
Selectively Storing XML Data in Relations

Wenfei Fan1 and Lisha Ma2

1 University of Edinburgh and Bell Laboratories
2 Heriot-Watt University

Abstract. This paper presents a new framework for users to select relevant data
from an XML document and store it in an existing relational database, as opposed
to previous approaches that shred the entire XML document into a newly created
database of a newly designed schema. The framework is based on a notion of
XML2DB mappings. An XML2DB mapping extends a (possibly recursive) DTD
by associating element types with semantic attributes and rules. It extracts either
part or all of the data from an XML document, and generates SQL updates to
increment an existing database using the XML data. We also provide an efficient
technique to evaluate XML2DB mappings in parallel with SAX parsing. These
yield a systematic method to selectively store XML data in an existing database.

1 Introduction

A number of approaches have been proposed for shredding XML data into relations [4,
7, 14–16], and some of these have found their way into commercial systems [11, 8, 13]
(see [9] for a recent survey). Most of these approaches map XML data to a newly created
database of a “canonical” relational schema that is designed starting from scratch based
on an XML DTD, rather than storing the data in an existing database. Furthermore, they
store the entire XML document in the database, rather than letting users select and store
part of the XML data. While some commercial systems allow one to define schema-
based mappings to store part of the XML data in relations, either their ability to handle
recursive DTDs is limited [8, 11] or they do not support storing the data in an existing
database [13]. In practice, it is common that users want to specify what data they want in
an XML document, and to increment an existing database with the selected data. More-
over, one often wants to define the mappings based on DTDs, which may be recursive
as commonly found in practice (see [5] for a survey of real-life DTDs).
Example 1.1: Consider a registrar database specified by the relational schema R0

shown in Fig. 1(a) (with keys underlined). The database maintains student data, en-
rollment records, course data, and a relation prereq, which gives the prerequisite hier-
archy of courses: a tuple (c1, c2) in prereq indicates that c2 is a prerequisite of c1.

Now consider an XML DTD D0 also shown in Fig. 1(a) (the definition of elements
whose type is PCDATA is omitted). An XML document conforming to D0 is depicted in
Fig. 1(b). It consists of a list of course elements. Each course has a cno (course number),
a course title, a prerequisite hierarchy, and all the students who have registered for the
course. Note that the DTD is recursive: course is defined in terms of itself via prereq.

We want to define a mapping σ0 that, given an XML document T that conforms to
D0 and a relational database I of R0, (a) extracts from T all the CS courses, along

1

Relational schema R0:
course(cno, title),
student(ssn, name),
enroll(ssn, cno),
prereq(cno1, cno2).

DTD D0:
<!ELEMENT db (course∗)>
<!ELEMENT course (cno, title,

prereq, takenBy)>
<!ELEMENT prereq (course∗)>
<!ELEMENT takenBy(student∗)>
<!ELEMENT student(ssn, name)>

(a) Relational schema R0 and DTD D0

���� ����������

cno prereq

db

course coursecourse

title

course course

takenBy

studentstudent student

ssn name

(b) An XML document of D0

Fig. 1. Relational Schema R0, DTD D0 and an example XML document of D0

with their prerequisites hierarchies and students registered for these related courses,
and (b) inserts the data into relations course, student, enroll and prereq of the relational
database I , respectively. Observe the following. (a) We only want to store in relations
certain part of the data in T , instead of the entire T . (b) The selected XML data is to
be stored in an existing database I of a predefined schema R0, by means of SQL up-
dates, rather than in a newly created database of a schema designed particularly for
D0. (c) The selected XML data may reside at arbitrary levels of T , whose depth can-
not be determined at compile time due to the recursive nature of its DTD D0. To our
knowledge, no existing XML shredding systems are capable of supporting σ0. 2

Contributions. To overcome the limitations of existing XML shredding approaches, we
propose a new framework for mapping XML to relations. The framework is based on
(a) a notion of XML2DB mappings that extends (possibly recursive) DTDs and is capable
of mapping either part of or the entire document to relations, and (b) a technique for
efficiently evaluating XML2DB mappings.

