Using Partial Evaluation in Distributed Query Evaluation

Peter Buneman Gao Cong
University of Edinburgh University of Edinburgh &

Wenfei Fan ∗ Anastasios Kementsietsidis
University of Edinburgh University of Edinburgh

{opb, gcong, wenfei, akements}@inf.ed.ac.uk

ABSTRACT

A basic idea in parallel query processing is that one is prepared to do more computation than strictly necessary at individual sites in order to reduce the elapsed time, the network traffic, or both in the evaluation of the query. We develop this idea for the evaluation of boolean XPath queries over a tree that is fragmented, both horizontally and vertically over a number of sites. The key idea is to send the whole query to each site which partially evaluates, in parallel, the query and sends the results as compact boolean functions to a coordinator which combines these to obtain the result. This approach has several advantages. First, each site is visited only once, even if several fragments of the tree are stored at that site. Second, no prior constraints on how the tree is decomposed are needed, nor is any structural information about the tree required, such as a DTD. Third, there is a satisfactory bound on the total computation performed on all sites and on the total network traffic. We also develop a simple incremental maintenance algorithm that requires communication only with the sites at which changes have taken place; moreover the network traffic depends neither on the data nor on the update. These results, we believe, illustrate the usefulness and potential of partial evaluation in distributed systems as well as centralized XML stores for evaluating XPath queries and beyond.

1. INTRODUCTION

Partial evaluation (aka. program specialization [17]) has been studied in the context of programming languages as a general optimization technique. Intuitively, given a function \(f(s, d) \) and part of its input \(s \), partial evaluation is to specialize \(f(s, d) \) with respect to the known input \(s \). That is, it performs the part of \(f \)'s computation that depends only on \(s \), and generates a partial answer, i.e., a (residual) function \(f' \) that depends on the as yet unavailable input \(d \).

Partial evaluation has been proven useful in a variety of areas including compiler generation, code optimization and dataflow evaluation (see [17] for a survey). The last of these

As an example, consider the simple Boolean XPath query \(Q = [//A \land //B] \) over the XML tree \(T \) depicted in Fig. 1(a). We defer the discussion of the physical representation of \(T \), but assume that \(T \) consists of four subtrees, or fragments, \(R, X, Y, Z \), and that nodes with tags \(A \) or \(B \) only occur in fragments \(Z \) and \(Y \) as shown in Fig. 1(a). A sophisticated algorithm would do a single depth-first traversal of \(T \) computing \([//A] \) and \([//B] \) simultaneously [18], and visit each node exactly once, something we cannot expect to improve upon.

However, our recursive traversal visits fragments \(R, X, Z, X, Y, R \) in that order; it makes \(three \) visits to fragment \(R \) and \(two \) visits to fragment \(X \). Could we devise an algorithm that makes \(one \) visit to each fragment? Observe that the evaluation of the query \(Q \) can be readily treated as the Boolean function \(Q(R, X, Y, Z) \), i.e., one whose value depends on all four fragments of the tree \(T \). What does this function look like? Suppose that \(r_A, x_A, y_A \) and \(z_A \) are variables denoting the results of \([//A] \) respectively evaluated at the roots \(r \) of fragment \(R \), \(x \) of fragment \(X \), \(y \) of fragment \(Y \) and \(z \) of fragment \(Z \), and that \(r_B, x_B, y_B, z_B \) are defined similarly. Then, it is not hard to see that:

\[
Q(R, X, Y, Z) = (r_A \lor x_A \lor y_A \lor z_A) \land (r_B \lor x_B \lor y_B \lor z_B)
\]

We can compute the results of \([//A] \) and \([//B] \) (the values of the variables) independently, and in parallel, in each fragment by accessing it only once. Each fragment returns the values of the corresponding variables and each time we
receive such values we use them to compute a partial answer for \(Q \). Given that nodes with tags \(A \) and \(B \) only occur in fragments \(Z \) and \(Y \), the execution of \(Q \) returns \((z_1, z_2) = (1, 0) \) on fragment \(Z \), and \((y_1, y_2) = (0, 1) \) on \(Y \).

A partial answer is computed each time values are received from some fragment. One order might compute the answer faster than some others but except this, order is of no consequence. Another remark is that some of the returned values are truth values while others are Boolean expressions. Irrespective of the order and type of returned values, the process uses the returned values from all fragments to compute the answer to \(Q \) which, in this case, is true. This is a simple example of partial evaluation.

There are a number of database scenarios in which partial evaluation could be an effective optimization technique. For example, as in PDOM [15], suppose a large XML tree is stored in secondary storage and it is split into fragments. In this setting, the partial evaluation approach can save us the cost of two swaps of fragment \(R \) and one swap of fragment \(X \). The benefit is already evident even though there is no parallelism involved in this example.

