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Abstract

Dependency theory is almost as old as relational databases them-
selves, and has traditionally been used to improve the quality of
schema, among other things. Recently there has been renewed in-
terest in dependencies for improving the quality of data. The in-
creasing demand for data quality technology has also motivated re-
visions of classical dependencies, to capture more inconsistencies
in real-life data, and to match, repair and query the inconsistent
data. This paper aims to provide an overview of recent advances in
revising classical dependencies for improving data quality.

Categories and Subject Descriptors: H.2.0 [Database Manage-
ment]: General – Security, integrity, and protection

General Terms: Languages, Theory, Design, Reliability.

1. Introduction
Data dependencies, a.k.a. integrity constraints, have been well

studied for relational databases. Since Codd introduced functional
dependencies in 1972 [27], a variety of dependency languages, de-
fined as certain classes of first-order (FO) logic sentences, have
been proposed to specify the semantics of relational data. Fun-
damental questions associated with these dependencies, such as
implication analysis and finite axiomatizability, had already been
settled in the 1970s and the 1980s. Along with the theory of query
languages, dependency theory constitutes a major part of database
theory, and is covered by most database texts. Dependencies have
traditionally been used to optimize queries, prevent invalid updates,
and above all, to improve the quality of schema via normalization.
Recently there has been renewed interest in dependencies, for

improving the quality of data. Dependencies are being used to re-
pair and help query inconsistent data; furthermore, classical depen-
dencies are revised and extended in order to capture more errors
found in real-life data. This paper aims to provide an overview of
recent advances in the study of dependencies for improving data
quality, highlighting revisions of classical dependencies.
The need for revisiting dependencies is motivated by data qual-

ity issues. Real-world data is typically dirty, i.e., containing in-
consistencies, conflicts, and errors. Recent statistics reveals that
enterprises typically expect data error rates of approximately 1%–
5% [65]. The costs and risks of dirty data are being increasingly
recognized by all industries worldwide. It is reported that dirty data
costs US businesses 600 billion dollars annually [31], and that er-
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roneously priced data in retail databases alone costs US consumers
$2.5 billion each year [33]. It is also estimated that data clean-
ing accounts for 30%-80% of the development time and budget in
most data warehouse projects [66]. While the prevalent use of the
Web has made it possible to extract and integrate data from diverse
sources on an unprecedented scale, it has also increased the risks
of creating and propagating dirty data.
Data quality issues have been recognized and addressed in sev-

eral disciplines, e.g., statistics, management and computer science.
A variety of approaches have been proposed for improving data
quality: probabilistic, empirical, knowledge-based and logic-based
approaches (see [10] for a survey). There has also been increasing
demand in industries for developing data-quality tools, aiming to
effectively detect and repair errors in the data, and thus to add accu-
racy and value to business processes. The market for data-quality
tools is growing at 17%, way above the 7% average forecast for
other IT segments. These tools are also a critical part of master data
management (MDM) [30, 62], one of the fastest growing software
markets. Most commercial data quality and ETL (extraction, trans-
formation, loading) tools, however, heavily rely on manual effort
and low-level programs that are difficult to write and maintain [64].
There are good reasons to believe that dependencies should play

an important role in data-quality tools. One can specify the se-
mantics of data with dependencies, in a declarative way, and catch
inconsistencies and errors that emerge as violations of the depen-
dencies. Furthermore, inference systems, analysis algorithms and
profiling methods for dependencies have shown promise as a sys-
tematic method for reasoning about the semantics of the data, and
for deducing and discovering rules for cleaning the data, among
other things. Indeed, there has been a host of work on querying and
repairing inconsistent data based on dependencies (e.g., [7, 6, 8, 3,
13, 18, 14, 16, 23, 25, 41, 42, 43]).
Initial work on dependency-based data quality methods focused

on traditional dependencies that were mainly developed for schema
design, such as functional and inclusion dependencies (FDs and
INDs), along with a class of universally quantified FO sentences,
referred to as denial constraints. Their limited expressiveness often
does not allow us to state inconsistencies commonly found in real-
life data as violations of these dependencies, or to specify rules for
identifying objects from multiple unreliable data sources.
These limitations highlight the need for extending classical de-

pendencies. On the other hand, it is clear that in order to have some
meaningful data cleaning algorithms, the dependencies to be used
have to be reasonably limited. It is unlikely that any useful auto-
mated cleaning algorithm could be constructed for arbitrary depen-
dencies – or even for general SQL boolean queries. Indeed, it is
well-known that one cannot determine whether there is a database
satisfying a given set of boolean SQL queries. These require a bal-
ance between the expressive power needed to deal with important
data quality issues, and the restrictions needed to ensure decidable
analysis of dependencies and effective cleaning algorithms.
We present two attempts towards achieving this balance.



Conditional dependencies. We begin with an extension of tradi-
tional FDs and INDs that capture more of the inconsistencies in real-
life data. Consider, for example, a relation consisting of records of
customers in the US and UK. While in the UK, zip code determines
street, it is not the case in the US; thus one cannot detect errors in
the UK records by enforcing zip→ street as an FD on the entire cus-
tomer relation. To remedy the limitations, extensions of functional
and inclusion dependencies have been introduced [36, 20], referred
to as conditional functional dependencies and conditional inclusion
dependencies (CFDs and CINDs), respectively. Conditional depen-
dencies add to their traditional counterparts a specification of pat-
terns of data values and variables. The semantics is obtained by
restricting the traditional semantics to only those tuples that match
the patterns, rather than on the entire relation(s). These dependen-
cies make a weaker assertion than traditional FDs and INDs, and
hence are more widely applicable.

Matching dependencies. Another longstanding line of research
associated with data quality is object identification, a.k.a. data
deduplication, record linkage, merge-purge and record matching.
Given one or more relations, we want to identify tuples from those
relations that refer to the same real-world object. This is essential
to, among other things, data cleaning, data integration, and credit-
card fraud detection. Prior approaches to object identification are
often seen as orthogonal to dependency-based ones. Central to
those approaches is to determine comparison vectors and matching
rules, i.e., what attributes should be selected and how they should
be compared in order to identify tuples; these rules are typically
given in a procedural way, and heavily rely on domain-specific
heuristics (see [32] for a recent survey on object identification).
We show that matching rules can be incorporated into the frame-

work of dependencies, by introducing matching dependencies, an
extension of FDs, defined across multiple relations and by incorpo-
rating domain-specific similarity and matching operators [38]. For
example, a matching rule (taken from [48]) can be expressed as
a matching dependency to assure that if two customer tuples have
the same address and last name, and moreover, their first names
are similar (but may not be identical), then the two tuples refer to
the same person. These rules could then be combined with other
dependencies (traditional or conditional) for data cleaning. This
allows us to study the interaction between matching and clean-
ing rules in a uniform framework, and automatically deduce new
matching rules via implication analysis of the dependencies.

Static analyses. These extensions also call for a revision of static
analyses of classical dependencies. As mentioned above, static
analyses of dependencies play a crucial role in their application
to data quality. The data repairing problem [7] itself is a gener-
alization of satisfiability analysis for sets of dependencies, since
it requires to find a satisfying instance with additional properties
(e.g., proximity to the original data). Implication analysis for de-
pendencies is critical to their use in cleaning as well. In particular,
note that for detecting constraint violations, adding derived depen-
dencies is pointless: elementary propositional logic tells us that any
instance that fails the derived dependency must already have failed
one of the given dependencies from which it was derived. How-
ever, when considered as matching rules (“if φ holds then identify
x and y”), derived dependencies can indeed add value [40].
The increased expressive power of conditional dependencies and

matching dependencies comes at a price for static analysis. A set
of conditional functional dependencies (CFDs), for example, may
have conflicts themselves. Thus it is necessary to conduct con-
sistency analysis, to determine whether a given set of conditional
dependencies is dirty itself. The consistency problem is nontrivial:

it is already NP-complete for CFDs alone, and is undecidable for
CFDs and CINDs taken together. In contrast, this is a non-issue for
collections of FDs and INDs, which are known to be always satis-
fiable. Furthermore, for conditional dependencies, the implication
analysis, finite axiomatization and the computation of view depen-
dencies [52, 53] also become more intriguing than their traditional
counterparts. This calls for a full treatment of the classical decision
problems for these extensions of traditional dependencies.

Improving data quality based on dependencies. The ultimate
goal for revisiting dependencies is to handle inconsistencies in the
data. We provide a brief overview of dependency-based meth-
ods for dealing with inconsistencies. There are at least three ap-
proaches. The first two were formally introduced in [7]: repair-
ing is to find another database that is consistent and minimally dif-
fers from the original database; and consistent query answering is
to find an answer to a given query in every repair of the original
database, without editing the data. The third approach is to find a
condensed representation of all repairs of the inconsistent database,
in terms of tableaux [68] or answer sets of logic programs [6, 47].
There has been considerable work on repairing [7, 16, 28, 40, 58,
69], consistent query answering [7, 8, 13, 23, 25, 42, 43, 57, 68],
and on condensed representations of repairs [6, 47, 68]. Most of
the work focused on traditional dependencies.