XML2DB mappings are a novel extension of attribute grammars (see, e.g., [6] for
attribute grammars). In a nutshell, given a (possibly recursive) XML DTD D and a pre-
defined relational schema R, one can define an XML2DB mapping σ : D → R to select
data from an XML document of D, and generates SQL inserts to increment an existing
relational database of R. More specifically, σ extends the DTD D by associating seman-
tic attributes and rules with element types and their definitions in D. Given an XML
document T of D, σ traverses T , selects data from T , and generates SQL inserts ∆ by
means of the semantic attributes and rules during the traversal. Upon the completion of
the traversal, the SQL updates ∆ are executed against an existing database I of R, such
that the updated database ∆(I) includes the extracted XML data and is guaranteed to be
an instance of the predefined schema R. For example, we shall express the mapping σ0

described in Example 1.1 as an XML2DB mapping (Fig. 2(a)).
To efficiently evaluate an XML2DB mapping σ, we propose a technique that com-

bines the evaluation with the parsing of XML data, by leveraging existing SAX [10]
parsers. This allows us to generate SQL updates ∆ in a single traversal of the document
without incurring extra cost. To verify the effectiveness and efficiency of our technique
we provide a preliminary experimental study.

Taken together, the main contributions of the paper includes the following:

2

– A notion of XML2DB mappings, which allows users to increment an existing rela-
tional database by using certain part or all of the data in an XML document, and is
capable of dealing with (possibly recursive) XML DTDs.

– An efficient technique that seamlessly integrates the evaluation of XML2DB map-
pings and SAX parsing, accomplishing both in a single pass of an XML document.

– An experimental study verifying the effectiveness of our techniques.
The novelty of our framework consists in (a) the functionality to support mappings

based on (possibly recursive) DTDs from XML to relations that, as opposed to previous
XML shredding approaches, allows users to map either part of or the entire XML doc-
ument to a relational database, rather than core-dumping the entire document; (b) the
ability to extend an existing relational database of a predefined schema with XML data
rather than creating a new database starting from scratch; (c) efficient evaluation tech-
niques for XML2DB mappings via a mild extension of SAX parsers for XML.
Organization. Section 2 reviews DTDs and SAX. Section 3 defines XML2DB mappings.
Section 4 presents the evaluation technique. A preliminary experimental study is pre-
sented in Section 5, followed by related work in Section 6 and conclusions in Section 7.

2 Background: DTDs and SAX

DTDs. Without loss of generality, we formalize a DTD D to be (E, P, r), where E is
a finite set of element types; r is in E and is called the root type; P defines the element
types: for each A in E, P (A) is a regular expression of the form:

α ::= PCDATA | ε | B1, . . . , Bn | B1 + . . . + Bn | B∗

where ε is the empty word, B is a type in E (referred to as a child type of A), and ‘+’,
‘,’ and ‘∗’ denote disjunction, concatenation and the Kleene star, respectively (we use
‘+’ instead of ‘|’ to avoid confusion). We refer to A → P (A) as the production of A. A
DTD is recursive it has an element type defined (directly or indirectly) in terms of itself.

Note that [3] all DTDs can be converted to this form in linear time by using new ele-
ment types and performing a simple post-processing step to remove the introduced ele-
ment types. To simplify the discussion we do not consider XML attributes, which can be
easily incorporated. We also assume that the element types B1, . . . , Bn in B1, . . . , Bn

(resp. B1 + . . . + Bn) are distinct, w.l.o.g. since we can always distinguish repeated
occurrences of the same element type by referring to their positions in the production.
SAX parsing. A SAX [10] parser reads an XML document T and generates a stream of
SAX events of five types, whose semantics is self-explanatory:

startDocument(), startElement(A, eventNo), text(s), endElement(A), endDocument().

where A is an element type of T and s is a string (PCDATA).

3 XML2DB Mappings: Syntax and Semantics

In this section we formally define XML2DB mappings.
Syntax. The idea of XML2DB mappings is to treat the XML DTD as a grammar and
extend the grammar by associating semantic rules with its productions. This is in the

3

same spirit of Oracle XML DB [13] and IBM DB2 XML Extender [8], which specify XML
shredding by annotating schema for XML data. When the XML data is parsed w.r.t. the
grammar, it recursively invokes semantic rules associated with the productions of the
grammar to select relevant data and generate SQL updates.