A more interesting scenario involves fragmented XML trees that are geographically or administratively distributed over the Internet [4], a setting commonly found in, e.g., e-commerce, Web services, or while managing large-scale network directories [16]. More specifically, let us consider the XML tree shown in Fig. 1(b), which represents a person’s stock portfolio. The person trades stocks through various brokers in possibly overlapping markets. For each stock, the tree stores its code, the price paid by the person to buy the stock, and the price at which the person can (currently) sell the stock. The same stock might be traded through a different broker at different periods of time and for a different price. For example, the GOOG stock is purchased both through Merill Lynch and through Bache. Although conceptually this is a single XML tree, in reality it is inherently distributed over the Internet. The figure uses dashed lines to show one possible fragmentation. For example, fragment \(F_0 \) includes the root of the tree and all the stock data from broker Bache in the NYSE market. This fragment might be stored locally in the persons’ desktop. Broker Merill Lynch might require that all trade data are accessed through its own servers and thus fragment \(F_1 \) is stored there. In turn, the NASDAQ market might require that all its own data are only remotely accessed and only through recognized brokers.

Therefore fragments \(F_2 \) and \(F_3 \) are both stored in its own servers. The NYSE market imposes no such restrictions and so its trade data can be stored locally by Bache (and Merill Lynch, although not shown in the figure). Notice that we make no assumptions about the size of fragments, their storage location, and the number of fragments assigned to each location. In a variety of applications, we have no control over these parameters and their values are imposed on us by the environment.

Assume that the portfolio owner wants to know whether the GOOG stock reaches a selling price of $376. To do so, she must execute the boolean query \(Q = \{/stock/code = "GOOG" \land sell = 376\} \). There are two popular alternatives to execute such a query. The first alternative requires for the different sources to create a stream of data to the user and the query is executed over the received stream. There are two main concerns with this approach: (a) A large part of the tree that is later deemed irrelevant to the query, including the subtree for the NYSE market and the information for the YHOO and AAPL stocks, needs to be sent to the user, causing increased network traffic. The user might want to execute the query and be notified on-the-go, using a mobile device, like a cell phone. Streaming large data sets to the cell phone is particularly unrealistic. (b) Business or personal data are typically kept local at trusted sites, and are not shipped to other sites for security or privacy concerns. In industry and research, similar concerns have generated increasing interest, and a preemergent shift, towards shipping the processing (queries) to the data, instead of shipping (streaming) the data to the processing [11].

The second alternative is to use a publish-subscribe system. Assuming that the tree in Fig. 1(b) is part of such a system, the user needs to issue query \(Q \) over the system and whenever the query predicate is satisfied, the user is notified. Publish-subscribe systems are more in-line with moving the processing to the data. However, any publish-subscribe system implementing the optimal centralized algorithm in XPath query processing [18] would require a single depth-first traversal of the document tree visiting, in our example, twice the NASDAQ server.

In response to these, we propose partial evaluation as a practical query processing technique since it ensures that each remote site is visited only once. Moreover, while a depth-first traversal serializes the processing of the different fragments, partial evaluation can speed-up query processing since fragments at different sites are processed in parallel. Unlike streaming, partial evaluation executes the queries where the data reside, thus minimizing network traffic and facilitating the execution of (complex) queries over devices with limited bandwidth.

Our first contribution consists of several algorithms for evaluating Boolean XPath queries over a fragmented tree, with the following performance guarantees. (a) Each site holding a fragment is visited only once. (b) The total network traffic is bounded by the size of the query and the number of fragments, and is independent of the size of the XML document. (c) The total amount of computation performed at all sites holding a fragment is comparable to the computation of the optimal centralized algorithm over the whole tree. (d) The algorithm does not impose any condition on how the XML documents are fragmented, what the sizes of these fragments are, or how they are assigned to sites.

Our second contribution is a simple incremental maintenance algorithm for Boolean XPath views. Cached views and their incremental maintenance are important for efficient query answering [13, 25]. Our algorithm has the following features: (a) The computation is localized so that only the site where the updates take place is visited, and reevaluation is only conducted on the updated fragment; no other sites or fragments are visited. (b) The total network traffic depends on neither the data nor the update.

Our third contribution is an experimental study evaluating our algorithms versus optimal centralized approaches. Our experimental results show that our technique outperforms, by a substantial factor in all practical cases, existing centralized algorithms for evaluating XPath queries. These yield the first Boolean XPath evaluation and incre-
mental maintenance algorithms with performance guarantee in distributed systems. The technique generalizes to data selection XPath queries, as be seen in Section 8; we consider Boolean queries in this paper to focus on the main idea of partial evaluation and to simplify the discussion. As mentioned earlier, the partial evaluation technique is more general than this application. In fact, other proposals for distributed query evaluation can be seen as related to partial evaluation. We shall discuss these in Section 7.

Organization. Section 2 discusses XML tree fragmentation and reviews Boolean XPath. Section 3 presents our main algorithms for processing Boolean XPath queries based on partial evaluation. Variations of the basic algorithms are given in Section 4. Section 5 develops our incremental maintenance algorithm for XPath views. An experimental study is provided in Section 6, followed by related work in Section 7 and conclusions in Section 8.

2. BACKGROUND

We next discuss the distribution of XML documents and present the class of XPath queries studied in this paper.