Open research issues. The study of data quality based on depen-
dencies has raised as many questions as it has answered. Moreover,
the study is closely related to, e.g., incomplete information [46, 50,
61], probabilistic data [29], data exchange [54], integration [55,
56], and Web data management [9, 39, 41]. The connections also
give rise to a host of open questions. We explore these connections.

Organization. In Section 2 we present conditional dependencies
for characterizing the consistency of data, followed by matching
dependencies for object identification in Section 3. In Section 4
we give an account of results on reasoning about these revisions.
Section 5 presents an overview of the three approaches for handling
inconsistencies, followed by open research issues in Section 6.
Our focus in this article is on revisions of classical dependencies

to improve data quality. A survey of constraint-based data-quality
methods is beyond the scope of this paper, and a number of related
papers are not referenced due to space constraints. We refer the
reader to [10, 64] for general issues in connection with data qual-
ity, and to [12, 14, 24, 26] for constraint-based methods. Formal
presentations on dependency theory are provided in [1, 35, 51].

2. Extending Dependencies with Conditions
We first present conditional dependencies [36, 20, 19], exten-

sions of functional and inclusion dependencies with patterns.

2.1 Conditional Functional Dependencies

To illustrate conditional functional dependencies, let us consider
the following relational schema for customer data:

customer (CC: int, AC: int, phn: int, name: string, street: string,
city: string, zip: string)

where each tuple specifies a customer’s phone number (country
code CC, area code AC, phone phn), name and address (street,
city, zip code); we defer the discussion of domains to Section 4.
An instance D0 of the customer schema is shown in Fig. 1.
Functional dependencies (FDs) on customer relations include:

f1: [CC,AC, phn] → [street, city, zip], f2: [CC,AC] → [city].

That is, a customer’s phone uniquely determines her address (f1),
and the country code and area code determine the city (f2). The



CC AC phn name street city zip
t1: 44 131 1234567 Mike Mayfield NYC EH4 8LE
t2: 44 131 3456789 Rick Crichton NYC EH4 8LE
t3: 01 908 3456789 Joe Mtn Ave NYC 07974

Figure 1: An instance of customer relation

instance D0 of Fig. 1 satisfies f1 and f2. In other words, if we use
f1 and f2 to specify the consistency of customer data, i.e., to char-
acterize errors as violations of these dependencies, then no errors
or inconsistencies are found inD0, and D0 is regarded clean.
A closer examination of D0, however, reveals that none of the

tuples in D0 is error-free. Indeed, the inconsistencies become ob-
vious when the following constraints are considered, which intend
to capture the semantics of real-world customer data:

cfd1: ([CC = 44, zip ]→ [street ])
cfd2: ([CC = 44, AC = 131, phn ]→ [street, city = ‘EDI’, zip ])
cfd3: ([CC = 01, AC = 908, phn ]→ [street, city = ‘MH’, zip ])

Here cfd1 asserts that for customers in the UK (CC = 44), zip code
uniquely determines street. In other words, cfd1 is an “FD” that
is to hold on the subset of tuples that satisfies the pattern “CC =
44”, e.g., {t1, t2} inD0. It is not a traditional FD since it is defined
with constants, and it is not required to hold on the entire customer

relation D0 (in the US, for example, zip code does not determine
street). The last two constraints refine the FD f1 given earlier: cfd2

states that for any two UK customer tuples, if they have area code
131 and have the same phn, then they must have the same street

and zip, and moreover, the city must be EDI; similarly for cfd3.
Tuples t1 and t2 in D0 violate cfd1: they refer to customers in

the UK and have identical zip, but they differ in street. Further,
while D0 satisfies f1, each of t1 and t2 in D0 violates cfd2: CC =
44 and AC = 131, but city 6= EDI. Similarly, t3 violates cfd3.

Syntax. We now give the formal definition of conditional func-
tional dependencies (CFDs). Consider a relation schema R defined
over a set of attributes, denoted by attr(R). For each attribute
A ∈ attr(R), its domain is specified in R, denoted by dom(A).
For an instance D of R and a tuple t ∈ D, we use t[A] to denote
the projection of t onto A; similarly, for a sequence X of attributes
in attr(R), t[X] denotes the projection of t ontoX.
A CFD ϕ defined on R is a pairR(X → Y , Tp), where (1)X →

Y is a standard FD, referred to as the FD embedded in ϕ; and (2) Tp

is a tableau with attributes in X and Y , referred to as the pattern
tableau of ϕ, where for each A in X ∪ Y and each pattern tuple
tp ∈ Tp, tp[A] is either a constant ‘a’ in dom(A), or an unnamed
(yet marked) variable ‘ ’ that draws values from dom(A).
IfA occurs in bothX and Y , we use t[AL] and t[AR] to indicate

the occurrence of A in X and Y , respectively. We separate the X
and Y attributes in a pattern tuple with ‘‖’. We write ϕ as (X →
Y, Tp) when R is clear from the context.

Example 2.1: All the constraints we have encountered so far can
be expressed as the CFDs shown in Fig. 2 (ϕ1 for cfd1, ϕ2 for f1,
cfd2 and cfd3, and ϕ3 for f2). Note that each tuple in a pattern
tableau indicates a constraint, e.g., ϕ2 defines three constraints. 2

Note that traditional FDs are a special case of CFDs, in which the
pattern tableau consists of a single tuple, containing ‘ ’ only.

Semantics. We define an operator ≍ on constants and ‘ ’: η1 ≍ η2
if either η1 = η2, or one of η1, η2 is ‘ ’. The operator ≍ naturally
extends to tuples, e.g., (Mayfield, EDI) ≍ ( , EDI) but (Mayfield,
EDI) 6≍ ( , NYC).
An instance D of R satisfies the CFD ϕ, denoted by D |= ϕ, if

for each tuple tp in the pattern tableau Tp of ϕ, and for each pair
of tuples t1, t2 in D, if t1[X] = t2[X] ≍ tp[X], then t1[Y ] =
t2[Y ] ≍ tp[Y ].

(a) ϕ1 = ([CC, zip ] → [street ], T1), where T1 is

CC zip street

44

(b) ϕ2 = ([CC, AC, phn ] → [street, city, zip ], T2), where T2 is

CC AC phn street city zip

44 131 EDI
01 908 MH

(c) ϕ3 = ([CC, AC ] → [city ], T3), where T3 is

CC AC city

Figure 2: Example CFDs

Intuitively, each tuple tp in the pattern tableau Tp of ϕ is a con-
straint defined on Dtp

= {t | t ∈ D, t[X] ≍ tp[X]} such that
for any t1, t2 ∈ Dtp

, if t1[X] = t2[X], then (a) t1[Y ] = t2[Y ],
and (b) t1[Y ] ≍ tp[Y ]. Here (a) enforces the semantics of the
FD embedded in ϕ, and (b) assures the binding between constants
in tp[Y ] and constants in t1[Y ]. This constraint is defined on the
subset Dtp

of D identified by tp[X], rather than on the entireD.
For example, while the instance D0 of Fig. 1 satisfies the CFD

ϕ3 given in Fig. 2, it satisfies neither ϕ1 nor ϕ2.

2.2 Conditional Inclusion Dependencies

We next present a revision of inclusion dependencies (INDs).
Consider the two schemas below, referred to as source and target:

Source: order (asin: string, title: string, type: string, price: real)

Target: book (isbn: string, title: string, price: real, format: string)

CD (id: string, album: string, price: real, genre: string)

The source database contains a single relation order, specifying
items of various types such as books, CDs, DVDs, ordered by cus-
tomers. The target database has two relations, namely, book and
CD, specifying customer orders of books and CDs, respectively.
Example source and target instances D1 are shown in Fig. 3.
To find schema mappings from source to target, or detect errors

across these databases, one might be tempted to use INDs such as:

order(title, price) ⊆ book(title, price),
order(title, price) ⊆ CD(album,price).

These INDs, however, do not make sense: one cannot expect the
title and price of a book item in the order table to find a corre-
sponding CD tuple to match; similarly for CDs in the order table.
There are indeed inclusion dependencies from the source to the

target, as well as on the target, but only under certain conditions:

cind1: (order(title, price, type = ‘book’) ⊆ book(title, price))
cind2: (order(title, price, type = ‘CD’) ⊆ CD(album, price))
cind3: (CD(album,price, genre = ‘a-book’)

⊆ book(title, price, format = ‘audio’))

Here cind1 states that for each order tuple t, if its type is ‘book’,
then there must exist a book tuple t′ such that t and t′ agree on their
title and price attributes; similarly for cind2. Constraint cind3 as-
serts that for each CD tuple t, if its genre is ‘a-book’ (audio book),
then there must be a book tuple t′ such that the title and price of t′

are identical to the album and price of t, and moreover, the format

of t′ must be ‘audio’. Like CFDs, these constraints are required to
hold only on a subset of tuples satisfying certain patterns. They are
specified with constants, and cannot be expressed as standard INDs.
While D1 of Fig 3 satisfies cind1 and cind2, it violates cind3.