We now define XML2DB mappings. Let D = (E, P, r) be a DTD and R be a
relational schema consisting of relation schemas R1, . . . , Rn. An XML2DB mapping
σ : D → R takes as input an XML document T of D, and returns an SQL group inserts
∆ which, when executed on a database I of R, yields an incremented instance ∆I of
schema R. The mapping extracts relevant data from T and uses the data to construct
tuples to be inserted into I . More specifically, σ is specified as follows.
• For each relation schema Ri of R, σ defines a relation variable ∆Ri

, which is to hold
the set of tuples to be inserted into an instance Ii of Ri. The set ∆Ri

is initially empty
and is gradually incremented during the parsing of the XML document T .
• For each element type A in E, σ defines a semantic attribute $A whose value is either
a relational tuple of a fixed arity and type, or a special value > (denoting $r at the root
r) or ⊥ (denoting undefined); intuitively, $A extracts and holds relevant data from the
input XML document that is to be inserted into the relational database I of R. As will
be seen shortly, $A is used to pass information top-down during the evaluation of σ.
• For each production p = A → α in D, σ specifies a set of semantic rules, denoted by
rule(p). These rules specify two things: (a) how to compute the value of the semantic
attribute $B of B children of an A element for each child type B in α, (b) how to incre-
ment the set in ∆Ri

; both $B and ∆Ri
are computed by using the semantic attribute $A

and the PCDATA of text children of the A element (if any). More specifically, rule(p)
consists of a sequence of assignment and conditional statements:

rule(p) := statements
statements := ε | statement; statements
statement := X := expression | if C then statements else statements

where ε denotes the empty sequence (i.e., no semantic actions); and X is either a rela-
tion variable ∆Ri

or a semantic attribute $B. The assignment statement has one of two
forms. (a) $B := (x1, . . . , xk), i.e., tuple construction where xi is either of the form
$A.a (the a field of the tuple-valued attribute $A of the A element), or val (B ′), where
B′ is an element type in α such that it precedes B in α (i.e., we enforce sideways infor-
mation passing from left to right), B’s production is of the form B ′ → PCDATA, and val

(B′) denotes the PCDATA (string) data of B′ child. (b) ∆Ri
:= ∆Ri

∪ {(x1, . . . , xk)},
where (x1, . . . , xk) is a tuple as constructed above and in addition, it is required to
have the same arity and type as specified by the schema Ri. The condition C is defined
in terms of equality or string containment tests on atomic terms of the form val (B ′),
$A.a,>,⊥, and it is built by means of Boolean operators and, or and not, as in the
standard definition of the selection conditions in relational algebra (see, e.g., [2]). The
mapping σ is said to be recursive if the DTD D is recursive.

We assume that if p is of the form A → B∗, rule(p) includes a single rule $B :=
$A, while the rules for the B production select data in each B child. This does not lose
generality as shown in the next example, in which a list of student data is selected.

4

Relational variables: ∆course, ∆prereq, ∆student,
∆enroll , with ∅ as their initial value.

Semantic rules:

db → course*
$course := >;

course → cno, title, prereq, takenBy
if val (cno) contains ‘CS’ or ($course 6= ⊥

and $course 6= >)
then $prereq := val (cno); $takenBy := val (cno);

∆course := ∆course ∪ {(val (cno), val (title))};
if $course 6= > and $course 6= ⊥
then ∆prereq := ∆prereq ∪ {($course, val (cno))};

else $title := ⊥; $prereq := ⊥; $takenBy := ⊥;
prereq → course*
$course := $student;

takenBy → student*
$student := $takenBy;

student → ssn, name
if $student 6= ⊥
then ∆student := ∆student ∪ {(val (ssn), val (name))};

∆enroll := ∆enroll ∪ {(val (ssn), $student)};

(a) XML2DB mapping σ0

Relational variables: ∆course, ∆prereq, ∆student,
∆enroll , with ∅ as their initial value.