2.1 XML Tree Fragmentation

We allow an XML tree T to be decomposed into a collection \mathcal{F} of disjoint trees, or fragments F_i, which are distributed to and stored in different sites. A tree may be fragmented for administrative reasons (e.g., different sites are inherently responsible for maintaining different parts of the tree), or for efficiency [4] (e.g., the tree might be too big to store in a single site). We do not impose any constraints on the fragmentation: we allow for an arbitrary “nesting” of fragments. Each fragment can appear at any level of the tree, and different fragments may have different sizes (in terms of number of nodes). Furthermore, we do not impose any constraints on how the fragments are distributed: this is determined by the system. Hence our fragmentation setting is the most generic possible, making our solutions applicable in almost every conceivable setting. For instance, Fig. 2(a) shows the decomposition of the tree in Fig. 1(b) in four fragments. To the left of Fig. 2(b) we summarize this decomposition in a structure called the fragment tree. Note that the fragment F_1 is itself fragmented.

Next, we define a few useful notations about fragments. The fragment that contains the root of the tree T, i.e., the fragment at the root of the fragment tree, is called the root fragment. In Fig. 2, this is fragment F_0. Given two fragments F_i and F_j, we say that F_j is a sub-fragment of F_i if F_j is a child of F_i in the fragment tree. If F_j is a sub-fragment of F_i, then there exists a node $v \in F_j$ such that the root node w of F_j is a child of v in the original tree T. In Fig. 2(b), fragment F_1 is a sub-fragment of F_0 and in the tree of Fig. 1(b) there is an edge between the broker node of F_0 and the root node market of F_3.

We maintain the relationship between a fragment and its sub-fragments to preserve the structure of the original tree T. To do this, we add to the v node of fragment F_j a virtual child node with label F_k. While traversing fragment F_j, we know that if we reach the virtual node F_k, we need to “jump” to fragment F_k in order to continue the traversal. In Fig. 2(a), fragment F_0 has the virtual node F_1 which in turn has the virtual node F_2. Finally, we refer to a fragment that has no sub-fragments as a leaf fragment. In Fig. 2(b), both fragments F_2 and F_3 are leaf fragments.

![Figure 2: Tree fragmentation](image)

As fragments are distributed among sites, it is important to keep track of where the different fragments reside. We assume that there is a mapping function h, which encodes the assignment of fragments to sites (sources). To the right of Fig. 2(b) we show a structure called the source tree, which is induced from the fragment tree and the function h.

The source tree of a tree T, denoted by \mathcal{S}_T, shows the names of sites where the fragments of T are stored. From the source tree we can see that both fragments F_2 and F_3 are stored in the same site S_2, the NASDAQ site.

The source tree \mathcal{S}_T is the only structure that our XPath evaluation and incremental maintenance algorithms require. No other information about either the fragmentation or the distribution of the XML tree is needed. The fragment tree was introduced to illustrate fragmentation, and is neither maintained nor used by our system.

2.2 Boolean XPath

We consider a class of Boolean XPath queries, denoted by \mathcal{X}_{BL}. A query $[q]$ in \mathcal{X}_{BL} is syntactically defined as follows:

$$q := p | p/\text{text()} = \text{str} | \text{label()} = A | \neg q | q \land q | q \lor q,$$

$$p := \epsilon | A | * | p/\text{p/} p | p/p | p[q],$$

where str is a string constant, A is a label (tag), \wedge, \land, \lor are the Boolean negation, conjunction and disjunction operators, respectively; p is a path expression defined in terms of the empty path ϵ (self), label A, wildcard $*$, the descendant-or-self-axis ‘/’, child ‘.’, and qualifier $[q]$. For //, we abbreviate $p//p//p$ as $p_1//p_2//p_3$.

For example, $[/\text{broker}/*/\text{stock}/\text{code}/\text{text()} = \text{"GOOG"} \land \neg (//\text{stock}/\text{code}/\text{text()} = \text{"yaho"})]$ is a query in \mathcal{X}_{BL}.

Note that path expressions p in \mathcal{X}_{BL} subsume tree pattern queries and beyond, which are commonly studied in the literature. As mentioned earlier, queries in \mathcal{X}_{BL} are widely used in, e.g., XML data dissemination for content-based filtering and routing of XML documents. Although we consider Boolean queries, the technique generalizes to a larger class of queries, which are discussed in the conclusions.
At a context node \(v \) in an XML tree \(T \), the evaluation of a query \(q \) yields a truth value, denoted by \(\text{val}(q,v) \), indicating whether or not \(q \) is satisfied at \(v \). Specifically, (a) when \(q \) is a path \(p \), \(\text{val}(q,v) = \text{true} \) iff there exists a node reachable from \(v \) via \(p \); (b) when \(q \) is \(p/\text{text}() = \text{str} \), \(\text{val}(q,v) = \text{true} \) iff there is a node \(u \) reachable from \(v \) via \(p \) such that \(u \) carries text value \(\text{str} \); similarly when \(q \) is \(\text{label}() = A \): (c) when \(q \) is \(q_1 \land q_2 \), \(\text{val}(q,v) = \text{true} \) iff both \(\text{val}(q_1,v) \) and \(\text{val}(q_2,v) \) are \(\text{true} \); similarly when \(q \) is \(q_1 \lor q_2 \) or \(\neg q \).