Indeed, tuple t9 in the CD table has an ‘a-book’ genre, but it cannot
find a match in the book table with ‘audio’ format. Note that the
book tuple t7 is not a match for t9: although t9 and t7 agree on



asin title type price
t4: a23 Snow White CD 7.99
t5: a12 Harry Potter book 17.99

(a) Example order data

isbn title price format
t6: b32 Harry Potter 17.99 hard-cover
t7: b65 Snow White 7.99 paper-cover

(b) Example book data

id album price genre
t8: c12 J. Denver 7.94 country
t9: c58 Snow White 7.99 a-book

(c) Example CD data

Figure 3: Example order, book and CD data

ϕ4 = (order(title, price; type) ⊆ book(title, price), T4)

ϕ5 = (order(title, price; type) ⊆ CD(album, price), T5)

ϕ6=(CD(album, price; genre) ⊆ book(title, price; format), T6)

type

book

T4

type

CD

T5

genre format

a-book audio

T6

Figure 4: Example CINDs

their album (title) and price attributes, the format of t7 is ‘paper-
cover’ rather than ‘audio’ as required by cind3.

Syntax. We now give the formal definition of CINDs.
A CIND ψ defined on relation schemas R1 and R2 is a pair

(R1[X;Xp] ⊆ R2[Y ;Yp], Tp), where (1) X,Xp and Y, Yp are
lists of attributes of R1 and R2, respectively; (2) R1[X] ⊆ R2[Y ]
is a standard IND, referred to as the IND embedded in ψ; and (3) Tp

is the pattern tableau of ψ with attributes in Xp and Yp, such that
for each pattern tuple tp ∈ Tp and each attribute B in Xp (or Yp),
tp[B] is a constant in dom(B). If A occurs in both Xp and Yp, we
use t[AL] and t[AR] to indicate the occurrence of A inXp and Yp,
respectively. We separateXp and Yp in a pattern tuple with ‘‖’.

Example 2.2: Constraints cind1, cind2 and cind3 can be expressed
as CINDs ϕ4, ϕ5 and ϕ6 shown in Fig. 4, respectively. 2

Semantics. An instance (D1, D2) of (R1, R2) satisfies the CIND
ψ, denoted by (D1,D2) |= ψ, iff for each tuple tp in the pattern
tableau Tp and for each t1 in the relation D1, if t1[Xp] = tp[Xp],
then there must exist t2 in D2 such that t1[X] = t2[Y ] and more-
over, t2[Yp] = tp[Yp].
That is, each pattern tuple tp in Tp is a constraint defined on

D(1,tp) = {t1 | t1 ∈ D1, t1[Xp] = tp[Xp]}, such that (a) the IND
R1[X] ⊆ R2[Y ] in ψ is defined on D(1,tp) rather than the entire
D1; (b) for each t1 ∈ D(1,tp), there exists a tuple t2 in D2 such
that t1[X] = t2[Y ] as required by the standard IND and moreover,
t2[Yp] must be the same as the pattern tp[Yp]. Intuitively, Xp iden-
tifies those R1 tuples on which ψ is defined, and Yp enforces the
corresponding R2 tuples to have a certain constant pattern.
Traditional INDs are a special case of CINDs, in which Xp and

Yp are empty lists.

2.3 Further Extensions

One natural extension to consider is to add disjunction and in-
equality to CFDs. Consider, for example, customers in New York
State. A cursory examination of New York area codes reveals that
most cities (CT) in the state have a unique area code, except NYC
and LI (Long Island). Further, area codes for New York City are
limited to 212, 718, 646, 347, or 917. One can express these as:

ecfd1: CT 6∈ {NYC, LI} → AC

ecfd2: CT ∈ {NYC} → AC ∈ {212, 718, 646, 347, 917}

where ecfd1 asserts that the FD CT → AC holds if CT is not in the
set {NYC, LI}; and ecfd2 is defined with disjunction: it states that
when CT is NYC, AC must be one of 212, 718, 646, 347, or 917.
An extension of CFDs by supporting disjunction and inequal-

ity was studied in [19], referred to as eCFDs. As will be seen in
Section 4, the increased expressive power does not make our lives
harder when it comes to reasoning about these dependencies.
It is natural to consider extensions of constraint languages be-

yond FDs and INDs with conditions. Most dependencies studied for

relational databases can be expressed as FO sentences of the fol-
lowing form (cf. [1, 35]), simply referred to as dependencies:

∀x1 . . . xm (φ(x1, . . . , xm) → ∃y1 . . . yn ψ(z1, . . . , zk)),

where (a) {y1, . . . , yn} = {z1, . . . , zk} − {x1, . . . , xm}; (b)
φ is a conjunction of (at least one) relation atoms of the form
R(w1, . . . , wl), where wi is a variable for each i ∈ [1, l], and φ
uses all of the variables in {x1, . . . , xm}; (c) ψ is a conjunction of
either relation atoms or equality atoms w = w′, where w,w′ are
variables, and ψ uses all of the variables in {z1, . . . , zk}; and (d)
no equality atoms in ψ use existentially quantified variables.
Dependencies are often classified as follows.

(a) Full dependencies: universally quantified dependencies.

(b) Tuple generating dependencies (TGDs): dependencies in which
the right-hand side (RHS) ψ is a relation atom. A TGD says that if a
certain pattern of entries appears then another pattern must appear.

(c) Equality generating dependencies (EGDs): full dependencies in
which the RHS ψ is an equality atom. An EGD says that if a certain
pattern of entries appears then a certain equality must hold.

These dependencies are defined in terms of relation atoms, vari-
ables and equality, without constants. To capture more errors
in real-life data one might want to revise these full-fledged con-
straint languages by incorporating data-value patterns. However,
this may not be very practical: the implication problem is already
EXPTIME-complete for full dependencies, and is undecidable for
TGDs (cf. [35]). To balance the tradeoff between expressive power
and complexity, it is often more realistic to consider revisions of
fragments of these constraint languages for data quality tools.
A variety of extensions of classical dependencies have been pro-

posed, for specifying constraint databases [11, 17, 59, 60]. Con-
straints of [17], also called conditional functional dependencies,
are of the form (X → Y ) → (Z → W ), where X → Y and
Z → W are standard FDs. Constrained dependencies of [59] ex-
tend [17] by allowing ξ → (Z → W ), where ξ is an arbitrary
constraint that is not necessarily an FD. These dependencies cannot
express CFDs since Z → W does not allow constants. More ex-
pressive are constraint-generating dependencies (CGDs) of [11] and
constrained tuple-generating dependencies (CTGDs) of [60], both
subsuming CFDs. A CGD is of the form ∀x̄(R1(x̄) ∧ . . . ∧ Rk(x̄)
∧ξ(x̄) → ξ′(x̄)), where Ri’s are relation atoms, and ξ, ξ

′ are arbi-
trary constraints that may carry constants. A CTGD is of the form
∀x̄(R1(x̄) ∧ . . . ∧ Rk(x̄) ∧ ξ → ∃ȳ(R′

1(x̄, ȳ) ∧ . . . ∧R
′

s(x̄, ȳ) ∧
ξ′(x̄, ȳ))), subsuming both CINDs and TGDs. The increased ex-
pressive power of CGDs and CTGDs comes at the price of a higher
complexity for reasoning about these dependencies. No previous
work has studied these extensions for data cleaning.
Besides CFDs and CINDs, non-traditional dependencies studied

for data cleaning include denial constraints [7, 8, 13, 25, 57, 58,
68], which are universally quantified FO sentences of the form:

∀x̄1 . . . x̄m ¬(R1(x̄1) ∧ . . . ∧ Rm(x̄m) ∧ ϕ(x̄1, . . . , x̄m)),

where Ri is a relation atom for i ∈ [1, m], and ϕ is a conjunction
of built-in predicates such as=, 6=,<,>,≤,≥. Note that FDs are a
special case of denial constraints. While some denial constraints in
the literature (e.g., [13]) allow constants, numerical values and ag-
gregate functions, the implication and consistency problems and fi-
nite axiomatizability for these constraints are yet to be settled [12].



3. Incorporating Domain Specific Operators
The dependencies we have seen so far are in pure first-order

logic. Nonetheless, data quality techniques often rely on domain-
specific tools: they may match tuples and compare values using
particular metrics. While these domain-specific operations may not
be themselves expressible in any reasonable declarative formalism,
it is still possible to integrate them into the framework of dependen-
cies. We explain this by presenting another extension of functional
dependencies [38], defined across different relations and in terms of
domain-specific similarity and matching operators. This extension
is proposed for specifying matching rules for object identification.

3.1 Object Identification

We first illustrate object identification (see [32] for a survey).
Consider two data sources, specified by the following schemas:

card (c#, SSN, FN, LN, addr, tel, email, type),
billing (c#, FN, SN, post, phn, email, item, price).