Semantic rules:

db → course*
$course := >;

course → cno, title, prereq, takenBy
$prereq := val (cno); $takenBy := val (cno);
∆course := ∆course ∪ {(val (cno), val (title))};
if $course 6= >
then ∆prereq := ∆prereq ∪ {($course, val (cno))};

prereq → course*
$course := $prereq;

takenBy → student*
$student := $takenBy;

student → ssn, name
∆student := ∆student ∪ {(val (ssn), val (name))};
∆enroll := ∆enroll ∪ {(val (ssn), $student)};

(b) XML2DB mapping σ1

Fig. 2. Example XML2DB mappings: storing part of (σ0) and the entire (σ1) the document

Example 3.2: The mapping σ0 described in Example 1.1 can be expressed as the
XML2DB mapping σ0 : D0 → R0 in Fig. 2(a), which, given an XML document T

of the DTD D0 and a relational database I of the schema R0, extracts all the CS courses,
their prerequisites and their registered students from T , and inserts the data as tuples
into I . That is, it generates ∆course, ∆student, ∆enroll and ∆prereq, from which SQL
updates can be readily constructed. Note that a course element c is selected if either its
cno contains ‘CS’ or an ancestor of c is selected; the latter is captured by the condition
($course 6= ⊥ and $course 6= >). The special value ⊥ indicates that the correspond-
ing elements are not selected and do not need to be processed. Note that the rules for
takenBy and student select the data of all student who registered for such courses. 2

Semantics. We next give the operational semantics of an XML2DB mapping σ : D → R

by presenting a conceptual evaluation strategy. This strategy aims just to illustrate the
semantics; a more efficient evaluation algorithm will be given in the next section.

Given an input XML document (tree) T , σ(T) is computed via a top-down depth-
first traversal of T , starting from the root r of T . Initially, the semantic attribute $r of
r is assigned the special value >. For each element v encountered during the traversal,
we do the following. (1) Identify the element type of v, say, A, and find the production
p = A → P (A) from the DTD D and the associated semantic rules rule(p) from the
mapping σ. Suppose that the tuple value of the semantic attribute $A of v is t. (2) Ex-
ecute the statements in rule(p). This may involve extracting PCDATA value val (B ′)
from some B′ children, projecting on certain fields of the attribute t of v, and perform-
ing equality, string containment tests and Boolean operations, as well as constructing
tuples and computing union of sets as specified in rule(p). The execution of rule(p)
assigns a value to the semantic attribute $B of each B child of v if the assignment of
$B is defined in rule(p), and it may also increment the set ∆Ri

. In particular, if p is

5

of the form A → B∗, then each B child u of v is assigned the same value $B. (3) We
proceed to process each child u of v in the same way, by using the semantic attribute
value of u. (4) The process continues until all the elements in T are processed. Upon
the completion of the process, we return the values of relation variables ∆R1

, . . . , ∆Rn

as output, each of which corresponds to an SQL insert. More specifically, for each ∆i,
we generate an SQL insert statement:

insert into Ri

select *
from ∆Ri

That is, at most n SQL inserts are generated in total.
Example 3.3: Given an XML tree T as shown in Fig 1(b), the XML2DB mapping σ0

of Example 3.2 is evaluated top-down as follows. (a) All the course children of the
root of T are given > as the value of their semantic attribute $course. (b) For each
course element v encountered during the traversal, if either $course contains ‘CS’ or
it is neither ⊥ nor >, i.e., v is either a CS course or a prerequisite of a CS course,
the PCDATA of cno of v is extracted and assigned as the value of $title, $prereq and
$takenBy; moreover, the set ∆course is extended by including a new tuple describing
the course v. Furthermore, if $course is neither > nor ⊥, then ∆prereq is incremented
by adding a tuple constructed from $course and val (cno), where $course is the cno of
c inherited in the top-down process. Otherwise the data in v is not to be selected and
thus all the semantic attributes of its children are given the special value ⊥. (c) For
each prereq element u encountered, the semantic attributes of all the course children
of u inherit the $prereq value of u, which is in turn the cno of the course parent of u;
similarly for takenBy elements. (d) For each student element s encountered, if $student
is not ⊥, i.e., s registered for either a CS course c or a prerequisite c of a CS course,
the sets ∆student and ∆enroll are incremented by adding a tuple constructed from the
PCDATA val (ssn), val (name) of s and the semantic attribute $student of s; note that
$student is the cno of the course c. (e) After all the elements in T are processed, the sets
∆course, ∆student, ∆enroll and ∆prereq are returned as the output of σ0(T). 2

Handling recursion in a DTD. As shown by Examples 3.2 and 3.3 XML2DB mappings
are capable of handling recursive DTDs. In general, XML2DB mappings handle recursion
in a DTD following a data-driven semantics: the evaluation is determined by the input
XML tree T at run-time, and it always terminates since T is finite.
Storing part of an XML document in relations. As demonstrated in Fig. 2(a), users
can specify in an XML2DB mapping what data they want from an XML document and
store only the selected data in a relational database.
Shredding the entire document. XML2DB mappings also allow users to shred the
entire input XML document into a relational database, as shown in Fig. 2(b). Indeed, for
any XML document T of the DTD D0 given in Example 1.1, the mapping σ1 shreds the
entire T into a database of the schema R0 of Example 1.1.