On a centralized XML tree \(T \), i.e., when \(T \) is not decomposed and distributed, \(\text{val}(q,r) \) can be computed in \(O(|T| \cdot |q|) \) time \([10]\), where \(r \) is the root of \(T \).

To simplify the presentation we introduce two notation, which will be used in our algorithms given in later sections.

First, we rewrite each path \(p \) in an XML query \(q \) to a normal form \(\beta_1/\ldots/\beta_n \), where \(\beta_i \) is one of \(\epsilon \), \(* \), \(/ \) or \(\epsilon[q] \). This normalization can be achieved by using a linear-time function \(\text{normalize}(q) \), given inductively as follows:

- \(\text{normalize}(\epsilon) = \epsilon \); similarly for \(* \), \(/ \) and \(\text{label}() = A \);
- \(\text{normalize}(p_1/p_2) = \text{normalize}(p_1)/\text{normalize}(p_2) \);
- \(\text{normalize}(p[q]) = \text{normalize}(p)/\epsilon[\text{normalize}(q)] \);
- \(\text{normalize}(q_1 \land q_2) = \text{normalize}(q_1) \land \text{normalize}(q_2) \); similarly for \(q_1 \lor q_2 \) and \(\neg q \);
- \(\text{normalize}(p/\text{text}() = \text{str}) = \text{normalize}(p)/\text{text}() = \text{str} \);
- \(\epsilon[\text{normalize}(q_1) \land \text{normalize}(q_2) \ldots \land \text{normalize}(q_n)] \).

where the last rule is to combine a sequence of \(\epsilon \)'s into one. In the sequel we consider \(X_{XL} \) queries in the normal form.

Second, we use \(\text{QList}(q) \) to denote the list of all sub-queries of \(q \). Intuitively, \(q_1 \) is a sub-query of \(q \) if the parse tree of \(q_1 \) is a subtree of that of \(q \). We sort \(\text{QList}(q) \) in a topological order such that for any sub-queries \(q_1, q_2 \) of \(q \), if \(q_1 \) is a sub-query of \(q_2 \) then \(q_1 \) precedes \(q_2 \) in \(\text{QList}(q) \).

Example 2.1: Consider the \(X_{XL} \) query \(q \), where \(q \) is

\[
\langle /\text{stock}[\text{code}/\text{text}() = \text{"YHOO"}] \rangle,
\]\n
where \(\text{QList}(q) = \langle q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9, q_{10} \rangle \).

\[
\text{normalize}(\langle q \rangle) = \epsilon[\text{label}] = \text{stock} \land \text{normalize}(q) = \langle q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9, q_{10} \rangle.
\]

\[
q_1 = \text{label}() = \text{code},
q_2 = \langle /\text{text}() = \text{"YHOO"} \rangle,
q_3 = \text{q}_1 \land q_2,
q_4 = \epsilon[q_1],
q_5 = \epsilon[q_2],
q_6 = \epsilon[q_3],
q_7 = \epsilon[q_4],
q_8 = \epsilon[q_5],
q_9 = \epsilon[q_6],
q_{10} = \epsilon[q_7].
\]

Remark. Observe that both \(\text{normalize}(q) \) and \(\text{QList}(q) \) can be computed in \(O(|q|) \) time. As a result, the total size of sub-queries in the list \(\text{QList}(q) \) is bounded by \(O(|q|) \). Furthermore, for any XPath evaluation algorithm, to evaluate \(q \) it is necessary to evaluate sub-queries in \(\text{QList}(q) \).

3. DISTRIBUTED QUERY EVALUATION

Consider an \(X_{XL} \) query \(q \) submitted to a site \(S \), hereafter referred to as the coordinating site. The query is to be evaluated at the root of a fragmented and distributed XML tree \(T \). A naïve evaluation is to collect all the fragments of tree \(T \) identified by the source tree \(S_T \) at the coordinating site, and use a centralized algorithm, e.g., the algorithm of \([10]\). We refer to this approach as NaïveCentralized. This approach is efficient once the coordinating site has all the data. However, the price is that large fragments need to be sent over the network, each time a query needs to be executed. In addition, since the coordinating site must store these fragments during the evaluation of \(q \), the benefits gained by our ability to distribute large XML trees over a network are alleviated. Moreover, privacy and security concerns may prevent certain sites from releasing their data to another site.