Here a card tuple specifies a credit card (number c# and type) is-
sued to a card holder identified by SSN, FN (first name), LN (last
name), addr (address), tel (phone) and email. A billing tuple indi-
cates that the price of a purchased item is paid by a credit card of
number c#, issued to a holder that is specified in terms of forename
FN, surname SN, postal address post, phone phn and email.
Given an instance (Dc,Db) of (card,billing), for fraud detection,

one has to ensure that for any tuple t ∈ Dc and t
′ ∈ Db, if t[c#] =

t′[c#], then t[Yc] and t
′[Yb] refer to the same holder, where

Yc = [FN, LN, addr, tel, email], Yb = [FN, SN, post, phn, email].

The difficulty posed by this seemingly simple problem is that
data may not have a uniform representation for the same object in
different sources (e.g., a person’s name may appear as “John Smith”
and “J. Smith” in Dc and Db, respectively). As a result, it is quite
likely that t[Yc] and t

′[Yb] are not identical, although they indeed
refer to the same person.
This example is an instance of the object identification problem.

More specifically, let R,R′ be two relation schemas, and Y, Y ′ be
lists of attributes in attr(R) and attr(R′), respectively. The object
identification problem is to determine, given an instance (D,D′)
of (R,R′), for any t ∈ D and t′ ∈ D′, whether t[Y ] and t′[Y ′]
refer to the same real-world object. Here “referring to the same
real-world object” is the conclusion drawn by a domain-specific
operation, referred to as the matching operation.
Object identification is essential to not only data quality, but also

data integration, for which it is often necessary to correlate infor-
mation about an object from multiple data sources.
A central issue for object identification concerns how to deter-

mine comparison vectors: what alternative attributes X and X ′ in
attr(R) and attr(R′) should be considered, and how should t[X]
and t′[X ′] be compared, in order to conclude that t[Y ] and t′[Y ′]
match. The comparisons may also include domain-specific opera-
tors, for example, similarity relations on attributes.
Returning to our example for fraud detection, the following

“matching rules” are used in practice, either specified by human
experts or discovered via learning [48]. (a) If t[tel] and t′[phn] are
identical, then t[addr] and t′[post] should match (i.e., referring to
the same address, even if t[addr] and t′[post] might not be iden-
tical). (b) If t[email] and t′[email] match, then so do t[FN, LN]
and t′[FN, SN]. (c) If t[LN, addr] and t′[SN, post] match, and
if t[FN] and t′[FN] either match or are similar w.r.t. a similarity
operator ≈d based on edit distance, then t[Yc] and t

′[Yb] match,
i.e., they are the same person. Here (c) is a comparison vec-
tor for (Yc, Yb): to match t[Yc] and t

′[Yb], we only need to con-
sider ([LN, addr, FN], [SN, post, FN]) and compare them in terms of
matching and similarity operators.

One can draw an analogy between comparison vectors and the
familiar notion of keys: both notions attempt to provide an invari-
ant connection between tuples and the real-world entities they rep-
resent. However, we note a difference both in the hypothesis (the
use of similarity and matching) and in the conclusion (referring to
matching). Still, we hope to conduct generic reasoning with these
rules, to derive comparison vectors. An example of derived rules
is: if t[LN, tel] and t′[SN, phn] equal, and if t[FN] and t′[FN] are
similar, then t[Yc] and t

′[Yb]match. Used as matching rules, the de-
rived comparison vectors can improve match quality: true matches
may not be found by given matching rules, but they may still be
identified by derived rules. For example, when t and t′ radically
differ in some pairs of attributes, e.g., ([addr], [post]), t[Yc] and
t′[Yb] may not be matched by the rules (a)-(c) given. In contrast,
they may still be identified by the derived comparison vector ([LN,
tel, FN], [SN, phn, FN]). The need for such automated reasoning
has long been recognized for census data cleaning, where deriving
implicit edits from explicit edits is a routine practice [40, 69].

3.2 Matching Dependencies

To effectively reason about matching rules, we give an extension
of functional dependencies, referred to as matching dependencies
(MDs), to express those rules. We focus on the definition of MDs
below, and defer their use in object identification to Section 3.3.
To define MDs we first present some domain-specific operators.

Similarity operators. Assume a fixed set Θ of domain-specific
similarity relations. For each ≈ in Θ, and (lists of) values x, y in
the specific domains in which≈ is defined, we write x ≈ y if (x, y)
is in≈, and refer to ≈ as a similarity operator. Each ≈ is reflexive,
i.e., x ≈ x, symmetric, i.e., if x ≈ y then y ≈ x, and it subsumes
equality, i.e., if x = y then x ≈ y. The equality relation = is in Θ.

Matching operator. A particular operator⇋ is inΘ, referred to as
the matching operator (match relation), defined on value lists. It is
transitive: if L1 ⇋ L2 and L2 ⇋ L3 then L1 ⇋ L3. In addition,
for any L = [L1, . . . , Lk] and L = [L′

1, . . . , L
′

k], if Li ⇋ L′

i for
i ∈ [1, k], then L ⇋ L′, and vice versa. That is, for any partition
of L and L′, all parts of L and L′ pairwise match iff L ⇋ L′.

Matching dependencies (MDs). For a list L of length k and each
j ∈ [1, k], denote by L[j] the j-th element of L. Consider a
pair of relation schemas (R1, R2), and a pair of lists (X1,X2)
of length k, such that for all j ∈ [1, k], X1[j] ∈ attr(R1)
and X2[j] ∈ attr(R2). We say that (X1,X2) is compatible if
dom(X1[j]) and dom(X2[j]) are compatible for each j ∈ [1, k].
We refer to (X1[j], X2[j]) as a pair of attributes in (X1,X2).
We now give the definition of matching dependencies (MDs).
An MD φ defined on schemas (R1, R2) is an expression of the

form
V

j∈[1,k](R1[X1[j]] ≈j R2[X2[j]]) → R1[Z1] ≈ R2[Z2],

where (X1, X2) and (Z1, Z2) are compatible attribute lists over
(R1, R2), X1 and X2 have the same length k, and ≈ and ≈j are
similarity operators in Θ, for all j ∈ [1, k].
The MD φ holds on an instance (D1, D2) of (R1, R2), denoted

by (D1,D2) |= φ, if for any tuples t1 ∈ D1 and t2 ∈ D2, if
V

j∈[1,k] t1[X1[j]] ≈j t2[X2[j]], then t1[Z1] ≈ t2[Z2].
As will be seen in Section 3.3, similarity and matching operators

in an MD play different roles in object identification.

Example 3.1: The rules (a)-(c) for identifying card and billing tu-
ples given earlier can be expressed as MDs, as follows.

φ1: card[tel] = billing[phn] → card[addr] ⇋ billing[post]

φ2: card[email] ⇋ billing[email] → card[FN, LN] ⇋ billing[FN, SN]

φ3: card[LN] ⇋ billing[SN] ∧ card[addr] ⇋ billing[post] ∧
card[FN] ⇋ billing[FN] → card[Yc] ⇋ billing[Yb]



φ4: card[LN] ⇋ billing[SN] ∧ card[addr] ⇋ billing[post] ∧
card[FN] ≈d billing[FN] → card[Yc] ⇋ billing[Yb]

where ≈d is the similarity operator based on edit distance. 2

Relative keys. Along the same lines as that traditional keys are a
special case of FDs, we next define a notion of relative keys.
A key ψ relative to compatible attribute lists (Y1, Y2) of

(R1, R2) is an MD
V

j∈[1,k](R1[X1[j]] ≈j R2[X2[j]]) →

R1[Y1] ⇋ R2[Y2], where no ≈j is⇋. That is, while the matching
operator is in the conclusion, it is not allowed in the hypothesis.
We refer to k as the length of ψ. When (Y1, Y2) is clear from the
context, we write ψ as (X1,X2, C), where C = [≈1, . . . ,≈k].
The relative key ψ states that if t1[X1] and t2[X2] match

w.r.t. the similarity operators C, then t1[Y1] and t2[Y2] must match
w.r.t. the matching operator⇋.

Example 3.2: Below are keys relative to (Yc, Yb) of (card, billing).

rck1: ([email, addr], [email, post] ‖ [=,=])
rck2: ([LN, tel, FN], [SN, phn, FN] ‖ [=,=,≈d])
rck3: ([LN, addr, FN], [SN, post, FN] ‖ [=,=,≈d])

Here the key rck2 states that for any card tuple t and billing tuple
t′, if t[LN, tel] = t′[SN, phn] and t[FN] ≈d t

′[FN], then t[Yc] and
t′[Yb] match; similarly for rck1 and rck3. 2

3.3 Known vs. Unknown Operators in Object Identification

We have seen thatMDs are defined w.r.t. a collection of similarity
operators. We now elaborate on which domain-specific operators
in an MD are considered to be fixed in object identification.

