
Proc. 2002 Very Large Databases Conference (VLDB’02), pp. 598-609

Translating Web Data

Lucian Popa† Yannis Velegrakis‡ Renée J. Miller‡ Mauricio A. Hernández† Ronald Fagin†

†IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120

‡University of Toronto
6 King’s College Road
Toronto, ON M5S 3H5

Abstract

We present a novel framework for mapping
between any combination of XML and rela-
tional schemas, in which a high-level, user-
specified mapping is translated into semanti-
cally meaningful queries that transform source
data into the target representation. Our ap-
proach works in two phases. In the first phase,
the high-level mapping, expressed as a set
of inter-schema correspondences, is converted
into a set of mappings that capture the design
choices made in the source and target schemas
(including their hierarchical organization as
well as their nested referential constraints).
The second phase translates these mappings
into queries over the source schemas that pro-
duce data satisfying the constraints and struc-
ture of the target schema, and preserving the
semantic relationships of the source. Non-
null target values may need to be invented in
this process. The mapping algorithm is com-
plete in that it produces all mappings that are
consistent with the schema constraints. We
have implemented the translation algorithm in
Clio, a schema mapping tool, and present our
experience using Clio on several real schemas.

1 Introduction

An important issue in modern information systems
and e-commerce applications is providing support
for inter-operability of independent data sources. A
broad variety of data is available on the Web in dis-
tinct heterogeneous sources, stored under different
formats: database formats (e.g., relational model),

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

semi-structured formats (e.g., DTDs, SGML or XML
Schema), scientific formats, etc. Integration of such
data is an increasingly important problem. Nonethe-
less, the effort involved in such integration, in practice,
is considerable: translation of data from one format
(or schema) to another requires writing and managing
complex data transformation programs or queries.

We present a new, comprehensive solution to build-
ing, refining and managing transformations between
heterogeneous schemas. Given the prevalent use of
the Web for data exchange, any data translation tool
must handle not only relational data but also data
represented in nested data models that are commonly
available on the Web. Our solutions are applicable to
any structured and semi-structured data that can be
described by a schema (a relational schema, a nested
XML Schema or DTD). We do not, in this work, con-
sider the exchange of documents or unstructured data
(including multimedia and unstructured text). Our
approach can be distinguished by its treatment of two
fundamental issues. We discuss them below, highlight-
ing our contributions and the main related work.
Heterogeneous Semantics We consider the schema
mapping problem, where we are given a pair of inde-
pendently created schemas and asked to translate data
from one (the source) to the other (the target). The
schemas may have different semantics, and this may
be reflected in differences in their logical structures
and constraints. In contrast, most work on heteroge-
neous data focuses on the schema integration problem
where the target (global) schema is created from one
or more source (local) schemas (and designed as a view
over the sources) [8].1 The target is created to reflect
the semantics of the source and has no independent
semantics of its own. Even our own earlier work on
schema mapping considered the problem of mapping
a source schema (with a rich logical structure) into a
flat (single table) target schema with no constraints,
thus ignoring half of the more general problem [12]. In
contrast, Section 2 gives a semantic translation algo-
rithm that preserves semantic relationships during the
translation from source to target, where the source and

1Alternatively, in a local-as-view approach each source
schema is modeled as a view on the target schema [8].

the target schemas may contain very rich, yet highly
heterogeneous constraints.
Heterogeneous Data Content We do not assume
that the source and target schema represent the same
data. Certainly there may be source data that are
not represented in the target (and should be omitted
from the translation). More interesting, however, is
the case where there is a need for data in the target
that are not represented in the source. In some cases,
values must be produced for undetermined elements
(attributes) in the target schema (i.e., target elements
for which there is no corresponding source element).
Values may be needed if the target element cannot be
null (e.g., elements in a key) and no default is given.
More importantly, the creation of new values for such
target elements is essential for ensuring the consistency
of the target data (e.g., we may need to create values
for foreign keys in the target, to ensure that source
data is correctly mapped). This problem has been pre-
viously addressed by specialized translation languages
that include Skolem functions for value creation (most
notably ILOG [7]). However, previous research has not
considered the problem of automatically determining
a correct set of Skolem functions that respects the tar-
get constraints and preserves information in a trans-
lation. Our data translation algorithm, in Section 3,
provides a new solution for automatically generating
missing target values, based on Skolem functions, and
guarantees that the translated data satisfies the nested
structure and constraints of the target.

In developing our solutions, we paid special at-
tention to developing algorithms and techniques that
could fuel our schema mapping tool Clio. Hence,
the overall design was motivated by practical con-
siderations. Clio [15] has been evaluated on several
real world schemas with promising results. Section 4
further details our experience with mapping these
schemas.

1.1 Our Solutions

We highlight the main design choices and illustrate our
solutions with examples.
Example 1.1 Consider the two schemas in Figure 1.
Both schemas are shown in a common nested rela-
tional representation (defined in Section 2.1) which
is used in our tool and throughout this paper.
The left-hand schema represents a source relational
schema with three tables: company(cid, cname, city),
grant(grantee, pi, amount, sponsor, proj), and
project(name, year). It describes information about
companies, their projects and the grants given for those
projects. Each grant is given to a company for a spe-
cific project. Therefore, each grant tuple has foreign
keys (grantee and proj) referencing the associated
company and project tuples. Foreign keys are shown
as dashed lines. In addition, a grant has a principal
investigator (pi), an amount (amount), and a spon-

expenseDB: Rcd
companies: Set of Rcd

company: Rcd
cid
cname
city

grants: Set of Rcd
grant: Rcd

grantee
pi
amount
sponsor
proj

projects: Set of Rcd
project: Rcd

name
year

statDB: Set of Rcd
cityStat: Rcd

city
orgs: Set of Rcd

org: Rcd
cid
name
fundings: Set of Rcd

fund: Rcd
pi
aid

financials: Set of Rcd
financial: Rcd

aid
amount
proj
year

v1

v2

v3

r1

r2

r3

Figure 1: Example source (left) & target (right).

sor (sponsor). The right-hand schema represents a
target XML schema. While the information that the
target contains is similar to that of the source, the
data is structured in a different way. Organizations
and projects are grouped by city. For each different
city, there is an element cityStat containing the or-
ganizations (org) and the grants (financials) in that
city. Project funding data are then nested within org
and related with the financial information through a
foreign key based on the aid element.

Inter-Schema Correspondences To perform trans-
lation, we must understand how two schemas corre-
spond to each other. There are numerous proposals for
representing inter-schema correspondences, including
proposals for using general logic expressions to state
how components of one schema correspond to compo-
nents of another. We use perhaps the simplest form of
correspondence: element (attribute) correspondences.
Intuitively, an element correspondence is a pair of a
source element and a target element (we give a formal
definition in Section 2). Figure 1 shows three example
correspondences: v1, v2 and v3.