Taken together, XML2DB mappings have several salient features. (a) They can be
evaluated in a single traversal of the input XML tree T and it visits each node only once,
even if the embedded DTD is recursive. (b) When the computation terminates it gener-
ates sets of tuples to be inserted into the relational database, from which SQL updates ∆

6

can be readily produced. This allows users to update an existing relational database of
a predefined schema. (c) The semantic attributes of children nodes inherit the semantic
attribute of their parent; in other words, semantic attributes pass the information and
control top-down during the evaluation. (d) XML2DB mappings are able to store either
part of or the entire XML document in a relational database, in a uniform framework.

4 Evaluation of XML2DB Mappings

We next outline an algorithm for evaluating XML2DB mappings σ : R → D in parallel
with SAX parsing, referred to as an extended SAX parser. Given an XML document T of
the DTD D, the computation of σ(T) is combined with the SAX parsing process of T .

The algorithm uses the following variables: (a) a relation variable ∆Ri
for each ta-

ble Ri in the relational schema R; (b) a stack S, which is to hold a semantic attribute $A

during the evaluation (parsing); and (c) variables Xj of string type, which are to hold
PCDATA of text children of each element being processed, in order to construct tuples to
be added to ∆Ri

. The number of these variables is bounded by the longest production
in the DTD D, and the same string variables are repeatedly used when processing differ-
ent elements. Recall the SAX events described in Section 2. The extended SAX parser
incorporates the evaluation of σ into the processing of each SAX event, as follows.
• startDocument(). We push the special symbol > onto the stack S, as the value of the
semantic attribute $r of the root r of the input XML document T .
• startElement(A, eventNo). When an A element v is being parsed, the semantic at-
tribute $A of v is already at the top of the stack S. For each child u of v to be pro-
cessed, we compute the semantic attribute $B of u based on the semantic rules for $B

in rule(p) associated with the production p = A → P (A); we push the value onto
S, and proceed to process the children of u along with the SAX parsing process. If the
production of the type B of u is B → PCDATA, the PCDATA of u is stored in a string
variable Xj . Note that by the definition of XML2DB mappings, the last step is only
needed when p is of the form A → B1, . . . , Bn or A → B1 + . . . + Bn.
• endElement(A). A straightforward induction can show that when this event is en-
countered, the semantic attribute $A of the A element being processed is at the top of
the stack S. The processing at this event consists of two steps. We first increment the
set ∆Ri

by executing the rules for ∆Ri
in rule(p), using the value $A and the PCDATA

values stored in string variables. We then pop $A off the stack.
• text(s). We store PCDATA s in a string variable if necessary, as described above.
• endDocument(). At this event we return the relation variables ∆Ri

as the output of
σ(T), and pop the top of the stack off S. This is the last step of the evaluation of σ(T).

Upon the completion of the extended SAX parsing process, we eliminate duplicates
from relation variables ∆Ri

’s, and convert ∆Ri
to SQL insert command ∆i’s.

Example 4.4: We now revisit the evaluation of σ0(T) described in Example 3.3 using
the extended SAX parser given above. (a) Initially, > is pushed onto the stack S as the
semantic attribute $db of the root db of the XML tree T ; this is the action associated with
the SAX event startDocument(). The extended SAX parser then processes the course

7

Fig. 3. Scalability with the size of XML document T : vary |T |

Fig. 4. Scalability with the shape of XML document T : vary XL and XR with a fixed |T |

children of db, pushing > onto S when each course child v is encountered, as the
semantic attribute $course of v. (b) When the parser starts to process a course element
v, the SAX event startElement(course, eNo) is generated, and the semantic attribute
$course of v is at the top of the stack S. The parser next processes the cno child of
v, extracting its PCDATA and storing it in a string variable Xj ; similarly for title. It
then processes the prereq child of u, computing $prereq by means of the corresponding
rule in rule(course); similarly for the takenBy child of v. After all these children are
processed and their semantic attributes popped off the stack, endElement(course) is
generated, and at this moment the relation variables ∆course and ∆prereq are updated,
by means of the corresponding rules in rule(course) and by using $course at the top
of S as well as val (cno) and val (title) stored in string variables. After this step the
semantic attribute $course of v is popped off the stack. Similarly the SAX events for
prereq and takenBy are precessed. (c) When endDocument() is encountered, the sets
∆course, ∆student, ∆enroll and ∆prereq are returned as the output of σ0(T). 2