(a) Similarity operators. Except ⇋, all similarity operators in Θ
tend to compare data values in unreliable sources, based on sim-
ilarity metrics used in object identification, e.g., edit distance, q-
grams, Jaro distance (see [32]), or their boolean combinations. For
example, a similarity operator may be parameterized with a thresh-
old θ, denoted by ‘≈θ’, such that x ≈θ y if the distance between
x and y is no larger than θ. In data quality tools, such metrics are
given, and are total mappings defined on specific domains.

(b) Matching operator. In contrast,⇋ is typically either not given
or partially defined; it is to be “inferred” via generic reasoning
about matching rules. Here “t1[Z1] ⇋ t2[Z2]” indicates that
t1[Z1] and t2[Z2] refer to the same object. Note that t1[Z1] and
t2[Z2], as they are in the data sources, may be radically different
and cannot be directly matched using any similarity metric that is
known in advance. Hence what we want is to reason generically
about the matching operator, via implication analysis of MDs.

(c) Matching dependencies. While the semantics of MDs is defined
relative to the notions of similarity and matching operators, MDs
are essentially used to infer the match relation ⇋. Currently, we
can only reason generically about similarity operators (see the def-
inition of implication for MDs in Section 4.2), but in ongoing work
we are looking at how to reason w.r.t. fixed similarity operators.
On the other hand, a key (X1,X2, C) relative to (Y1, Y2) is to be

used as a matching rule to determine whether t1[Y1] ⇋ t2[Y2], by
comparing t1[X1] and t2[X2] based solely on the similarity metrics
C given on the source data. That is, if t1[X1] and t2[X2] are similar
based on the given metrics, then t1[Y1] and t2[Y2] match, even if
they may be radically different. For example, for any card tuple
t and billing tuple t′, to decide whether t[Yc] and t

′[Yb] match,
one can inspect the attributes in rck1–rck3 given in Example 3.2
w.r.t. the similarity operators specified, instead of comparing the
entire Yc and Yb lists of t and t

′. If t and t′ satisfy any of rck1–
rck3, it follows that t[Yc] and t

′[Yb] refer to the same card holder.
To use relative keys as matching rules, we want the keys to be

“minimal”. This motivates us to define the following notion.

Relative candidate keys (RCKs). For two keys ψ = (X1,X2, C)

and ψ′ = (Z1, Z2, C
′) relative to (Y1, Y2), we denote by ψ ≤ ψ′

if (a) k ≤ k′, where k, k′ are the lengths of ψ and ψ′, respectively;
(b) for each j ∈ [1, k], (X1[j], X2[j]) is a pair (Z1[i], Z2[i]) of
attributes in (Z1, Z2) for some i, and the similarity relation ≈

′

i is
contained in ≈j , where C[j] is ≈j and C

′[i] is ≈′

i. We say that
ψ < ψ′ if ψ ≤ ψ′ but ψ′ 6≤ ψ.
A key ψ is called a relative candidate key (RCK) for (Y1, Y2) if

there exists no key ψ′ relative to (Y1, Y2) such that ψ
′ < ψ.

What we want is to derive RCKs, as matching rules, via inference
from given MDs. This will be discussed in Section 4.2.
Several subtleties distinguish MDs from traditional FDs. First,

MDs bring domain-specific operators into the play. Second, MDs
are defined across different relations; in contrast, the study of de-
pendencies has mostly focused on the uni-relational setting (except
INDs) [1, 35], where a single relation is involved. Third,MDs aim to
derive matching rules on unreliable data, a departure from familiar
terrain of classical dependency theory.
A notion of fuzzy functional dependencies (FFDs) has been stud-

ied (e.g., [63]), which also uses similarity but differs from MDs in
several aspects; in particular, as Section 4.2 will show, the implica-
tion problem for MDs is quite different from its FFD counterpart.

4. Static Analyses: New Challenges
We have introduced conditional dependencies and matching de-

pendencies, as revisions of classical dependencies. To improve data
quality using these dependencies, several fundamental questions
have to be settled. In this section we provide an account of re-
sults on classical decision problems associated with these revisions.
We show that these revised dependencies introduce new challenges.
and make our lives harder when reasoning about them.
We focus on finite database instances. In particular, by implica-

tion we mean finite implication, although most of the results of this
section remain intact for unrestricted implication (see [1, 35] for
formal presentations on finite and unrestricted implication).

4.1 Reasoning about Conditional Dependencies

We begin with results on consistency, implication, finite axiom-
atization and propagation analyses of conditional dependencies.

Consistency. To use conditional dependencies to detect inconsis-
tencies in real-world data, the first question we have to answer
concerns whether a given set of CFDs (resp. CINDs) has conflicts
and inconsistencies, i.e., whether the dependencies are dirty them-
selves. If the dependencies are inconsistent, then there is no need to
validate them against the data at all. Furthermore, the consistency
analysis can help the users discover errors in their cleaning rules.
Formally, this can be stated as the consistency problem for con-

ditional dependencies. For a set Σ of CFDs (resp. CINDs) and a
database instance D, we writeD |= Σ ifD |= ϕ for all ϕ ∈ Σ.
The consistency problem is to determine, given a set Σ of CFDs

(resp. CINDs) defined on a relational schema R, whether there ex-
ists a nonempty database instanceD ofR such that D |= Σ.
One can specify arbitrary FDs and INDs without worrying about

their consistency. This is no longer the case for CFDs.

Example 4.1: Consider two CFDs ψ1 = ([A] → [B], T1) and
ψ2 = ([B] → [A], T2), where dom(A) is bool, T1 has two pattern
tuples (true ‖b1), (false ‖b2), and T2 contains (b1‖false) and (b2 ‖
true). Then there exists no nonempty instance D such that D |=
{ψ1, ψ2}. Indeed, assume that there were such a D. Then for any
tuple t in D, no matter what value t[A] has, ψ1 and ψ2 together
force t[A] to take the other value from the finite domain bool. 2

Recall that the domains of attributes involved in dependencies



are typically not considered in dependency theory. In contrast, the
example above tells us that for consistency analysis one may have
to consider whether finite-domain attributes are present. Because
CFDs and CINDs are defined with constants drawn from certain do-
mains, they may interact with domain constraints (this is why we
explicitly include domains in schema specifications in Section 2).
It turns out that the consistency problem for CFDs is nontrivial.

Worse, when CFDs and CINDs are taken together, the problem is
undecidable, as opposed to their trivial traditional counterpart.

Theorem 4.1 [36, 20]: The consistency problem is

• NP-complete for CFDs;

• O(1) for CINDs, i.e., for any set Σ of CINDs defined on a
schema R, there always exists a nonempty instance D of R
such that D |= Σ; and

• undecidable for CFDs and CINDs taken together. 2

Approximation algorithms to check consistency for CFDs and
eCFDs, and heuristic algorithms for checking consistency of CFDs
and CINDs taken together, can be found in [36, 20].

Implication. Another central technical problem is the implication
problem: it is to determine, given a set Σ of CFDs (resp. CINDs)
and a single CFD (resp. CIND) ϕ defined on a relational schema R,
whether or not Σ entails ϕ, denoted by Σ |= ϕ, i.e., whether for
all instances D of R, if D |= Σ then D |= ϕ. Effective implica-
tion analysis allows us to remove redundancies from a given set of
rules by finding a minimal cover of the set. Since CFDs (CINDs)
tend to be larger than their traditional counterparts (due to pattern
tableaux), the impact of redundancies is more evident on the per-
formance of inconsistency detecting and repairing processes.
Recall that for FDs, the implication problem is in linear time,

while for INDs, it is PSPACE-complete [1, 35]. For their conditional
counterparts, the implication analyses become more intriguing.

Theorem 4.2 [36, 20]: The implication problem is

• coNP-complete for CFDs,

• EXPTIME-complete for CINDs, and

• undecidable for CFDs and CINDs taken together. 2

The undecidability result is immediate from the fact that the
problem is already undecidable for FDs and INDs put together.
Recall eCFDs, which extend CFDs by adding disjunction and in-

equality (Section 2.3). It is known that the increased expressive
power of eCFDs does not incur extra complexity [19]: the consis-
tency and implication problems for eCFDs remain NP-complete and
coNP-complete, respectively, the same as their CFD counterparts.

Special cases. The absence of finite-domain attributes simplifies
the consistency and implication analyses of CFDs and CINDs: their
complexity bounds are comparable to the bounds for FDs and INDs.

Theorem 4.3 [36, 20]: For CFDs and CINDs that do not involve
attributes with a finite domain,

• the consistency and implication problems are both decidable
in quadratic time for CFDs; and

• the implication problem is PSPACE-complete for CINDs. 2

The absence of finite-domain attributes, however, does not make
our lives easier when it comes to eCFDs. This is because one can
enforce, via eCFDs, an attribute A to draw values from a finite set
only, regardless of whether dom(A) is infinite or not. When it
comes to CFDs and CINDs taken together, their static analyses are
still beyond reach in practice even without finite-domain attributes.