While semantically impoverished, we use simple el-
ement correspondences for several reasons. First, el-
ement correspondences are independent of logical de-
sign choices such as the grouping of elements into ta-
bles (normalization choices) or the nesting of records
or tables (for example, the hierarchical structure of an
XML schema). Thus, one need not specify the log-
ical access paths (join or navigation) that define the
associations between elements involved. Even users
unfamiliar with the complex structure of the schema
can provide such correspondences. In addition, auto-
mated techniques for schema matching have proven to
be very successful in extracting such correspondences
(see the recent work of [6] as well as [18] for a sur-
vey of techniques including CUPID, LSD and DIKE).
In Clio, we use a modular design that lets us plug in
any schema matching component. The current version
uses an automated attribute matcher to suggest cor-
respondences [14] and provides a GUI to permit users
to augment or correct those correspondences [19].
Understanding Schema Semantics While easy to
create and manipulate, element correspondences are
inherently ambiguous. There may be many transla-

tions that are consistent with a set of correspondences,
and not all have the same effect In our approach we
then find, among the many possible translations, those
that are consistent with the constraints of the schemas.

Example 1.2 Consider correspondences v1 and v2.
To translate data, we must understand how to asso-
ciate a company name with a principal investigator of
a grant. It is unlikely that all combinations of cname
and pi values are semantically meaningful. Rather,
we make use of the semantic information from the
source schema to determine which combinations of val-
ues are meaningful. The foreign key constraint between
grant.grantee and company.cid indicates that each
grant (and its pi) is naturally associated with one
company (through a foreign key). To populate the tar-
get, that is to place values of cname and pi correctly in
the target, we use the semantic information expressed
in the target schema. In this example, the semantics is
conveyed not through constraints, but through the nest-
ing structure of the target. Specifically, fund tuples are
nested within org tuples. Hence, for each org (that is,
for each company name), we must group together all
pi values into the nested fundings set.

There are many semantic associations in a schema,
and even the same set of elements could be associated
in more than one way. In our example, there may
be many ways of associating cname and pi. Suppose
that a sponsor is always a company, so sponsor is
a foreign key for company. We could then associate
cname of companies either with pi of grants they have
been given (a join on grantee), or with pi of grants
they sponsor (a join on sponsor). The choice depends
on semantics that are not represented in the source
schema and must instead be given by a user.

Reasoning about data semantics can be a time con-
suming process for large schemas. Clio supports incre-
mental creation and modification of mappings. Thus,
it is important that such modifications can be made ef-
ficiently. To support this, we compile the semantics of
the schemas into a convenient data structure that rep-
resents the semantic relationships embedded in each
schema. Using this compiled form, our semantic trans-
lation algorithm efficiently interprets correspondences.
Semantic Translation Our semantic translation pro-
vides an interpretation of correspondences that is
faithful to the semantics of the schemas. In addition,
we enumerate all such faithful interpretations, which
we call logical mappings. Enumeration of all such
mappings is an essential ingredient of our approach.
Any one, any subset or all of the mappings could cor-
respond to the user’s intentions for a given pair of
schemas and their correspondences. The entire process
of semantic translation is therefore a semi-automatic
process. The system generates all logical mappings
consistent with the schema specifications, and the user
chooses a subset of them. Our experience with real
schemas has shown that the number of such mappings

is typically not large (see Section 4) and that there
are real situations in which the intended semantics in-
cludes all these mappings. Thus, a heuristic approach
that prunes some consistent mappings will not work in
general. To reduce the burden on the user, we order
mappings so that users can focus on the most likely
mappings, and we provide a data viewer (described
elsewhere [19]) that uses carefully choosen data exam-
ples to help explain each mapping.
Data Translation The second translation phase is
data translation, in which we generate an implementa-
tion of the logical mappings. The result of this phase
is a set of internal rules, one for each logical map-
ping. These rules have a direct translation as external
queries, and we provide query wrappers for XQuery
and XSLT (in the XML case) and SQL (in the rela-
tional case). To correctly translate data, values may
need to be produced for undetermined target elements
and the data may need to be nested according to the
target structure.

Example 1.3 In Figure 1, pi and amount of grant
are mapped, via v2 and v3, to pi of fund and amount
of financial. The foreign key from aid of fund to
aid of financial indicates that pi values are associ-
ated with amount. Thus, the semantic translation al-
gorithm generates a logical mapping that includes both
v2 and v3 (v1 as well, but let us focus on v2 and v3).
However, to populate the target, we must have values
for the two aid elements. To maintain the proper as-
sociation in the target, these values may neither be ar-
bitrary nor null. However, as is often the case with
elements that carry structural information but no real
data, there is no correspondence that maps into aid
from the source. Our solution is to invent id values in
a way that maintains source data associations.

In Section 2, we present our semantic translation
algorithm, along with a completeness guarantee that
all semantic relationships that exist between elements
in a schema are discovered by the algorithm. Section 3
contains the data translation algorithm that converts
logical mappings into queries using rich restructuring
constructs (resembling ILOG [7], WOL [4] and XML-
QL [5]). Section 4 describes our experience mapping
real schemas using our prototype.

2 Semantic Translation

To perform schema mapping, we seek to interpret the
correspondences in a way that is consistent with the se-
mantics of both the source and target schemas. We call
this interpretation process semantic translation. Since
we use semantics that is encoded in logical structures,
we call the resulting interpretation a logical mapping.

2.1 Data Model

To present our results, we use a simple nested re-
lational data model. In our tool, relational and

semi-structured schemas (including DTDs and XML
Schemas) are represented internally in this model.

The model includes a set of atomic types τ , set
types of the form SetOf[τ], and record types of the
form Rcd[A1 : τ1, . . . , Ak : τk], where each τi represents
either an atomic, set, or record type. The symbols
A1, . . . , Ak are called labels or elements. If τi is an
atomic type, then Ai is an atomic element. Records
of type Rcd[A1 : τ1, . . . , Ak : τk] are unordered tuples
of label-value pairs: 〈A1 = a1, . . . , Ak = ak〉, where
a1, . . . , ak are of types τ1, . . . , τk, respectively. Within
a record, elements are non-repeatable. Elements that
may be repeated are modeled by set types. A value
of type SetOf[τ] is represented by a set ID and an
associated set {e1, . . . , en} of “children”, with each ei

of type τ . This representation of sets (using set IDs) is
used to faithfully capture the graph-based data mod-
els of XML. For ease of exposition, we assume in this
paper that a schema consists of a single named (root)
type (as in XML Schema2). A relational schema with
multiple tables is modeled by a record type the com-
ponents of which are set types (one for each table). In
queries and constraints, we refer to an element of a set
by using clauses such as c in expenseDB.companies.
To refer to the value (contents) of such elements, we
use record projection notation (e.g. c.company).

Our model also supports optional and nullable el-
ements, along with key constraints. Referential con-
straints (foreign keys) can be expressed as explained
in the next subsection.

2.2 Primary Paths and Constraints

Consider the correspondences v1 and v2 of Figure 1.
To understand these arrows, we must first understand
if company names are semantically related to the PIs
of grants in the source schema and also if the target
elements org.name and fund.pi are associated. If not,
then we can treat these correspondences separately.
That is, we can map company data independently of
grant data. However, if any of these elements are
associated, we must interpret the correspondences in a
way that is consistent with this association. Hence, our
first step is to learn how elements may be semantically
related within each schema.