A better solution, referred to as NaïveDistributed, is to customize a centralized evaluation algorithm so that it works in a distributed fashion. We know that a boolean XPath query can be evaluated on a single site via a single traversal of the tree \(T \). We can use the information from the source tree \(S_T \) to perform a distributed bottom-up traversal of tree \(T \). To do this, we need to pass certain information between the sites in the source tree \(S_T \), as the distributed computation is passed forth and back from a fragment \(F_i \) in site \(S_j \) to one of its sub-fragments \(F_k \) in site \(S_l \). For example, consider the fragment and source trees in Fig. 2(b). As we compute the query \(q \) for fragment \(F_i \) in site \(S_0 \), we need to pass the control of computation to fragment \(F_i \) in site \(S_1 \). At the same time, site \(S_2 \) has to wait for this computation to finish before it continues with fragment \(F_2 \) in site \(S_3 \). While this distributed algorithm does not require any transmission of fragments, it has two shortcomings. First, for a site \(S \), to finish processing its fragment \(F_j \), it has to \(\text{wait} \) for all the other sites that hold sub-fragments of \(F_j \) to finish. Therefore, the distributed algorithm actually follows a sequential execution and does not take advantage of parallelism. Second, a site is visited as many times as the number of fragments stored in it. In our example, site \(S_2 \) needs to be visited twice, since it holds fragments \(F_2 \) and \(F_3 \). For each of these visits, site \(S_2 \) has to exchange a number of messages, resulting in increased network traffic, and its processor has to switch context once per fragment.

To overcome these limitations, we propose next the Parallel Boolean XPath (ParBoX) evaluation algorithm, based on partial evaluation. The ParBoX Algorithm guarantees the following: (1) Each site is visited only once, irrespectively of the number of fragments stored in it. (2) Query processing is performed in parallel, on all the participating sites. (3) The total computation on all sites is comparable to what is needed by the best-known centralized algorithm. (4) The total network traffic, in any practical setting, is determined by the size of the query rather than the XML tree.

3.1 The ParBoX Algorithm

The algorithm is initiated at the coordinating site which, without loss of generality, we assume to be the site storing the root fragment of the tree \(T \) over which the \(X_{XL} \) query \(q \) is evaluated. The algorithm consists of three stages:

Stage 1: Initially (lines 1-2 of Procedure ParBoX in Fig. 3(a)), the coordinating site uses the source tree \(S_T \) to identify which other sites hold at least one fragment of tree \(T \). In our example, coordinating site \(S_0 \) uses source tree in Fig. 2(b) to identify sites \(S_1 \) and \(S_2 \).

Stage 2: The coordinating site along with all the sites identified in the first stage evaluate, in parallel, the same input query \(q \) on all their assigned fragments (Procedure evalQual, Fig. 3(b)). Since fragments are parts of the tree \(T \), query evaluation on each fragment returns a partial answer to the query \(q \).

Stage 3: Finally (lines 5-7 of Procedure ParBoX), the coordinating site collects the partial answers from all the
participating sites and all the fragments; it then composes them to compute the answer to query q.

We now describe the two crucial components of the algorithm: (a) how to compute partial answers in parallel (the second stage), and (b) how to assemble the partial answers to obtain the answer to query q (the third stage).

Partial evaluation. There is a dependency relation between partial evaluation processes for the query q on different fragments of the XML tree T. To see this, consider an efficient evaluation of q over T via a single bottom-up traversal of T. During the traversal, at each node v we compute the values at v of all the sub-queries QList(q) of query q, where QList(q) is described in Section 2.2. This computation requires the (already computed) values of the QList(q) sub-queries at the children of v. At the end of the traversal, the answer to query q is computed by the values of the QList(q) queries at the root of the tree. Specifically, the answer to q is the value of the last query in QList(q).

Consider now Fig. 2(a) which shows the fragments of the XML tree in Fig. 1(b). These are the trees over which the sites must compute the query q. Recall that in these fragments some of the leaves are virtual nodes, i.e., they are pointers to other fragments which reside in other sites. For example, in fragment F1 there is a virtual leaf node marked by F2, while fragment F2 has two virtual leaves, one for fragment F1 and one for F3. In accordance to the strategy given above, at each site S and for each fragment F, we need to perform a bottom-up evaluation of query q. But how can we compute, during the traversal, the values of the QList(q) sub-queries at the virtual nodes? The values of the QList(q) sub-queries are unknown for these nodes and, under normal circumstances, until we learn these values from another site we cannot proceed with the evaluation.

We propose a technique to decouple the dependencies between partial evaluation processes and thus avoid unnecessary waiting, by introducing Boolean variables, one for each missing value of each QList(q) sub-query at each virtual node. Using these variables, the bottom-up evaluation procedure is given in Fig. 3(b). Procedure bottomUp considers the root of a fragment F and a list qL of sub-queries which is essentially the QList(q) of the initial query q. Recursive calls of the procedure are used to perform the bottom-up traversal of the tree F (line 2). At each node v encountered, the procedure computes the “values” of qL at v and stores the results of the computation in a vector Vv which is of the same size as list qL. Note that these “values” are actually Boolean formulas with those variables introduced at the virtual nodes. The computation of the qL values at v requires the values of qL computed in the children and descendants of v. To cope with this, we save these values (lines 3-5) by maintaining only two additional vectors, namely vectors CV and DV, that are of the same size as vector Vv. Intuitively, for each sub-query q′ in qL, CV(q′) is true if and only if there exists some child u of v such that Vu(q′) is true, and similarly, DV(q′) is true if and only if either Vv(q′) is true or there exists some descendant w of v such that Vv(q′) is true.

