremental and Decremental Evaluation of Transitive Closure by First-Order
Queries. In Proceedings of the 16th Australian Computer Science Conference, 1993.

G. Dong and R. Topor. Incremental Evaluation of Datalog Queries. In ICDT, 1992.
C. Elkan. Independence of Logic Database Queries and Updates. In 9th PODS, pages 154-160, 1990.

S. Ghandeharizadeh, R. Hull, and D Jacobs. Heraclitus[Alg,C]: Elevating Deltas to be First-Class
Citizens in a Database Programming Language. Tech. Rep. # USC-CS-94-581, USC, 1994.

A. Gupta and J. A. Blakeley. Maintaining Views using Materialized Views . Unpublished document.

A. Gupta, V. Harinarayan and D. Quass. Generalized Projections: A Powerful Approach to Aggre-
gation. In VLDB, 1995.

A. Gupta, H. V. Jagadish, and I. S. Mumick. Data integration using self-maintainable views. Technical
Memorandum 113880-941101-32, AT&T Bell Laboratories, November 1994.

A. Gupta, D. Katiyar, and I. S. Mumick. Counting Solutions to the View Maintenance Problem. In
Workshop on Deductive Databases, JICSLP, 1992.

T. Griffin and L. Libkin. Incremental maintenance of views with duplicates. In SIGMOD 1995.

T. Griffin and L. Libkin and H. Trickey. A correction to “Incremental recomputation of active
relational expressions” by Qian and Wiederhold. To appear in IEEE TKDE.

A. Gupta and I. S. Mumick. Improvements to the PF Algorithm. TR STAN-CS-93-1473, Stanford.

A. Gupta, I. Singh Mumick, and K. A. Ross. Adapting materialized views after redefinitions. In
Columbia Uniwversity TR CUCS-010-95, March 1995. Also in SIGMOD 1995, pages 211-222.

A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining Views Incrementally. In SIGMOD
1993, pages 157-167. (Full version in AT&T technical report # 9921214-19-TM.)

[GSUW94] A. Gupta, S. Sagiv, J. D. Ullman, and J. Widom. Constraint Checking with Partial Information. In

[Gup94]

[HD92]

[IMS95]

[KSS87]
[Kuc91]

13th PODS, 1994, pages 45-55.

A. Gupta. Partial Information Based Integrity Constraint Checking. Ph.D. Thesis, Stanford (CS-
TR-95-1534).

J. V. Harrison and S. Dietrich. Maintenance of Materialized Views in a Deductive Database: An
Update Propagation Approach. In Workshop on Deductive Databases, JICSLP, 1992.

H. V. Jagadish, I. S. Mumick, and A. Silberschatz. View maintenance issues in the chronicle data

model. In 14th PODS, pages 113-124, 1995.
R. Kowalski, F. Sadri, and P. Soper. Integrity Checking in Deductive Databases. In VLDB, 1987.

V. Kuchenhoff. On the Efficient Computation of the Difference Between Consecutive Database States.
In DOOD, LNCS 566, 1991.

15

[LMSS95a] A. Y. Levy and A. O. Mendelzon and Y. Sagiv and D. Srivastava. Answering Queries Using Views.
In PODS 1995, pages 95-104.

[LMSS95b] J. Lu, G. Moerkotte, J. Schu, and V. S. Subrahmanian. Efficient maintenance of materialized
mediated views. In SIGMOD 1995, pages 340-351.

[LS93] AY. Levy and Y. Sagiv. Queries Independent of Updates. In 19th VLDB, pages 171-181, 1993.

[LST87] J.W.Lloyd, E. A. Sonenberg, and R. W. Topor. Integrity Constraint Checking in Stratified Databases.
Journal of Logic Programming, 4(4):331-343, 1987.

[MPP*93] B. Mitschang, H. Pirahesh, P. Pistor, B. Lindsay, and N. Sudkamp. SQL/XNF - Processing Composite
Objects as Abstractions over Relational Data. In Proc. of 9'* IEEE ICDE, 1993.

[MS93] I. S. Mumick and O. Shmueli. Finiteness properties of database queries. In Advances in Database
Research: Proc. of the 4" Australian Database Conference, pages 274288, 1993.

[MS94] I. S. Mumick and O. Shmueli. Universal Finiteness and Satisfiability. In PODS 199/, pages 190-200.

[Mum91] I. S. Mumick. Query Optimization in Deductive and Relational Databases. Ph.D. Thesis, Stanford
University, Stanford, CA 94305, USA, 1991.

[Nic82] J. M. Nicolas. Logic for Improving Integrity Checking in Relational Data Bases. Acta Informatica,
18(3):227-253, 1982.

[NY83] J. M. Nicolas and Yazdanian. An Outline of BDGEN: A Deductive DBMS. In Information Processing,
pages 705-717, 1983.

[Pai84] R. Paige. Applications of finite differencing to database integrity control and query/transaction
optimization. In Advances in Database Theory, pages 170-209, Plenum Press, New York, 1984.

[P194] S. Patnaik and N. Immerman. Dyn-fo: A parallel, dynamic complexity class. In PODS, 1994.

[QWI1] X. Qian and G. Wiederhold. Incremental Recomputation of Active Relational Expressions. In IEEE
TKDE, 3(1991), pages 337-341.

[RSU95] A. Rajaraman, Y. Sagiv, and J. D. Ullman. Answering queries using templates with binding patterns.
In PODS, 1995, pages 105-112.

[RCT95] N. Roussopoulos, C. Chun, S. Kelley, A. Delis, and Y. Papakonstantinou. The ADMS Project:
Views "R” Us. In IEEFE Data Engineering Bulletin, Special Issue on Materialized Views and Data
Warehousing, 18(2), June 1995.

[Rou91] N. Roussopoulos. The Incremental Access Method of View Cache: Concept, Algorithms, and Cost
Analysis. In ACM-TODS, 16(3):535-563, 1991.

S184] O. Shmueli and A. Itai. Maintenance of Views. In SIGMOD 1984, pages 240-255.
Ul189] J. D. Ullman. Principles of Database and Knowledge-Base Systems, Vol 2. Computer Science Press.
U092] T. Urpi and A. Olive. A Method for Change Computation in Deductive Databases. In VLDB 1992.

WDSY91] O. Wolfson, H. M. Dewan, S. J. Stolfo, and Y. Yemini. Incremental Evaluation of Rules and its
Relationship to Parallelism. In SIGMOD 1991, pages 78-87.

[
[
[
[

[WS93] C. Williamson and B. Shneiderman. The Dynamic HomeFinder: evaluating Dynamic Queries in a
real- estate information exploration system. In Ben Shneiderman, editor, Sparks of Innovation in
Human-Computer Interaction. Ablex Publishing Corp, 1993.

[ZHKF95] G. Zhou, R. Hull, R. King, J-C. Franchitti. Using Object Matching and Materialization to Integrate
Heterogeneous Databases. In Proc. of 3" Intl. Conf. on Cooperative Info. Sys., 1995, pp. 4-18.

[ZG*95] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View maintenance in a warehousing envi-

ronment. In SIGMOD 1995, pages 316-327.

16