In relational schemas, semantic associations be-
tween atomic elements are represented in two ways.
First, the organization of attributes into tables (the
schema structure) indicates semantic groupings. The
fact that cname and city are attributes of the same ta-
ble indicates that for each tuple these attribute values
are semantically related. In addition, attributes within
different tables may be associated using foreign key
dependencies. For example, information about com-
panies, the grants they hold and the projects for which
they receive grants may, in a logical design, be broken
up into separate tables using foreign key dependencies.

2http://www.w3.org/TR/xmlschema-0

S1 : select * from c in expenseDB.companies
(a) S2 : select * from g in expenseDB.grants

S3 : select * from p in expenseDB.projects

T1 : select * from s in statDB
T2 : select * from s in statDB, o in s.cityStat.orgs

(b) T3 : select * from s in statDB, o in s.cityStat.orgs,
f in o.org.fundings

T4 : select * from s in statDB, f ′ in s.cityStat.financials

Figure 2: Primary paths of (a) expenseDB (b) statDB.

Similarly, in semi-structured data models, both the
schema structure and constraints can represent seman-
tic associations. The nesting structure of the schema
represents semantic groupings of elements. This struc-
ture may then be augmented with (nested) referential
constraints (often in the form of simple pointers or
key references as in XML Schema) to provide a richer
semantics for connecting related elements.

In this section, we consider how to compute sets
of semantically related atomic elements either within
the source schema or within the target schema. We
first represent the elements related through the schema
structure without constraints. We refer to these sets as
primary paths and show next how they are computed.
Example 2.1 Figure 2 shows the primary paths for
the schemas of Figure 1, represented as queries that
return a set of semantically related atomic elements.
We use the notation “ select *” as a shorthand for all
atomic elements immediately reachable from a vari-
able of the query (this excludes atomic elements con-
tained in nested set elements). For example, in T1,
“ select *” is equivalent to “ select s.cityStat.city”
since all other atomic elements underneath cityStat
are reachable only through a nested set type (either
orgs or financials).

For a relational schema, there is a primary path
for each individual relation. For a nested schema, the
primary paths are obtained by constructing a tree with
a node at each set type in the schema, and with an
edge between two nodes whenever the first node is a
set type that contains the second. A primary path is
then the set of all elements found on a path from the
root to any intermediate node or leaf in this tree.

For our nested schema example, statDB, the first
primary path T1 denotes the set of cityStat records
(within statDB) that may or may not have orgs or
financials. T2 denotes cityStat records that do
have organizations (although these organizations may
or may not have funds). Thus, primary paths for a
schema denote all vertical data relationships that can
exist in any instance conforming to that schema.

To consider data relationships that span horizon-
tally (that is, relationships between two records where
one is not nested within the other), we need to consider
the various ways in which primary paths can be asso-
ciated. We consider all associations that are faithful
to the semantics conveyed by the (nested) referential
integrity constraints in the schemas. Referential con-
straints assert the equality of an element (or set of

elements) in two primary paths. They can be used
to combine primary paths into larger sets of logically
related elements.
Example 2.2 For the schemas of Figure 1, the two
source foreign keys can be represented as follows.
r1: for g in expenseDB.grants

exists c in expenseDB.companies
where c.company.cid= g.grant.grantee

r2: for g in expenseDB.grants
exists p in expenseDB.projects
where p.project.name= g.grant.proj

Each constraint is of the form ∀P1∃P2B where P1

and P2 are bodies of primary paths and B is an equal-
ity condition relating the two paths. Path P1 in r1 is
the primary path S2 of Figure 2, and P2 is S1. In
constraints, we write the primary paths in a simplified
form ignoring the atomic elements they return in the
select clause. For the target schema, we use a similar
notation to represent nested referential integrity con-
straints:
r3 : for s in statDB, o in s.cityStat.orgs, f in o.org.fundings

exists f ′ in s.cityStat.financials
where f ′.financial.aid= f.fund.aid

For the nested constraint in our example, we used
a primary path, then a second path that is relative
to the first (through the variable s in the example).
The second path does not start at the root, but rather
from the cityStat record of the first path. This allows
us to express the fact that each fund within an orga-
nization and within a cityStat refers (through aid)
to some financial tuple within the set financials
of the same cityStat record. The ability to express
such nested dependencies is central to being able to
generate nested logical relationships.
Definition 2.3 Given two primary paths P1 and
P2, where P2 may be specified relative to a vari-
able in P1, along with an equality condition B re-
lating the two paths, a nested referential in-
tegrity constraint (NRI) is then an expression of
the form for P1 exists P2 where B.

Nested referential integrity constraints include a
large class of referential constraints. Relational for-
eign keys fall into this class along with XML Schema’s
Key Reference constraints. Note that our solutions do
not require that there be any declared constraints. We
simply use these constraints to our advantage if they
are declared or if they are suggested by a constraint-
discovery tool.

Constraints can be used to combine primary paths.
Example 2.4 Constraint r3 of Example 2.2 repre-
sents a horizontal relationship between the primary
paths T3 and T4 of Figure 2. Using r3, we can com-
bine these paths to form the logical relation B3 of Fig-
ure 3. Note that the logical relation contains only one
copy of equated elements (aid in this case). Intu-
itively, B3 represents fund information with its org
and city (associated through the nesting structure)
and its financial data (associated through the key
reference on aid).

2.3 Logical Relations

We now consider how to generate maximal sets of log-
ically related elements. The chase is a classical rela-
tional method [10] that can be used to assemble logi-
cally connected elements. Intuitively, the chase works
by enumerating logical joins, based on a set of de-
pendencies, in a relational schema. We use an exten-
sion [16] of the relational chase to enumerate logical
joins in nested schemas.

Definition 2.5 A logical relation is the result of chas-
ing a primary path of a schema using its NRIs.

We assume the reader is familiar with the basics of
the chase. Here, we illustrate with an example.

Example 2.6 The result of chasing the source pri-
mary path S2 of Figure 2 using the constraint r1 of
Example 2.2 can be represented by the following query.
S′

2 : select *
from g in expenseDB.grants, c in expenseDB.companies
where c.company.cid= g.grant.grantee

Note that S2 is not equivalent to S′
2 since the latter

returns a larger set of atomic elements. (However, S′
2

projected on the elements of S2 is equivalent to S2.)
Applying the chase again to S′

2 using r2 we obtain the
following query.
S′′

2 : select *
from g in expenseDB.grants, c in expenseDB.companies,

p in expenseDB.projects
where c.company.cid= g.grant.grantee and

g.grant.proj= p.project.name

Since no further chase steps can be applied (i.e.,
S′′

2 cannot be expanded further) S′′
2 is a logical re-

lation. Chasing S2 with the NRIs of the schema
brings together all the components of the schema con-
taining tuples that are logically related with tuples in
expenseDB.grants (i.e., company and project tu-
ples). Moreover, the chase computes the join condi-
tions that exist between such tuples.

The primary path S1 cannot be chased with either
of the two NRIs in the schema. Intuitively, this means
that S1 tuples can exist without any other tuples; hence
they make up a logical relation by themselves. Figure 3
lists the logical relations for our schemas (note that
S′′

2 is A2 in the figure). In our nested target, paths
T1, T2 and T4 cannot be chased, so they form logical
relations by themselves (B1, B2 and B4, respectively).
The primary path T3 can be chased using r3 to produce
the logical relation B3.