Given a query q ∈ qL at a node v, the computation of the value of qL depends on the structure of qL. We consider different cases (lines 6-17) of the structure based on the normal form given in Section 2.2. For example, if query qL is of the form text() = str (line 10), then its value is true if

Procedure ParBox

Input: An XML query q and a fragmented, distributed tree T

Output: The boolean value ans of q over T

1. qT := QList(q);
2. S := retrieve the source tree of tree T;
3. for each site Sj in the source tree S do
 4. execute(Sj, evalQual(qj));
 5. for each fragment Fj stored in Sj do
 6. annotate Sj with (VjFj, CVjFj, DVjFj);
 7. ans := evalST(S);

(a) ParBox algorithm executed at coordinating site

Procedure evalQual

Input: A list qL of sorted (sub-)queries

Output: A vector F[Sj][Fj] for each fragment Fj of site Sj

1. for each subtree Fj assigned to Sj do
 2. (VjFj, CVjFj, DVjFj) = bottomUp(root(Fj), qj);
 3. send (VjFj, CVjFj, DVjFj) to the coordinating site;

Procedure bottomUp

Input: A node v and a list qL of (sub-)queries

Output: Vectors CVv, DVv, and TVv of formulas for node v

1. for each child w of v do
 2. (Vw, CVw, DVw) := bottomUp(w, qL);
 3. for each query q in qL, do
 4. CVv(q) := compFm(CVw(q), Vw(q)), OR;
 5. DVv(q) := compFm(DVw(q), Vw(q)), OR;
 6. for each query q, in qL, from left to right do
 7. case q of
 8. (c0) e: Vv(q) := 1;
 9. (c1) label[] := label, compareString[](label[]);
 10. (c2) text[] := str; Vv(q) := compareString[](text[]);
 11. (c3) *q: Vv(q) := CVv(q); Vv(q) := ¬Vv(q);
 12. (c4) q/Vv(q):= compFm(Vv(q), Vv(q), AND);
 13. (c5) q/Vv(q):= DVv(q);
 14. (c6) q/Vv(q):= compFm(Vv(q), Vv(q), OR);
 15. (c7) q ∧ q: Vv(q) := compFm(Vv(q), Vv(q), AND);
 16. (c8) ¬q: Vv(q) := compFm(Vv(q), OR, NEG);
 17. DVv(q) := compFm(Vv(q), Vv(q), OR);

Procedure compFm

Input: Two formulas f1 and f2 and an operator op

Output: The composed formula ans := f1 op f2

1. case (isFormula(f1)), isFormula(f2)) of
 2. (0,0) if op = AND then ans := ¬f1;
 3. else ans := f1 op f2;
 4. (1,0) if op = NOT then
 5. if f1 = true then ans := f2; else ans := false;
 6. elseif op = OR then
 7. if f1 = true then ans := true; else ans := f2;
 8. (2,1) if op = OR then
 9. elseif op = AND then
 10. if f2 = true then ans := f1; else ans := false;
 11. elseif op = OR then
 12. if f2 = true then ans := true; else ans := f1;
 13. (3,1) if op = NOT then
 14. elseif op = AND then ans := f1 ∧ f2;
 15. elseif op = AND then ans := f1 ∨ f2;

(b) ParBox algorithm executed at participating site

Figure 3: The ParBox Algorithm
the text content of node \(v \) is equal to the string \(str \), and is false otherwise. More interesting is the case where \(q_i \) is of the form \(s \preceq q_i \) (line 11). Then, the value of \(q_i \) at node \(v \) is equal to the disjunction of the values of query \(q_i \) at the child nodes of \(v \). As a consequence of recursive evaluation, this value has already been accumulated in \(CV(q_i) \). Similarly, when \(q_i = \langle q_j \rangle \) (line 13), the value of \(q_i \) at node \(v \) is the disjunction of \(V(q_j) \) and \(DV(q_j) \)'s for the children \(w \) of \(v \), which have again been computed due to the bottom-up processing order following the list \(q_j \) of sub-queries. Finally, when \(q_i \) is of the form \(q_i \land q_k \), the value of \(q_i \) is the conjunction of the values of queries \(q_i \) and \(q_k \). If queries \(q_i \) and \(q_k \) had simple Boolean values as answers, then this computation would be trivial. However, we note that a distinguishing characteristic of our procedure is that variables are part of our evaluation. Therefore, we compose Boolean values with variables or compose Boolean variables with other Boolean variables to create more complex formulas. Procedure \texttt{comprF} is responsible for composing, for each query, the truth values and/or formulas necessary to compute the value of the query. Depending on the value of the operator \(op \) it computes \(f_1 \) or \(f_2 \), which yields either a Boolean value or a Boolean formula.