Theorem 4.1: Given an XML document T and an XML2DB mapping σ : D → R, the
extended SAX parser computes σ(T) via a single traversal of T and in O(|T ||σ|) time,
where |T | and |σ| are the sizes of T and σ, respectively. 2

5 Experimental Study

Our experimental study focuses on the scalability of our extended SAX parser, denoted
by ESAX, which incorporates XML2DB mapping evaluation. We conducted two sets
of experiments: we run ESAX and the original SAX parser (denoted by SAX) (a) on
XML documents T of increasing sizes, and (b) on documents T with a fixed size but
different shapes (depths or widths). Our experimental results show (a) that ESAX is
linearly scalable and has the same behavior as SAX, and (b) the performance of ESAX
is only determined by |T | rather than the shape of T . The experiments were conducted
on a PC with a 1.40 Ghz Pentium M CPU and 512MB RAM, running Windows XP.
Each experiment was repeated 5 times and the average is reported here; we do not show
confidence interval since the variance is within 5%.

8

We built XML documents based on the DTD of Fig. 1(a), using Toxgene XML gen-
erator (http://www.cs.toronto.edu/tox/toxgene). We used two parameters, XL and XR,
where XL is the depth of the generated XML tree T , XR is the maximum number of
children of any node in T . Together XL and XR determine the shape of T : the larger
the XL value, the deeper the tree; and the larger the XR value, the wider the tree.

Figure 3 shows the scalability of ESAX by increasing the XML dataset sizes from
153505 elements (3M) to 1875382 (39M). The time (in ms) reported for ESAX includes
the parsing and evaluation time of XML2DB mapping. As shown in Fig. 3, ESAX is
linearly scalable and behaves similarly to SAX, as expected. Furthermore, the evaluation
of XML2DB mapping does not incur dramatic increase in processing time vs. SAX.

To demonstrate the impact of the shapes of XML documents on the performance of
ESAX, we used XML documents T of a fixed size of160,000 elements, while varying the
height (XL) and width (XR) of T . Figure 4 (a) shows the elapsed time when varying
XL from 8 to 20 with XR = 4, and Fig. 4(b) shows the processing time while varying
XR from 2 to 16 with XL = 12. The results show that ESAX takes roughly the same
amount of time on these documents. This verifies that the time-complexity of ESAX is
solely determined by |T | rather than the shape of T , as expected.

6 Related Work

Several approaches have been explored for using a relational database to store XML
documents, either DTD-based [4, 15, 16, 13, 8] or schema-oblivious [7, 14, 11] (see [9]
for a survey). As mentioned in Section 1, except [11, 8] these approaches map the entire
XML document to a newly created database of a “canonical” relational schema, and are
not capable of extending an existing database with part of the data from the document.

Microsoft SQL 2005 [11] supports four XML data-type methods QUERY(), VALUE(),
EXIST() and NODES(), which take an XQuery expression as argument to retrieve parts
of an XML instance. However, the same method is not able to shred the entire document
into relations via a single pass of an XML document, in contrast to our uniform frame-
work to store both entire or part of an XML document. Furthermore, it does not support
semantic-based tuple construction, e.g., when constructing a tuple (A, B), it does not
allow one to extract attribute B based on the extracted value of A, which is supported
by XML2DB mappings via semantic-attribute passing. Both Oracle XML DB [13] and
IBM DB2 XML Extender [8] use schema annotations to map either entire or parts of XML
instances to relations. While Oracle supports recursive DTDs, it cannot increment an ex-
isting database. Worse, when an element is selected, the entire element has to be stored.
IBM employs user-defined Document Access Definitions (DADs) to map XML data to
DB2 tables, but supports only fixed-length DTD recursion. Neither Oracle nor IBM sup-
ports semantic-based tuple construction, which is commonly needed in practice.