2.4 Mapping Algorithm

Logical relations are used to understand correspon-
dences. In our example, the existence of a log-
ical (source) relation containing both the elements
company.cname and grant.pi tells us that the corre-
spondences v1 and v2 should be interpreted together.
In this section, we formalize this intuition and give an
algorithm for interpreting correspondences.

A1: select c.company.cid, c.company.cname, c.company.city
from c in expenseDB.companies

A2: select c.company.cid, c.company.cname, c.company.city,
g.grant.pi, g.grant.amount, g.grant.sponsor,
g.grant.proj, p.project.year

from g in expenseDB.grants, c in expenseDB.companies,
p in expenseDB.projects

where c.company.cid= g.grant.grantee and
p.project.name= g.grant.proj

A3: select p.project.name, p.project.year
from p in expenseDB.projects

B1: select s.cityStat.city from s in statDB
B2: select s.cityStat.city, o.org.cid, o.org.name

from s in statDB, o in s.cityStat.orgs
B3: select s.cityStat.city, o.org.cid, o.org.name,

f.fund.pi, f.fund.aid, f ′.financial.amount,
f ′.financial.proj, f ′.financial.year

from s in statDB, o in s.cityStat.orgs,
f in o.org.fundings, f ′ in s.cityStat.financials

where f ′.financial.aid= f.fund.aid
B4: select s.cityStat.city, f ′.financial.aid, f ′.financial.amount,

f ′.financial.proj, f ′.financial.year
from s in statDB, f ′ in s.cityStat.financials

Figure 3: All logical relations for expenseDB, statDB.

Example 2.7 The correspondences v1 and v2 (Fig-
ure 1) can be interpreted as simple (inter-schema) ref-
erential constraints.
v1 for c in expenseDB.companies

exists s in statDB, o in s.cityStat.orgs
where c.company.cname= o.org.name

v2 for g in expenseDB.grants
exists s in statDB, o in s.cityStat.orgs, f in o.org.fundings
where g.grant.pi= f.fund.pi

The correspondence v1 uses the primary paths S1

from the source and T2 from the target. (The pri-
mary paths are used simply as a way of unambiguously
referring to atomic elements in the nested schemas.)
Similarly, v2 uses S2 and T3. This interpretation ig-
nores the semantics of the source and target schemas.
It indicates that fundings are created from grants
but does not say that fundings must be nested within
an org generated from the appropriate company (that
is, the company receiving the grant). To create an
interpretation that is faithful to the semantics of the
schemas, we can use logical relations rather than pri-
mary paths to state the (inter-schema) constraint. The
source elements cname and pi both appear in the
logical relation A2 (Figure 3) which represents how
companies and grants are logically associated. The
target elements name and pi both appear in the logical
relation B3 (which represents how orgs and fundings
are logically associated). Hence, we can combine v1

and v2 using these two logical relations into an inter-
pretation v12.
v12 for g in expenseDB.grants, c in expenseDB.companies,

p in expenseDB.projects
where c.company.cid= g.grant.grantee

and p.project.name= g.grant.proj
let w1 = c.company.cname, w2 = g.grant.pi
exists s in statDB, o in s.cityStat.orgs,

f in o.org.fundings, f ′ in s.cityStat.financials
where f ′.financial.aid= f.fund.aid

and o.org.name= w1 and f.fund.pi= w2

The for clause comes from the source logical rela-
tion A2. It indicates which source data should be used
to populate the target. We have added a let clause
to make it clear which source data will be translated.
The exists clause comes from the target relation B3

and indicates how the source data should appear in the
target. The where clause includes the target join con-
dition (from B3) along with conditions indicating the
placement of the source data w1 and w2.

So far, the example ignored v3. If we consider v3

then amount of financial also appears in the target
logical relation B3. We would then replace v12 with a
more meaningful v123 that covers v1, v2 and v3. The
interpretation v123 is similar to v12 above except that
it binds one more variable in the let clause and it
has one more equality in the target exists clause (cor-
responding to v3).

We describe next the algorithm for creating inter-
pretations like v12. The algorithm begins with a set
of correspondences expressed using the primary paths
of the schema (such as v1 and v2 in Example 2.7). A
correspondence is a simple case of an (inter-schema)
referential constraint that specifies the placement of
source values in the target.
Definition 2.8 Given a primary path P1 from the
source and P2 from the target, along with an equal-
ity condition B equating a single atomic element of P1

with a single atomic element of P2, a correspondence
is an expression of the form for P1 exists P2 where B.

To determine sets of correspondences that can be
interpreted together, we find sets of correspondences
that all use source elements in one logical relation and
target elements in one target logical relation. As seen
in the previous section, logical relations are not nec-
essarily disjoint. For example, A1 and A2 of Figure 3
both include company information; however, A2 also
includes grant and project information. Thus, a
correspondence can be relevant to several logical rela-
tions (in both source and target). Rather than looking
at each individual correspondence, the mapping algo-
rithm (Algorithm 2.11) looks at each pair of a source
logical relation and a target logical relation. For each
such pair, it then computes an interpretation of the
correspondences that expresses how the source logical
relation is mapped into the target logical relation. Like
correspondences, these interpretations are modeled as
source-to-target (s-t) referential constraints or depen-
dencies. However, instead of primary paths, these in-
terpretations use logical relations. The constraint v12

of Example 2.7 is an example of an s-t dependency.
The computation of the dependency is driven by all
the correspondences that are covered by a pair of log-
ical relations.

Coverage of a correspondence v by a logical rela-
tion is slightly more complicated than is suggested by
Example 2.7. It is not enough to check whether the
logical relation includes the element name involved in

v. This is ambiguous, in general. We do not assume
that element names are different across the schema.
Moreover, the same element of a schema may be in-
cluded more than once in a logical relation (see the
next example). To precisely identify which element
in the logical relation corresponds to the element in-
volved in the correspondence, we need to match the
path defining v with the variables defining the log-
ical relation. Specifically, we must find a renaming
function from the variables of a correspondence into
the variables of a logical relation. Since we are using
nested schemas, we also have the additional problem
of matching paths, rather than flat element references.
In general, there may be multiple ways to cover a cor-
respondence with respect to a pair of source and target
logical relations. Our algorithm takes into account all
such choices.

Example 2.9 Assume that the source schema of Fig-
ure 1 has an additional restriction that the sponsor is
always a company. This means that sponsor is also
a foreign key referencing company. We can describe it
by the following NRI:
r4 for g in expenseDB.grants

exists c in expenseDB.companies
where c.company.cid= g.grant.sponsor

The logical relation A2 in Figure 3 is the result of
chasing the primary path S2 of Figure 2 with the con-
straints r1 and r2. Given the additional constraint r4,
we can extend A2 to the logical relation:
A′

2 select c.company.cid, c.company.cname, c.company.city,
g.grant.pi, g.grant.amount, g.grant.proj,
c′.company.cid, c′.company.cname, c′.company.city,
p.project.year

from g in expenseDB.grants, c in expenseDB.companies,
c′ in expenseDB.companies, p in expenseDB.projects

where c.company.cid= g.grant.grantee and
c′.company.cid= g.grant.sponsor and
p.project.name= g.grant.proj

It is not hard to see that v1 and v2 are both covered
by 〈A′

2, B2〉. However, v1 can be covered in multiple
ways. More specifically, there are two possible renam-
ing functions. One maps the variable c of v1 to the
variable c of A′

2 and the other maps c to c′ of A′
2.