Theorem 4.4 [19, 20]: In the absence of finite-domain attributes,
the consistency and implication problems remain

Dependencies Consistency Implication Fin. Axiom
CFDs NP-complete coNP-complete Yes
eCFDs NP-complete coNP-complete Yes
FDs O(1) O(n) Yes

CINDs O(1) EXPTIME-complete Yes
INDs O(1) PSPACE-complete Yes

CFDs + CINDs undecidable undecidable No
FDs + INDs O(1) undecidable No

in the absence of finite-domain attributes

CFDs O(n2) O(n2) Yes
CINDs O(1) PSPACE-complete Yes
eCFDs NP-complete coNP-complete Yes

CFDs + CINDs undecidable undecidable No

Table 1: Complexity and finite axiomatizability

• NP-complete and coNP-complete for eCFDs, respectively;

• undecidable for CFDs and CINDs taken together. 2

In practice, the relational schema is often fixed, and only depen-
dencies vary and are treated as the input.

Theorem 4.5 [36, 20]: For CFDs and CINDs defined on a prede-
fined, fixed relational schema,

• the consistency and implication problems are in quadratic
time for CFDs; and

• the implication problem is PSPACE-complete for CINDs. 2

Axiomatizability. Armstrong’s Axioms for FDs can be found in al-
most every database textbook, and are fundamental to the implica-
tion analysis of FDs. For CFDs and CINDs the finite axiomatizability
is also important, as it reveals insight into implication analysis and
helps us understand how cleaning rules interact with each other.
This suggests that we find a finite set I (resp. I′) of inference

rules that is sound and complete for implication analysis of CFDs
(resp. CINDs), i.e., for any set Σ of CFDs (resp. CINDs) and a CFD
(resp. CIND) ϕ, Σ |= ϕ iff ϕ is provable from Σ using I (resp. I′).
For CFDs and CINDs taken separately, they are finitely axiomati-

zable. However, just like their traditional counterparts, when CFDs
and CINDs are taken together, there exists no finite axiomatization.

Theorem 4.6 [36, 20]: (a) There exist sound and complete finite
inference systems for CFDs and CINDs taken separately. (b) CFDs
and CINDs taken together are not finitely axiomatizable. 2

We compare the complexity bounds for static analyses of CFDs,
eCFDs and CINDs with their traditional counterparts in Table 1,
where n denotes the size of input dependencies.

Propagation. Another important issue concerns dependency prop-
agation (a.k.a. view dependencies [1]). Consider two classes of
dependencies, referred to as source dependencies and view depen-
dencies, respectively. The dependency propagation problem is to
decide, given a view σ defined on relational sources R and a set Σ
of source dependencies onR, whether or not a view dependency ϕ
is propagated from Σ via σ, denoted by Σ |=σ ϕ, i.e., whether for
any instance D of R that satisfies the given source dependencies
Σ, the view σ(D) is guaranteed to satisfy the view dependency ϕ.
The need for dependency propagation analysis has long been

recognized [52, 53]. For conditional dependencies, the propaga-
tion analysis is particularly important for data exchange, integra-
tion and cleaning. Indeed, dependencies on data sources often only
hold conditionally on the view, as illustrated by the example below.

Example 4.2: Consider three data sourcesR1, R2 andR3, contain-
ing information about customers in the UK, US and Netherlands,
respectively. The following source FDs are defined on the sources:

f3: R1: [zip] → [street], f3+i: Ri: [AC] → [city],



where AC indicates area code, and i ∈ [1, 3].
Denote by Σ0 the set consisting of these FDs. Define a view

σ0 that integrates data from the sources, in terms of a union of
conjunctive queries. The view schema, denoted byR, has attributes
zip, street,AC, city and in addition, it carries a country code (CC)
attribute. Then one can expect neither Σ0 |=σ0

f3 nor Σ0 |=σ0

f3+i. Indeed, f3 does not hold on, e.g., the data from theR2 source.
Moreover, although f3+i holds on each individual source Ri, it
may not hold on the view because, e.g., 20 is an area code in both
the UK and Netherlands, for London and Amsterdam, respectively.
In contrast, Σ0 |=σ0

ϕ7 and Σ0 |=σ0
ϕ8 for CFDs ϕ7 and ϕ8:

ϕ7: R([CC, zip] → [street], T7), ϕ8: R([CC,AC] → [city], T8),

where T7 contains a pattern tuple (44, ‖ ), i.e., in the UK, zip code
uniquely determines street, and T8 consists of pattern tuples (c,
‖ ), when c ranges over 44, 31 (Netherlands) and 01 (the US). In
other words, f3 and f3+i hold conditionally on the view. 2

Propagation from FDs to FDs has been studied long ago (e.g.,
[52, 53]). It is known that for views expressed in relational algebra,
the problem is undecidable [52]. It is generally believed that
for source FDs, view FDs, and views defined as an SPCU query
(union of conjunctive queries), the problem is in PTIME (cf. [1]).
The results below, taken from [37], give complexity bounds for
propagation from CFDs to CFDs. In particular, it shows that in
the general setting, i.e., when finite-domain attributes may be
present, the problem already becomes coNP-complete for source
FDs, view FDs, and views defined as an SC query (with selection
and Cartesian product operators); in other words, the PTIME
result cited above for FD propagation only holds in the absence of
finite-domain attributes.

Theorem 4.7 [37]: The dependency propagation problem is

• in PTIME for SPCU views, source CFDs and view CFDs, in the
absence of finite-domain attributes;

• coNP-complete in the general setting, for

– source FDs, view FDs, and SC views;
– source CFDs, view CFDs, and SPCU views, and views
defined with a single S, C or P (projection) operator. 2

4.2 Reasoning about Matching Dependencies

We next study implication analysis of MDs. Recall that the
semantics of MDs is defined w.r.t. domain-specific similarity and
matching operators. The implication analysis of MDs aims to de-
duceMDs that are logical consequences of a given set ofMDs, inde-
pendent of any particular similarity and matching operators used.
For a set Σ of MDs and another MD φ defined on a relational

schema R, we say that Σ entails φ, denoted by Σ |=m φ, if
for any instance D of R, and w.r.t. all similarity and matching
operators satisfying their generic axioms given in Section 3.2, if
D |= Σ, then D |= φ. That is, no matter how matching rules are
interpreted, if Σ is enforced, then so must be φ. In other words,
our implication analysis represents generic reasoning about the
domain-specific matching operator. The implication problem for
MDs is to determine, given any Σ and φ, whether or not Σ |=m φ.

Example 4.3: Consider a set Σ1 consisting of MDs φ1, φ2, φ3 and
φ4 specified in Example 3.1, and relative keys rck1, rck2 and rck3

given in Example 3.2. Then Σ1 |=m rcki for each i ∈ [1, 3]. 2

To get algorithmic insight into reasoning about MDs, a finite set
Im of inference rules has been proposed in [38], which is sound
and complete, i.e., for any set Σ of MDs and another MD φ, Σ |=m

φ iff φ is provable fromΣ using Im. Based on the inference system
a PTIME algorithm for deducing MDs has also been developed [38].

Theorem 4.8 [38]: (a) There exists a finite inference system that
is sound and complete for MDs. (b) The implication problem for
MDs is in PTIME. 2

Based on the inference system, an effective method can be de-
veloped for deducing RCKs from a set of known MDs [38], assum-
ing that the containment relationship of similarity relations in Θ is
known (excluding ⇋; see Section 3.2). Preliminary experimental
results [38] tell us that derived RCKs indeed improve the quality
and efficiency of various object identification methods.
Generic reasoning over similarity and matching operators may

miss implications that hold for a particular application. A topic
for future work is to explore possible axiomatization of practical
classes of similarity and matching operators.

5. Improving DataQuality with Dependencies
Capturing inconsistencies is just a first step toward improving

data quality. The next question concerns how to deal with incon-
sistencies and errors that emerge as violations of dependencies.
Three approaches have been put forward to handling inconsistent

data: data repairing, consistent query answering, and finding con-
densed representations of all repairs. The first two methods were
formally introduced in [7], and the third one was first studied in [6,
47, 68]. Most work on these three topics focused on traditional FDs,
INDs, full dependencies, universal constraints, as well as denial
constraints (see Section 2.3). Universal constraints are an extension
of full dependencies, of the form: ∀x1 . . . xm (φ(x1, . . . , xm) →
ψ(x1, . . . , xm)); while φ is a conjunction of relation atoms, ψ is
a disjunction of relation atoms and built-in predicates. For condi-
tional dependencies only data repairing is studied [28], using CFDs.
In this section we present an overview of these approaches. We

focus on main results and refer the reader to recent surveys [12, 14,
24, 26] for formal and comprehensive presentations of these topics.

5.1 Data Repairing

Given a set Σ of dependencies and an instance D of a schema
R, data repairing is to find a candidate repair ofD w.r.t. Σ, i.e., an
instance D′ of R such that D′ |= Σ and moreover, D′ minimally

differs from the original database D. That is, we edit D to fix the
errors and make the data consistent. Data repairing, a.k.a. data rec-
onciliation, imputation and cleaning, is the method that US national
statistical agencies have been practicing for decades [40, 69].
The formal statement and complexity of data repairing highly

depend on what repair model and dependencies are used.