Example 3.1: Recall query \(q \) from Example 2.1. Evaluating the values of the (sub-)queries in \(q \) as \(Q\text{List}(q) \) (given in Example 2.1) for the nodes in fragment \(F_1 \) results in the following \(V \) vectors:

\begin{itemize}
 \item \(V_{name} = \langle 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \rangle \)
 \item \(V_{F_2} = \langle x_1, x_2, x_3 = x_1 \land x_2, x_4 = x_3, x_5 = c_{x_4}, x_6, x_7 = x_5 \land x_6, x_8 = x_7, x_9 = d_{x_8}, x_{10} = x_9 \rangle \)
 \item \(V_{\text{broken}} = \langle 0, 0, 0, 0, x_1, 0, 0, 0, 0, 0 \rangle \)
\end{itemize}

We use \(0's \) and \(1's \) to represent the false and true values while \(x_1 's \), \(c_{x_1} 's \) and \(d_{x_1} 's \) represent distinct variables in the \(V_{F_2}, CV_{F_2} \) and \(DV_{F_2} \) vectors, respectively, of virtual node \(F_2 \). Note that for each (sub-)query of node \(F_2 \) we introduce a new variable. We use Procedure \texttt{bottomUp} to partially compute the values of the introduced variables, creating a system of Boolean equations.

Example 3.2: Consider the query from our previous example. At the end of the second phase the following triplets are available, with their coordinating site \(S_{F_1} \):

\begin{itemize}
 \item \(V_{F_2} = \langle 0, 0, 0, 0, y_1, 0, 0, 0, d_{y_1}, d_{y_2}, d_{y_3}, d_{y_4} > \)
 \item \(CV_{F_2} = \langle 0, 1, 1, 0, y_4, 0, 0, 0, 0, y_5, y_6, y_7 > \)
 \item \(DV_{F_2} = \langle d_{y_1}, d_{y_2}, d_{y_3}, d_{y_4} > \)
\end{itemize}

In the triplets, variables \(x_1, c_{x_1} \) and \(d_{x_1} \) for \(1 \leq i \leq 10 \) are used in fragment \(F_1 \) to represent the values of the virtual node \(F_2 \), while variables \(y_1 \), \(c_{y_1} \), \(d_{y_1} \) and \(z_1 \), \(c_{z_1} \), \(d_{z_1} \), are used in fragment \(F_0 \) to represent the values of the virtual nodes \(F_1 \) and \(F_3 \), respectively.

Composition of partial answers. In the third phase of Algorithm \texttt{ParSoX}, the coordinating site uses the computed triplets from all the fragments to evaluate the answer to query \(q \). In a nutshell, the computed triplets form a linear system of Boolean equations. Using the computed vectors and the source tree, Procedure \texttt{evalST} (not shown due to the space constraint) needs a single bottom-up traversal of the source tree to solve the system of equations and find the answer to query \(q \). Note that the vectors of leaf fragments in the source tree contain no variables. This is the case for both fragments \(F_2 \) and \(F_3 \). During the bottom-up traversal of \(ST \), Procedure \texttt{evalST} uses the Boolean values of the leaf fragments to unify the variables of the vectors that belong to the parent fragments in \(ST \). The procedure continues in this fashion until it reaches the root of \(ST \). The answer for query \(q \) is the value of \(V_{\text{root}}(q_{\text{last}}) \), where \(F_{\text{root}} \) is the root fragment and \(q_{\text{last}} \) is the last query in the \(q \) list.

Example 3.3: Consider the source tree in Fig. 2(b) and the vectors of the fragments from our previous example. The answer to query \(q \) is the value of the last query in \(V_{F_1} \), that is, \(q = d_{y_8} \lor d_{y_9} \). A bottom-up evaluation of Procedure \texttt{evalST} uses \(DV_{F_2} \) to unify \(d_{y_8} \) to 1; \(DV_{F_3} \) to unify \(d_{y_8} \) to \(d_{y_9} \); and \(DV_{F_2} \) to unify \(d_{y_9} \) to 0. Therefore, \(q = 1 \) and the query \(q \) evaluates to true.

3.2 Analysis.

For the complexity of the Algorithm \texttt{ParSoX}, we consider its communication cost as well as the total and parallel computation costs for evaluating a query \(q \) on a fragmented and distributed tree \(T \). The total computation cost is the sum of the computation performed at all the sites that participate in the evaluation. In contrast, the parallel computation cost is the time needed for evaluating the query at different sites in parallel. Since a large part of the evaluation is performed in parallel, the parallel computation cost more accurately describes the performance of the algorithm.

We use the following notation: \(F \) denotes the set of all fragments of the original tree \(T \), and \(F_1 \subseteq F \) denotes the subset of fragments of \(T \) that are sub-fragments of fragment \(F_1 \). We use \(\text{card}(X) \) to denote the cardinality of a set \(X \).