Thus the element cname in v1 can be renamed in two
ways with the cname element of the source schema.
This reflects the fact that companies and grants can be
joined in two ways, one through the grantee foreign
key and the other through the sponsor. The two dif-
ferent renaming functions are two different interpreta-
tions of the correspondences. The first one generates a
query that maps the companies that have some grants
for some projects while the second maps the companies
that are funding other companies. Both interpretations
are meaningful.

Definition 2.10 A coverage of a pair 〈A, B〉 of log-
ical relations is a set V ′ of correspondences together
with renaming functions from the variables of corre-
spondences in V ′ into those of A and B.

Algorithm 2.11 - Semantic Translation

Input: source schema S with NRIs Σs,
target schema T with NRIs Σt,
set V of correspondences.

Phase 1. Compile schemas
Chase Σs on S to compute source logical relations

{A1, . . . , An}.
Chase Σt on T to compute target logical relations

{B1, . . . , Bm}.
Phase 2. Interpret correspondences

For each pair 〈Ai, Bj〉
For each coverage δ of 〈Ai, Bj〉 by V ′ ⊆ V

create s-t dependency: for Ai exists Bj where V ′
Output: the set Σst of all generated s-t dependencies

For each coverage, we generate a source-to-target
dependency of the form for A exists B where C with
C containing the equality conditions of the correspon-
dences in V ′ (with the variables renamed appropri-
ately). Note that since A and B are logical rela-
tions, they may each have their own where clause as
in our example v12 of Example 2.7 where we wrote
C inside the where clause of B. The result of the se-
mantic translation algorithm (Algorithm 2.11) is a sys-
tematic enumeration of all s-t dependencies. The full
paper [17] gives further details, including a component
that eliminates redundant s-t dependencies, thus dras-
tically reducing the number of interpretations.

2.5 Complexity and Completeness

Logical Compilation NRIs generalize the class of
relational inclusion dependencies [2]. They are also a
special case of the embedded path-conjunctive depen-
dencies (EPCDs) used in [16] to express constraints in
nested and object-oriented schemas. The chase that
we use to compute logical relations is a special case of
the chase with EPCDs. Even for this special case, the
chase may not terminate. One possible solution to this
problem is to restrict the class of legal constraints so
that the chase is guaranteed to terminate. Acyclic sets
of inclusion dependencies [3] are a particularly useful
class since they capture naturally many of the integrity
constraints of relational schemas, and most of the con-
straints met in real world semi-structured schemas.
For acyclic sets of NRIs (fully defined in [17]), our
compilation terminates in polynomial time in the size
of the schema and the given NRIs. Furthermore, it is
complete as we mention next.

We have given a procedural definition of logical re-
lations (that is, the result of chasing along any primary
path of the schema). The chase clearly finds “natural”
associations between elements. What is not so obvious
is whether all the natural associations are discovered
by our algorithm. In fact, we can dust off some old
relational theory to find a declarative definition of the
set of all logical associations or connections that exist
in a schema [11]. Using their definition, we can show
that our algorithm is complete in that it finds all such

connections (and only those connections).

Theorem 2.12 (Completeness) Let S be a schema
with an acyclic set of NRIs. Let X be any set of atomic
elements in S. Then there is a connection between X
[11] iff there exists a logical relation that contains X.

Algorithm 2.11 is able to abstract away the specific
schema details such as normalization and nesting. The
above theorem is a precise statement of this. We could
change the logical design (in the source and/or target),
but we would get the same logical mapping for a given
set of correspondences, as long as the elements have
the same meaning.

Cyclic schemas are schemas with cyclic sets of con-
straints (consider the standard example of the employ-
ees whose managers are also employees), or with re-
cursively defined strutures (e.g., a part of a machine
is composed of other parts). Mapping between such
schemas may result to infinitely many possible trans-
lations. Clio permits users to work with such schemas
but only in a restricted way that gives up complete-
ness. In particular it stops the chase on every branch
that closes a cycle. As a result, when mapping em-
ployee name and address, Clio will associate an em-
ployee name with the employee’s address (but not
with the manager’s address neither with the manager’s
manager’s address, etc.)
Interpretation of Correspondences To interpret
correspondences, we must compute coverages – that
is, the set of elements covered by a logical relation.
This process is similar to that of determining when
a view can be used to answer a query [9]. However,
it is important to note that the correspondences are
represented by simple paths. Hence, the process of
matching them to logical relations is very fast (linear
for each correspondence and relation).

We interpret correspondences as source-to-target
dependencies. An important consequence of our map-
ping algorithm is the fact that any implementation of
the generated s-t dependencies automatically satisfies
all the target constraints. Here implementation means:
given a source instance, find a target instance such that
the s-t dependencies are satisfied. There are many
such implementations, and Section 3 gives a canonical
implementation of s-t dependencies as queries. Here
we state the following result (for any implementation).

Theorem 2.13 Let Σt and Σst be as in Algo-
rithm 2.11. Moreover, we require that Σt is an acyclic
set of NRIs. Let Is and It be instances over the source
and, respectively, target schemas. Then It satisfies Σt

whenever Is and It together satisfy Σst.

This result allows us to focus on the implementa-
tion of s-t dependencies alone, i.e., we do not have to
worry about satisfaction of target constraints. They
have already been taken into account when produc-
ing the target logical relations (via the chase with Σt).

This theorem does not hold for Algorithm 2.11 if we
extend the class of legal target constraints from NRIs
to arbitrary nested dependencies (e.g. join dependen-
cies) [17]. Thus, it is essential that NRIs are based
on linear paths for the above theorem to hold. Still,
NRIs are a very useful fragment for representing in-
tegrity constraints in relational and nested schemas,
as they include the referential constraints expressible
in most standards (notably SQL and XML Schema).

3 Data Translation

The source-to-target dependencies generated by Algo-
rithm 2.11 are inclusion dependencies (in the relational
sense [2]) between source logical relations and target
logical relations. For example, v12 of Section 2.4 is
an inclusion dependency A2[cname, pi] ⊆ B3[name, pi]
meaning that the projection of logical relation A2

on cname and pi must be contained in the projec-
tion of B3 on name and pi. If we also take the
correspondence v3 into account, then v12 is replaced
by a similar dependency, A2[cname, pi, amount] ⊆
B3[name, pi, amount], that ”specifies” one more atomic
element of the target. Still, not all atomic elements of
the target logical relation may be specified by a de-
pendency. In order to materialize the target we will
have to fill in the values for the undetermined atomic
elements. Null values may not always be sufficient.
Moreover, we do not want to materialize a target log-
ical relation but rather the nested schema over which
the logical relation is only a flat view.