Repair models. Repair models studied in the literature include:

X-repair [25]: a maximal subset D′ ⊆ D such that D′ |= Σ.
Assuming that the information in D is inconsistent but complete,
this model allows tuple deletions only.

S-repair [7]: a database D′ such that D′ |= Σ and (D \ D′) ∪
(D′ \ D) is minimal. Assuming that D is neither consistent nor
complete, this model allows both tuple deletions and insertions.

U-repair [68, 16, 57]: a database D′ such that D′ |= Σ and
moreover, for a fixed numerical aggregation function cost over dis-
tances and accuracy of attribute values in D and D′, cost(D,D′)
is minimal. This model supports attribute value modifications.

Observe that when only denial constraints are involved, X-repair
and S-repair coincide, since tuple insertions do not help when it
comes to resolving violations of denial constraints.
Several other repair models can be found in [57, 23].

Repair checking. No matter what repair semantics is considered,
data repairing is essentially an optimization problem. Its associated



decision problem is to determine, given Σ, D and an instance D′

of R, whether or not D′ is a repair of D w.r.t. Σ. This problem is
referred to as the repair checking problem [26].
The analysis of repair checking is nontrivial, as shown by the

following data complexity results.

Theorem 5.1 [25, 16, 67]: The repair checking problem is

• in PTIME for full dependencies and S-repair [67];
• coNP-hard for universal constraints [67], and in coNP for any
FO constraints (cf. [26]), for S-repair;

• in PTIME for FDs and acyclic INDs taken together, for X-
repair [25];

• in PTIME for INDs and X-repair [25];
• coNP-complete for one FD and one IND taken together, for
X-repair [25];

• NP-complete for either a fixed set of INDs or a fixed set of
FDs, for U-repair with the cost function given below [16]. 2

Repairing algorithms. To clean a large dataset D, manually edit-
ing the data is unrealistic. Indeed, manually cleaning a sample of
census data could easily take months by dozens of clerks [69]. This
highlights the need for (semi-)automated repairing tools.
It is nontrivial to develop an algorithm that always efficiently

finds accurate repairs. The example below, taken from [8], shows
that even for a single key, there may be exponentially many repairs
(see, e.g., [1] for the definition of keys and primary keys).

Example 5.1: Consider a relation schema R(A,B), a family of
instances Dn of R such that Dn = {(ai, b), (ai, b

′) | i ∈ [1, n]},
and a key A → B, where b and b′ are distinct. Then each Dn has
2n tuples and 2n repairs, for S-repair and X-repair alike. 2

Among the repair models reviewed above, U-repair is often used
in practice (e.g., [40, 69]). Indeed, in real-life data one often finds
that in an inconsistent tuple, only some fields contain errors. It is
more reasonable to fix these fields rather than remove the entire
tuple, to avoid loss of information.
An immediate question concerns what values should be changed

and to what values they should be changed. The decision should be
based on both the accuracy of the attribute values to be modified,
and the “closeness” of the new value to the original value.
Below we present a simple cost metric, motivated by an approach

proposed for use in US national statistical agencies [40, 69]. As-
sume that a weight is associated with each attributeA of each tuple
t in D, denoted by w(t, A) (if w(t, A) is not available, a default
value is used). The weight indicates the confidence in the accu-
racy placed by the user in t[A], and can be propagated via trans-
formations (provenance analysis [22]). Assume a distance function
dis(v, v′) for values v, v′ in the same domain, with lower values
indicating greater similarity. The cost of changing the value of an
attribute t[A] from v to v′ can be defined as:

cost(v, v′) = w(t, A) · dis(v, v′).

Intuitively, the more accurate the original t[A] value v is and more
distant the new value v′ is from v, the higher the cost of the change
is. The cost of changing the value of a tuple t to t′ is the sum of
cost(t[A], t′[A]) for A ranging over all attributes in t in which the
value of t[A] is modified. The cost of changing D to D′, denoted
by cost(D,D′), is the sum of the costs of modifying tuples inD.
Based on this metric, heuristic repairing algorithms have been

developed for traditional FDs and INDs taken together [16], and for
CFDs alone [28]. For a restricted (local) class of denial constraints,
an approximation algorithm is also in place [58]. Another metric
was proposed in [13] for repairing numerical values.

Remark. The cost metric given above is rather primitive. In par-
ticular, for practitioners it does not provide any guidance for where

one should draw new values from. One may use values in the ac-
tive domain of the given dataset D, guided by statistical analysis.
A more reasonable way is to conduct repairing based on master
data (reference data) [30, 62], i.e., a collection Dr of data for an
enterprise that has been cleaned, whenever available. This is, how-
ever, nontrivial. At the very least this involves object identification
to match tuples in Dr and those in D that refer to the same ob-
ject. Add to this structural heterogeneity, when Dr and D have
different schemas. To this end, matching dependencies and rela-
tive candidate keys may help us conduct data repairing and object
identification in a uniform dependency-based framework.
As observed by [14, 25], data repairing is related to belief revi-

sion, for the computation of the models of a revised theory [70]. It
is also related to the study of satisfaction families (e.g., [45, 49]), in
particular for extending a partially-specified table to a completely-
specified table in order to satisfy a given set of FDs [45].

5.2 Consistent Query Answering

Given a set Σ of dependencies, an instance D of a schema R,
and a query Q, consistent query answering aims to return certain
answers to Q in D w.r.t. Σ, i.e., tuples that are in the answers to
Q in each repair of D w.r.t. Σ, without editing D. The consistent
query answering problem is to determine, given Σ, D, Q and a
tuple t, whether or not t is in the certain answers toQ inD w.r.t.Σ.
One can draw analogies between consistent query answers and

certain answers studied for incomplete information (e.g., [50, 46];
see [61] for a survey), and certain query answers in data integra-
tion [56]. What distinguishes the notion of consistent query an-
swers from certain answers is its focus on repair minimality: only
answers in repairs are returned, where repairs are required to min-
imally differ from the original D, regardless of what repair model
is used. In contrast, certain answers on incomplete information are
answers in all possible worlds, and certain answers in data integra-
tion (GAV) are answers over all source database instances that are
consistent with a view, without any minimality requirement.
As pointed out by [7], another notion of consistent query answers

was proposed in [21], in terms of minimal (propositional) logic that
precludes refutation proofs, without requiring repair minimality.

Complexity bounds. The complexity of the consistent query an-
swering problem is determined by the repair model, constraint lan-
guage and query language involved. A number of data complexity
bounds have been established in various settings.
We start with results established for X-repair and conjunctive

queries with built-in predicates =, 6=, <,>,≤,≥.

Theorem 5.2 [25, 43, 67]: For X-repair and conjunctive queries,
the consistent query answering problem is

• in PTIME for denial constraints and quantifier-free conjunc-
tive queries [67];

• in PTIME for primary keys and a restricted class Ctree of con-
junctive queries [43];

• coNP-complete for denial constraints, and is already coNP-
hard for a single primary key, for boolean conjunctive queries
(in the absence of free variables) [25];

• in PTIME for INDs alone [25];
• Πp

2-complete for FDs and INDs taken together [25]. 2

Here Ctree is defined in terms of the notion of the join graph of
a query [43]. A conjunctive query is in Ctree if (a) it has neither
built-in predicates nor repeated relation atoms; (b) its join graph
is a forest, and (c) every non-key to key join is full, i.e., the join
attributes cover the entire key (see [43] for the detailed definition).
The PTIME bounds given above are mostly developed by follow-

ing a query rewriting approach proposed in [7]. Given a set Σ of



dependencies and an FO queryQ, the idea of [7] is to rewriteQ into
an FO query QΣ such that for every instance D, the set of answers
to QΣ inD is precisely the set of consistent answers to Q w.r.t. Σ.
The results of Theorem 5.2 on denial constraints (including keys)

carry over to S-repair. For S-repair, consistent query answering has
been studied for queries beyond conjunctive queries. We include
below complexity bounds claimed in [24], for various fragments of
relational algebra. We denote a fragment C by listing the operators
supported by C: the presence or absence of σ (selection), π (pro-
jection), × (Cartesian product), ∪ (union) and − (set difference).

Theorem 5.3 [24, 25, 67]: For S-repair, fragments of relational
algebra and classes of universal constraints, the data complexity
bounds on the consistent query answering problem include:

• C(σ,×,−): Πp
2-complete for universal constraints [67];

• C(σ,×,−,∪): in PTIME for denial constraints [25], and Πp
2-

complete for universal constraints;

• C(σ, π): in PTIME for primary keys [25], coNP-complete
for denial constraints, and Πp

2-complete for universal con-
straints [67];

• C(σ, π,×): coNP-complete for primary keys [25], and Πp
2-

complete for universal constraints;

• C(σ, π,×,−,∪): coNP-complete for primary keys, and Πp
2-

complete for universal constraints. 2

In the presence of INDs, the analysis of consistent query answer-
ing becomes more intriguing. In particular, the problem becomes
undecidable for FDs and INDs taken together.