We now draw the analogy of XML2DB mappings to attribute grammars (see,
e.g., [6]). While the notion of XML2DB mappings was inspired by attribute gram-
mars, it is quite different from attribute grammars and their previous database appli-
cations [12]. First, an attribute grammar uses semantic attributes and rules to constrain
parsing of strings, whereas an XML2DB mapping employs these to control the genera-

9

tion of database updates. Second, an attribute grammar outputs a parse tree of a string,
whereas an XML2DB mapping produces SQL updates.

Closer to XML2DB mappings are the notion of AIGs [3] and that of structural
schema [1], which are also nontrivial extensions of attribute grammars. AIGs are speci-
fications for schema-directed XML integration. They differ from XML2DB mappings in
that they generate XML trees by extracting data from relational sources, rather than be-
ing given an XML tree and producing SQL updates, and in that they are extensions of the
target DTDs of the XML trees to be generated, rather than the DTDs of input XML trees.
Furthermore, the evaluation of AIGs is far more involved than its XML2DB mapping
counterpart. Structural schemas were developed for querying text files, by extending
context-free grammars with semantic attributes. The evaluation of structural schemas is
different from the SAX-parser extension of XML2DB mappings.

7 Conclusion

We have proposed a notion of XML2DB mappings that in a uniform framework, al-
lows users to select either part of or entire XML document and store it in an existing
relational database of a predefined schema, as opposed to previous XML shredding ap-
proaches that typically shred the entire document into a newly created database of a new
schema. Furthermore, XML2DB mappings are capable of supporting recursive DTDs and
flexible tuple construction. We have also presented an efficient algorithm for evaluating
XML2DB mappings based on a mild extension of SAX parsers. Our preliminary ex-
perimental results have verified the effectiveness and efficiency of our technique. This
provides existing SAX parsers with immediate capability to support XML2DB mappings.

We are extending XML2DB mappings by incorporating (a) the support of SQL
queries and (b) the checking of integrity constraints (e.g., keys and foreign keys) on
the underlying relational databases. We are also developing evaluation and optimiza-
tion techniques to cope with and leverage SQL queries and constraints.

References

1. S. Abiteboul, S. Cluet, and T. Milo. Querying and updating the file. In VLDB, 1993.
2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
3. M. Benedikt, C. Y. Chan, W. Fan, J. Freire, and R. Rastogi. Capturing both types and con-

straints in data integration. In SIGMOD, 2003.
4. P. Bohannon, J. Freire, J. Haritsa, M. Ramanath, P. Roy, and J. Siméon. Bridging the XML

relational divide with LegoDB. In ICDE, 2003.
5. B. Choi. What are real DTDs like. In WebDB, 2002.
6. P. Deransart, M. Jourdan, and B. Lorho (eds). Attribute Grammars. LNCS 323, 1988.
7. D. Florescu and D. Kossmann. Storing and querying XML data using an RDMBS. IEEE

Data Eng. Bull, 22(3), 1999.
8. IBM. DB2 XML Extender. http://www-3.ibm.com/software/data/db2/extended/xmlext/.
9. R. Krishnamurthy, R. Kaushik, and J. Naughton. XML-SQL query translation literature: The

state of the art and open problems. In Xsym, 2003.
10. D. Megginson. SAX: a simple API for XML. http://www.megginson.com/SAX/.

10

11. Microsoft. XML support in Microsoft SQL erver 2005, December 2005.
http://msdn.microsoft.com/library/en-us/dnsql90/html/sql2k5xml.asp/.

12. F. Neven. Extensions of attribute grammars for structured document queries. In DBPL, 1999.
13. Oracle. Oracle Database 10g Release 2 XML DB Technical Whitepaper.

http://www.oracle.com/technology/tech/xml/xmldb/index.html.
14. A. Schmidt, M. L. Kersten, M. Windhouwer, and F. Waas. Efficient relational storage and

retrieval of XML documents. In WebDB, 2000.
15. J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey, B. Lindsay, H. Pirahesh, and B. Rein-

wald. A general techniques for querying XML documents using a relational database system.
SIGMOD Record, 30(3), 2001.

16. J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J. Naughton. Relational
databases for querying XML documents: Limitations and opportunities. In VLDB, 1999.

11