These issues are addressed by the second phase of
our translation process: data translation. Specifi-
cally, two main problems are considered: 1) creation
of new values in the target, whenever such values are
needed and whenever they are not specified by the de-
pendencies, and 2) grouping of nested elements, a form
of data merging that is also not specified by the de-
pendencies but is often desirable. We illustrate these
issues with some simple examples on which we also
highlight our design principles. These design princi-
ples are implemented by a component of our system
that compiles the s-t dependencies into a set of low-
level, but language-independent, rules. These rules in
turn are compiled into the transformation language at
hand (XSLT or XQuery for XML, SQL for relational).

3.1 Creation of New Values in the Target.

Consider the simple mapping scenario of Figure 4(a).
The source (Emps1) and the target (Emps) are sets
of employee (Emp) elements. An Emp element in the
source has atomic subelements A, B and C, while an
Emp element in the target has an extra atomic subele-
ment E. For the purpose of the discussion, we chose
to use the abstract names A, B, C and E because we will
associate several scenarios with these elements. In the
mapping, the two source elements A and B are mapped

Emps: Set of
Emp:

A
B
C
E

Emps1: Set of
Emp:

A
B
C

Emps: Set of
Emp:

A
B
E

Emps1: Set of
Emp:

A
B
C
D

Spouses: Set of
Spouse:

E
C(a) (b)

Figure 4: Creation of new values in the target.

into the target elements A and B, while C and E in the
target are left unmapped. The s-t dependency:

for x in Emps1
exists y in Emps
where y.Emp.A = x.Emp.A and y.Emp.B = x.Emp.B

does not specify any value for C and E either. However,
to populate the target we need to decide on what val-
ues (if any) to use for these elements. A frequent case
in practice is the one in which an unmapped element
does not play a crucial role for the integrity of the
target. For example, A and B could be employee name
and salary, while C and E could be address and, respec-
tively, date of birth. Creating a null value for either C
or E is then sufficient. Or, if the unmapped element is
optional in the target schema, then we can leave it out
entirely. For example, if C is optional while E is not
optional but nullable, we translate the s-t dependency
as the following rule (with the obvious semantics):

for x in Emps1
let a = x.Emp.A, b = x.Emp.B
return 〈 Emp = 〈 A = a, B = b, E = null 〉 〉 in Emps

Creation of needed values However, E could be a
key in the target relation, e.g. E could be employee id.
The intention of the mapping would be in this case to
copy employee data from the source and assign a new
id for each employee, in the target. Thus a non-null
value for E is needed for the integrity of the target.

A target element E is needed if E is (part of) a key
or foreign key or is both not nullable and not optional.

For our example, we create a different but unique
value for E, for each combination of the source values
for A and B. Technically speaking, values for E are cre-
ated by using a one-to-one (Skolem) function fE[A, B].
The rule that translates the s-t dependency in this
case is the same as the previous rule except that we
use fE[A, B] instead of null for E.

Similarly, if C is a needed element in the target, it
will be created by a different function fC[A, B]. This
function does not depend on the value of the source
element C. Thus even if in the source there may exist
two tuples with the same combination for A and B but
with two different values for C (e.g. C is spouse, and
an employee could be listed with two spouses), in the
target there will be only one tuple for the given combi-
nation of A and B (with one, unknown, spouse). Thus,
the semantics of the target is given solely by the values
of the source elements that are mapped. Of course, a
new correspondence from C to C will change the map-
ping: the employee with two spouses will appear twice
in the target and E will be fE[A, B, C].

A similar mechanism for creation of new values in
one target relation is adopted by the semantics of
ILOG [7]. Next, we generalize this mechanism.
Generalization: multiple, correlated, sets of el-
ements in the target The second frequent case that
requires creation of non-null values is that of a foreign
key. In Figure 4(b) the target element C is stored in a
different location (the set Spouses) than that of ele-
ments A and B. However, the association between A, B
values and C values is meant to be preserved by a for-
eign key constraint (E plays the role of a pointer in this
case). Our semantic translation recognizes such situa-
tions by computing the logical relation L(A, B, E, C) that
joins Emps and Spouses, and generating an s-t depen-
dency Emps1[ABC] ⊆ L[ABC]. However, this does not
give a value for the needed element E. As in the case
of a single target set (but this time with a logical rela-
tion instead), we assign a function fE[A, B, C] to create
values for E. The generated rule is:

for x in Emps1
let a = x.Emp.A, b = x.Emp.B, c = x.Emp.C
return 〈 Emp = 〈 A = a, B = b, E = fE[a, b, c] 〉 〉 in Emps,

〈 Spouse = 〈 E = fE[a, b, c], C = c 〉 〉 in Spouses

Briefly, the meaning of the rule is the following: for
each (a, b, c) triple of values from the source create an
element Emp in Emps and create an element Spouse in
Spouses, with the given source values (a, b and c) in
the corresponding places and with the same invented
value fE[a, b, c] in the two places where the element E
occurs. If duplicate (a, b, c) triples occur in the source
(maybe with different D values) only one element is
generated in each of Emps and, respectively, Spouses.
Thus, we eliminate duplicates in the target.

In general, when the level of nesting is one (i.e. flat
case), the rule used to associate Skolem functions with
needed elements is as follows (for the fully nested case
we will make an adjustment in Section 3.3).

Skolemization for atomic elements: Given
an s-t dependency, each needed element in the target
is computed by using a (different) one-to-one function
that depends on all the mapped atomic elements of the
target logical relation.

The presence of functional dependencies in the tar-
get schema may change the functions used for value
creation. To illustrate, if C is a key in Spouses (i.e.,
the functional dependency C → E holds) then in the
above rule we replace fE[a, b, c] with fE[c].

3.2 Grouping of Nested Elements.

Consider Figure 5(a), in which the target schema is
nested on two levels: elements A and C are at the
top level, while a Bs element can have multiple B sub-
elements (Bs is of set type). Elements A, B, and C of the
source Emps1 are mapped, via correspondences, into
the respective elements of the target Emps. The map-
ping, and the corresponding s-t dependency, requires
all (A, B, C) values that can be found in the source to

Emps: Set of
Emp:

A
Bs: Set of

B
E

Emps1: Set of
Emp:

A
B
C

Spouses: Set of
Spouse:

E
C

(b)

Emps: Set of
Emp:

A
Bs: Set of

B
C

(a)

Emps1: Set of
Emp:

A
B
C

Figure 5: Grouping of elements in the target.

be moved to the target. However, in addition to this,
the intended semantics requires all the different b val-
ues to be grouped together, for fixed values of A and C.
For illustration, if A, B, and C are employee, child, and
spouse names, respectively, the mapping requires the
grouping of all children under the same set, if the em-
ployee and the spouse are the same. This behavior is
not specified by an s-t dependency (which is stated
at the level of flat logical relations). Thus, one of
the tasks of data translation is providing the desired
grouping in the target. Grouping is performed at
every nesting level, as dictated by the target schema.
The property that the resulting target instance will
satisfy is a well-known one: Partitioned Normal Form
(PNF) [1].

PNF: In any target nested relation, there can not
exist two distinct tuples that coincide on all the atomic
elements (whether from source or created).