Theorem 5.4 [23]: For S-repair and union of conjunctive queries,
the consistent query answering problem is

• Πp
2-complete for keys and non-key conflicting INDs taken to-
gether; and

• undecidable for keys and INDs taken together. 2

Here non-key conflicting INDs are those INDs that have limited
interaction with keys (see [23] for the definition).

Remark. Consistent query answering has also been studied for
aggregate queries and FDs [6, 42], for aggregate queries and denial
constraints [13], as well as for variants of S-repair models [23, 13,
57]. Detailed discussions can be found in [12, 24, 26].
The study of consistent query answering has focused on tradi-

tional FDs, INDs and denial constraints. As we have seen earlier,
CFDs and CINDs are often able to capture more inconsistencies and
errors than their traditional counterparts. It is interesting to extend
consistent query answering to conditional dependencies.

5.3 Condensed Representations of All Repairs

Consistent query answering is somewhat conservative since it
only provides a “lower bound” on the information contained in a
database [24]. Worse still, its high complexity bounds hamper its
practical use. When it comes to data repairing, it is unlikely to find
repairing algorithms with guaranteed precision and recall (i.e., the
ratio of the number of errors correctly fixed to the total number of
changes made, and the ratio of the number of errors correctly fixed
to the total number of errors in the database, respectively).
The limitations of data repairing and consistent query answering

methods suggest that we explore alternative approaches to handling
inconsistent data. Below we briefly present an approach, by devel-
oping finite, succinct representations of all repairs of a database.
The idea of condensed representations is closely related to the no-
tion of strong dependency systems studied for incomplete informa-
tion, which aims to represent, in a single table, all possible worlds
that satisfy a given set of constraints, such that queries in practical
languages can be answered using the table (see, e.g., [61]).

A notion of nuclei is proposed in [68]: given a database D and
a set Σ of dependencies, a nucleus represents all U-repairs of D
w.r.t. Σ in terms of a single tableau with variables. More specifi-
cally, the minimality of U-repairs is captured by means of the sub-
sumption of tableaux. It is shown [68] that for any satisfiable set Σ
of full dependencies (EGDs or TGDs) and any databaseD, a nucleus
G can be computed such that for any conjunctive queryQ, the con-
sistent answers to Q in D w.r.t. Σ can be obtained by evaluating Q
on G. Moreover, the nucleus G is homomorphic to all U-repairs;
and for any other tableau that is homomorphic to all repairs, it is
also homomorphic to G. In this sense one can draw the analogy of
nuclei to the notion of cores studied for data exchange [54]. Un-
fortunately, for a fixed set of full dependencies, the nucleus of a
database D can be exponentially large, in the size of D [68]. The
space complexity hampers the applicability of nuclei.
Another approach to representing repairs is by means of answer

sets of disjunctive logic programs with strong negation [6, 47],
along the same lines as logical databases studied for incomplete in-
formation [61]. This approach is capable of dealing with FO queries
and full dependencies, at the price of high complexity.
As another revision of techniques for incomplete information, a

notion of world-set decompositions (WSDs) has recently been pro-
posed to represent finite sets of possible worlds, by means of the
product of decomposed relations [4, 5]. It is shown [5] that an
extension of WSDs is as expressive as conditional tables, and is
exponentially more succinct than unions of v-tables (see [46, 50]
for the definitions of conditional tables and v-tables). They yield
a strong representation system for relational algebra (see, e.g., [1,
61] for strong representation systems). Although WSDs do not in-
volve dependencies, query constructs are proposed for specifying
repairs w.r.t. keys as WSDs [4]. However, it remains to be explored
whetherWSDs can be extended to yield a condensed representation
of repairs, because tuples in decomposed relations are assumed to
be independent across relations, which is not the case for repairs.

6. Open Research Issues
We argue that dependencies should logically become an essen-

tial part of data quality technology. Nonetheless, to find practical
use of dependencies in data-quality tools, classical dependencies
often need to be revised and extended. The area of dependency-
based data-quality techniques is a rich source of questions and vi-
tality. Indeed, the study of “right” application-oriented constraint
languages for improving data quality is still in its infancy. Further-
more, to resolve inconsistencies that emerge as violations of depen-
dencies, effective methods have to be developed, such as efficient
repairing algorithms with performance guarantee, practical consis-
tent query answering algorithms, and space-efficient representation
systems for repairs. In particular, data repairing and object identi-
fication interact with each other, and the two processes should be
combined. This highlights the need for, e.g., the analyses of condi-
tional dependencies and matching dependencies taken together.
The study of dependencies for improving data quality interacts

with several other popular lines of research. The connections also
give rise to a number of interesting and practical research issues.

Incomplete information. There is an intimate connection between
the study of inconsistent data and incomplete information (see [1,
61] for surveys on incomplete information). As remarked in Sec-
tion 5, techniques for handling inconsistent data by and large orig-
inated from the study of incomplete information. This connection
deserves a full treatment. In particular, representation systems [46,
50] developed for incomplete information may shed light on the
study of “strong dependency systems” [61] for representing repairs.



Another interesting aspect is the completeness of information
w.r.t. queries: whether a query can be answered given the informa-
tion available. As an example, consider a query to find the medical
family history for a group of patients. To obtain accurate analyti-
cal results, the query needs to return the medical history of the last
three generations of each patient in the group. Given the query, one
wants to find out whether the necessary information is available for
each patient. Interesting results in this direction are reported in [2],
for XML data with partial information. We envisage that extensions
of INDs and TGDs, reinforced with appropriate conditions (e.g., for
specifying the group of patients), may help in checking and assur-
ing the completeness of information w.r.t. queries.

Probabilistic data management. Probabilistic databases also aim
to manage imprecise and uncertain data, by associating probabil-
ities with each tuple (see [29] for a recent survey). Inconsistent
data can be recorded in a probabilistic database, as possible worlds,
upon the availability of meaningful probabilities. Furthermore,
probabilistic databases may yield a representation system for pos-
sible repairs, under certain extensions, which may also allow us
to “rank” various repairs. Based on probabilistic databases, con-
sistent query answering has been studied for primary keys and a
class of conjunctive queries [3]. The connection between proba-
bilistic databases and inconsistent data needs further investigation.
In particular, a probabilistic database is often assumed to be disjoint
independent, i.e., any set of possible tuples with distinct keys is in-
dependent [29]. This is, however, often not the case for inconsistent
data in the presence of INDs, let alone CINDs.

Data exchange and integration. Recently dependencies have also
enjoyed a revival for data exchange [54], which specifies schema
mappings in terms of TGDs, defined on a target schema or from a
source schema to a target schema. Similarly, mappings in a data
integration system can also be specified with TGDs (see [56] for a
comprehensive survey). As shown in Section 2.2, it is often more
reasonable to specify correspondences between source and target
schemas in terms of dependencies augmented with conditions. In-
deed, an extension of TGDswith data values has recently been stud-
ied for data exchange [34]. On the other hand, it is also interesting
to explore this extension of TGDs for improving data quality.
As already pointed out by [56], source data in real life is often

inconsistent or incomplete. It is important and practical to deal with
dirty data in data exchange and integration. First attempts to tackle
this issue are reported in, e.g., [18, 55]. Another way around this
is by means of “strong dependency systems” for representing all
source repairs, upon their availability. That is, instead of dealing
with an original inconsistent data source directly, one may want to
treat a condensed representation of all repairs as the source.

Provenance. To trace the origin of errors, determine the confidence
in the accuracy of data elements, and to ensure that corrections and
annotations added to data by experts are properly propagated dur-
ing data transformations, we need the analysis of data provenance
(a.k.a. data lineage; see [22] for a recent survey). In particular,
to decide whether a data element should be changed for repairing,
one may want to know where the data came from and why it got
there. While these issues have been studied for transformations de-
fined in terms of simple conjunctive queries, we need to explore
these further, for transformations specified in terms of dependen-
cies equipped with conditions.

Web data management. The study of data quality has mostly fo-
cused on relational data. There is no reason to believe that the scale
of the quality problem is any better for data on the Web. While data
repairing, consistent query answering and strong dependency sys-

tems are already hard for relational data, these issues become more
challenging for Web data and XML. Some preliminary results on
handling inconsistent XML data are reported in [41], as adaptations
of relational FDs, repairs and consistent query answering to XML.
It is known that to cope with the hierarchical structure of XML

data, traditional dependencies have to be revised, e.g., one needs
not only absolute constraints that hold on the entire document, but
also relative ones that hold only on certain sub-documents; more-
over, there are intricate interactions between XML constraints and
“type” specifications, e.g., DTDs [9, 39]. To handle inconsistent
XML data, we need to further extend these XML constraints with
patterns, and investigate their interactions with DTDs.
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