To achieve this behavior, we use Skolemization as
well. If a target element has set type, then its identifier
(recall that each set is identified in the data model by
a set id) is created via a Skolem function. This func-
tion does not depend on any of the atomic elements
that are mapped under the respective set type, in the
schema hierarchy. Instead it depends on all the atomic
elements at the same level or above (up to the root of
the schema). The same Skolem function (for a given
set type of the target schema) is used across all s-t de-
pendencies. Intuitively, we perform a deep union of all
data in the target independently of their source. For
the example of Figure 5(a), we create the rule:

for x in Emps1
let a = x.Emp.A, b = x.Emp.B, c = x.Emp.C
return 〈 Emp = 〈 A = a, Bs = fBs[a, c], C = c 〉 〉 in Emps,

〈 B = b 〉 in fBs[a, c]

The meaning of the above rule is the following: for
each (a, b, c) triple of values from the source, create
first (if not already there) a sub-element Emp in Emps,
with the appropriate A and C sub-elements, and with a
Bs sub-element the value of which is the set id fBs[a, c].
Thus, the Skolem function fBs is used here to create
a set node. Also, we create (if not already there) a
sub-element B, with value b, under fBs[a, c]. Later
on, if a triple with the same A and C values (i.e. a, c)
but different B value (b′) is retrieved from the source,
then we skip the first creation step (the required Emp
sub-element already exists). However, the second part
of the return clause applies, and we append a new

B sub-element with value b′ under the previously con-
structed set node fBs[a, c]. This mechanism achieves
the desired grouping of B elements for fixed A and C val-
ues. A similar grouping mechanism can be expressed
in XML-QL [5], using Skolem functions. It can also be
implemented for languages that do not support Skolem
functions like XQuery or XSLT as described in [17].

3.3 Value Creation Interacts with Grouping

To create a nested target instance in PNF, we need
to refine the process of creation of new values, which
was described in Section 3.2 subsection only for the
non-nested case. We again explain our technique with
an example. Consider Figure 5(b), where the elements
A and C are stored in separate target sets. The asso-
ciation between A (e.g., employee name) and C (e.g.,
spouse name) is preserved via the foreign key E (spouse
id). Thus, E is a needed element and must be created.
However, in this case, it is rather intuitive that the
value of E should not depend on the value of B but
only on the A and C value. This, combined with the
PNF requirement, means that all the B (child) values
are grouped together if the employee and spouse names
are the same. We achieve therefore the same effect that
the mapping of Figure 5(a) achieves. In contrast, if E
is created differently based on the different B values,
then each child will end up in its own singleton set. In
our implementation of the logical mapping, we choose
the first alternative, because we believe that this is
the more natural interpretation. Thus, we adjust the
Skolemization scheme of Section 3.1 as follows.

The function used for creation of an atomic element
E does not depend on any of the atomic elements that
occur at a lower level than E, in the target schema.

For the example of Figure 5(b) we create the rule:
for x in Emps1
let a = x.Emp.A, b = x.Emp.B, c = x.Emp.C
return

〈 Emp = 〈 A = a, Bs = fBs[a, c, fE[a, c]], E = fE[a, c] 〉 〉 in Emps,
〈 B = b 〉 in fBs[a, c, fE[a, c]],
〈 Spouse = 〈E = fE[a, c], C = c 〉 〉 in Spouses

As an extreme but instructive case, suppose that
in Figure 5(b) we remove the correspondences into A
and C, but keep the one into B. If A and C are needed,
then they will be created by Skolem functions with no
arguments. This is the same as saying that they will be
assigned some constant values. Consequently, the two
target sets Emps and Spouses will each contain a single
element: some unknown employee, and some unknown
spouse, respectively. In contrast, the nested set Bs
will contain all the B values (all the children listed in
Emps1). Thus, the top-level part of the schema plays
only a structural role: it is minimally created in order
to satisfy the schema requirements but the respective
values are irrelevant. But this is fine, since there is
nothing mapped into it. Later on, as correspondences
may be added to A and C, the children will be separated
into different sets, depending on the mapped values.

The Skolemization algorithm sketched in this sec-
tion is a polynomial-time, graph-walking algorithm. It
is described in full detail in [17], which also describes
the translation from rules to XQuery and XSLT.

4 Experience

We have implemented our solutions in our prototype
system Clio. Our experience has shown that the in-
tended semantics of the correspondences are captured
by the system, and the user effort in creating (and
debugging) the translation queries is significantly less
than with other approaches (including manually writ-
ing the query or using other query building tools).
Although there is no standard benchmark or evalu-
ation methodology for the subjective task of integra-
tion, we attempt to provide some evidence for the per-
formance and effectiveness of our tool by discussing
our usage of Clio on several schemas of different sizes
and complexity. Our test schemas are listed in Ta-
ble 1 with pairs of source and target schemas listed
consecutively. They include: two XML Schemas for
the DBLP bibliography (the first obtained from the
DBLP Web Site); the relational TPC-H schema and a
nested XML view of this benchmark; two relational
schemas from the Amalgam integration suite for biblio-
graphic data; the relational and DTD version of the
Mondial database; and two schemas representing a
variety of gene expression (microarray) experimental
results. We have made all these schemas available on
our web page (www.cs.toronto.edu/db/clio), which
also contains links to their original sources.

We included the DBLP schemas as examples of
schemas with few constraints. These schemas still dif-
fer semantically, only the semantics is encoded primar-
ily in the (different) nesting structure of the schemas,
rather than through constraints. The Amalgam rela-
tional schemas, on the other hand, are examples of
schemas without any nesting structure where all the
semantics are captured by a rich set of referential con-
straints. We have also included real XML schemas
with relatively few constraints (GeneX) and with many
constraints (Mondial). Table 1 shows some character-
istics of all these schemas in our internal nested rela-
tional representation. The nesting depth indicates the
nesting of repeated elements (set types). There is of-
ten more nesting through record types, but this does
not affect the efficiency of our algorithms.

The load and compile time indicate, respectively,
the time to read the schemas and the time to compile
the schemas into our internal logical representation.
The compile time includes the time to understand the
nested structure (by computing primary paths) and
to combine structures linked by constraints (using the
chase to compute logical relations). While the load
time, as expected, closely reflects the schema size (in-
cluding both the schema structure and constraints),
the compile time is mostly affected by the number of
NRIs. On schemas with few or no NRIs, the compile

Nest. Total Leaf Load Compile
Schemas Depth Nodes Nodes NRIs Time Time

DBLP1 (XML) 2 88 52 0 0.52 0.19
DBLP2 (XML) 4 27 12 1 0.15 0.15
TPC-H (RDB) 1 51 34 9 0.21 0.44
TPC-H (XML) 3 19 10 1 0.03 0.02
GeneX (RDB) 1 84 65 9 0.11 0.72
GeneX (XML) 3 88 63 3 0.13 0.50
Mondial (RDB) 1 159 102 15 0.58 5.41
Mondial (XML) 4 144 90 21 0.57 3.68
Amalgam2(RDB) 1 108 53 26 0.59 6.37
Amalgam1(RDB) 1 132 101 14 0.47 1.85

Table 1: Test Schemas Characteristics (time is in sec)

Schema With NRIs No NRIs Subsumed

DBLP 13 11 2
TPC-H 14 7 3
GeneX 4 4 1
Mondial 5 4 2
Amalgam 10 9 8

Table 2: Source-to-target dependencies generated with
and without NRIs in the schemas

time is almost negligible while schemas with a large
number of NRIs take more time to compile. Although
compile time can be as large as several seconds (in our
unoptimized prototype) for schemas with many con-
straints, we found this to be an acceptable delay for
Clio users. Recall that compilation occurs only once
when a schema is loaded.

To evaluate the results of our semantic translation,
we sought to understand whether our algorithms were
producing the right results and whether they were
doing so in an effective way. Table 2 shows the to-
tal number of source-to-target dependencies that Clio
generates for our test schemas (column labeled “With
NRIs”). For comparison, we have also included the
number of s-t dependencies that would be produced
if we ignored all (intra-schema) NRIs (column labeled
“No NRIs”). These dependencies preserve the seman-
tics of nesting but ignore any referential semantics em-
bedded in schema constraints. Although schema con-
straints may increase the number of possible s-t depen-
dencies, we find that in practice the number of s-t de-
pendencies remains manageable, and users do not get
overwhelmed with too many choices. Furthermore, the
last column (labeled “Subsumed”) shows how many of
the dependencies generated without NRIs were sub-
sumed by better, association-preserving dependencies
when NRIs were used. For instance, in the case of the
expenseDB/statDB mapping, the number of depen-
dencies created with and without dependencies is the
same: five. Three of the dependencies created with-
out NRIs appeared again, unchanged, when NRIs were
used. The other two dependencies were subsumed by
dependencies that embraced the available NRIs. We,
thus, end up with a better quality mapping that main-
tains the implied relationships in the schemas.

For all the schemas, the user was able to select a

subset of the generated s-t dependencies to form the
correct (desired) translation. In some cases (e.g., DBLP,
Amalgam, expenseDB), the intended transformation re-
quired all the created dependencies, in other cases it
required only a strict subset. Clio’s DataViewer [19]
has proven to be very effective in helping users under-
stand and select the desired s-t dependencies.

5 Discussion and Future Work

We have presented new algorithms for schema map-
ping and data translation between nested schemas
with nested referential constraints. Our solutions are
distinguished in that we take advantage of schema se-
mantics to generate all consistent translations. We
guarantee that the target instance we produce satisfies
the target structure and constraints, even when such
an instance must contain data that are not derived
from the source. The logical mappings we produce are
source-to-target dependencies relating a source query
(specifying how source data may be collected together)
and a target query (specifying how this data is restruc-
tured in the target). Such dependencies may be used in
a data integration scenario where the target is virtual
and queries on the target are answered using the source
instance [8]. They may also be used to materialize a
target instance. Our data translation algorithm gives
one such implementation of the dependencies which
creates a target instance in PNF.

Our queries make use of the rich restructuring ca-
pabilities and id-invention of the translation languages
that precede this work [7, 4]. Yet, we differ in that we
automatically generate translation queries in a way
that respects the semantics encoded in the schemas.
In this respect, our work is similar to that of Tran-
Scm [13], one of the first techniques to use schema
information to help automate data translation. Tran-
Scm uses predefined matching rules that describe com-
monly used transformations to derive a translation.
Hence, their technique is not as flexible and general as
ours. The relationship of our work to other integration
approaches and to work on logical data independence
[11] is explored in greater detail in the full version of
this paper [17].

Our motivation was to provide a tool that quickly
generates correct translations between rich Web data
sources. Hence, we have focused on building a robust
tool that captures the semantics embedded in nested
structures. We have currently extended our algorithms
to consider additional types from XML Schema, in-
cluding union types, and we are planning to include
order in our framework. To support order, we would
need to include list types and enhance the generated
mappings with ordering predicates.

Many thanks to Peter Buneman, Howard Ho,
Phokion G. Kolaitis, Felix Naumann, Val Tannen and
the anonymous reviewers for helpful suggestions.

References

[1] S. Abiteboul and N. Bidoit. Non-first Normal Form
Relations: An Algebra Allowing Data Restructuring.
JCSS, 33:361–393, Dec. 1986.

[2] M. A. Casanova, R. Fagin, and C. H. Papadimitriou.
Inclusion Dependencies and their Interaction with
Functional Dependencies. JCSS, 28(1):29–59, Feb.
1984.

[3] S. S. Cosmadakis and P. C. Kanellakis. Functional
and Inclusion Dependencies: A Graph Theoretic Ap-
proach. In Advances in Computing Research, vol-
ume 3, pages 163–184. JAI Press, 1986.

[4] S. Davidson and A. Kosky. WOL: A Language for
Database Transformations and Constraints. In ICDE,
pages 55–66, 1997.

[5] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and
D. Suciu. A Query Language for XML. In WWW8,
pages 77–91, 1999.

[6] H.-H. Do and E. Rahm. COMA - A System for Flexi-
ble Combination of Schema Matching Approaches. In
VLDB, 2002.

[7] R. Hull and M. Yoshikawa. ILOG: Declarative Cre-
ation and Manipulation of Object Identifiers. In
VLDB, pages 455–468, 1990.

[8] M. Lenzerini. Data Integration: A Theoretical Per-
spective. In PODS, pages 233–246, 2002.

[9] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Sri-
vastava. Answering Queries Using Views. In PODS,
pages 95–104, 1995.

[10] D. Maier, A. O. Mendelzon, and Y. Sagiv. Test-
ing implications of data dependencies. ACM TODS,
4(4):455–469, 1979.

[11] D. Maier, J. D. Ullman, and M. Y. Vardi. On the
Foundations of the Universal Relation Model. ACM
TODS, 9(2):283–308, June 1984.

[12] R. J. Miller, L. M. Haas, and M. Hernández. Schema
Mapping as Query Discovery. In VLDB, pages 77–88,
2000.

[13] T. Milo and S. Zohar. Using Schema Matching to
Simplify Heterogeneous Data Translation. In VLDB,
pages 122–133, 1998.

[14] F. Naumann, C. T. Ho, X. Tian, L. M. Haas, and
N. Megiddo. Attribute Classification Using Feature
Analysis. In ICDE, 2002. (Poster).

[15] L. Popa, M. A. Hernández, Y. Velegrakis, R. J. Miller,
F. Naumann, and H. Ho. Mapping XML and Rela-
tional Schemas with CLIO, Demo. In ICDE, 2002.

[16] L. Popa and V. Tannen. An Equational Chase for
Path-Conjunctive Queries, Constraints, and Views. In
ICDT, pages 39–57, 1999.

[17] L. Popa, Y. Velegrakis, R. J. Miller, M. Hernández,
and R. Fagin. Translating Web Data. Technical Re-
port CSRG-441, U. of Toronto, Dept. of CS, Feb. 2002.

[18] E. Rahm and P. A. Bernstein. On Matching Schemas
Automatically. VLDB Journal, 10(4), Dec. 2001.

[19] L. Yan, R. J. Miller, L. M. Haas, and R. Fagin. Data-
Driven Understanding and Refinement of Schema
Mappings. In SIGMOD, pages 485–496, 2001.