Total network traffic. Observe that each site appearing in the source tree \(ST \) of tree \(T \) is visited only once, when the coordinating site sends the input query \(q \) to these sites in the first stage. For each fragment \(F_i \) in site \(S_i \) the algorithm generates three vectors, each with \(O(|q|) \) entries. Each entry may hold a formula computed by Procedure \texttt{bottomUp}, and its size depends on the number of virtual nodes in fragment \(F_i \), i.e., \(\text{card}(F_i) \), due to the variables introduced by these virtual nodes. In the worst case, the size of the entry is in \(O(|F_i|) \). Therefore, the communication cost for each fragment \(F_i \) is \(O(|q|\text{card}(F_i)) \) and the overall communicat-
Figure 4: Summary of presented algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Visits</th>
<th>Computation</th>
<th>Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaïveCentralized</td>
<td>1</td>
<td>$O(</td>
<td>q</td>
</tr>
<tr>
<td>NaïveDistributed</td>
<td>card(F_{S_i})</td>
<td>$O(</td>
<td>q</td>
</tr>
<tr>
<td>ParBoX</td>
<td>1</td>
<td>$O(</td>
<td>q</td>
</tr>
<tr>
<td>Hybrid ParBoX</td>
<td>1</td>
<td>$O(</td>
<td>q</td>
</tr>
<tr>
<td>FullDistParBoX</td>
<td>card(F_{S_i})</td>
<td>$O(</td>
<td>q</td>
</tr>
<tr>
<td>LazyParBoX</td>
<td>card(F_{S_i})</td>
<td>$O(</td>
<td>q</td>
</tr>
</tbody>
</table>

Total computation. Site S traverses each fragment F_i assigned to it only once (through Procedure bottomUp). At each node v in a fragment, the procedure takes $O(|q|)$ time and therefore, the cost of the procedure on fragment F_i is $O(|q||F_i|)$. Adding these up for all fragments of tree T, the total computation of evaluation in the second phase of the algorithm is $O(|q||T|)$. The third phase of the algorithm solves, in linear time, a system of Boolean equations which is of size $O(|q|card(F))$. Overall, the total amount of computation of Algorithm ParBoX is $O(|q||T| + card(F))$.

Parallel computation. The cost of the second phase may differ depending on the level of parallelism. Intuitively, as sets of fragments are assigned to different sites, the cost of the second phase is equal to the computation cost at the site holding the set with the largest aggregated fragment size. We use $|F_{S_i}|$ to denote the sum of the sizes of the fragments in site S_i. Then, the time taken by the second phase is $O(|q| max_{S_i}|F_{S_i}|)$ and the parallel computation cost of the algorithm is $O(|q| max_{S_i}|F_{S_i}| + card(F))$.

In any reasonable setting, we expect that the number of fragments to which a tree is decomposed will be small compared to the size of the tree itself, i.e., $card(F) \ll |T|$. Thus, given a decomposition of a tree T to a set of fragments, our algorithm has the desirable property that the communication cost of evaluating a query q over T is independent of the size $|T|$ of the tree and depends mainly on the size $|q|$ of the query. Similarly, the total computation cost of our algorithm becomes $O(|q||T|)$, comparable to that of the best-known centralized algorithm [10, 18] for evaluating an XPath query q over a tree T. Furthermore, the parallel computation cost depends only on the size of the largest aggregated fragment size assigned to a site.

4. VARIATIONS OF ALGORITHM ParBoX

We next adapt Algorithm ParBoX to various settings.

Hybrid ParBoX. Although very unlikely to occur, it is instructive to study the pathological case in which each node v of our document tree T constitutes a separate fragment F and it is assigned to a different site. Then, we have that $card(F) = |T|$. Even in this pathological case, the computation cost of our algorithm is still optimal. However, the communication cost becomes $O(|q||T|)$, no longer independent of the tree T. Consider now the algorithm NaïveCentralized outlined in Section 3. The computation cost of the naïve algorithm is still $O(|q||T|)$ but its communication cost is only $O(|q||T|)$. Therefore, for the pathological case considered, the naïve algorithm has less communication overhead than Algorithm ParBoX. This leads us to consider a hybrid algorithm that, depending on the decomposition of the input tree T, behaves like Algorithm ParBoX for most decompositions but switches to the naïve algorithm for pathological decompositions. The tipping point in this switching of behaviour is determined by comparing $card(F)$ and $\frac{|T|}{|q|}$. As long as $card(F) < \frac{|T|}{|q|}$, Algorithm ParBoX has less communication overhead than the naïve algorithm. The total computation cost of the hybrid algorithm is $O(|q||T|)$ while its communication cost is $O(|q||T|)$, in the worst case, and $O(|q|card(F))$ on average. The parallel computation cost of Hybrid ParBoX is the same as that of Algorithm ParBoX.

Full distribution of computation. When a large number of queries are submitted to the same coordinating site, the coordinating site might turn out to be a system bottleneck. As the coordinating site has to collect and process the partial answers of participating sites, it might be overwhelmed by both the amount of incoming traffic and the size of data to be processed. We address this issue in a new algorithm called FullDistParBoX by distributing the computation of the third phase of Algorithm ParBoX among all the participating sites. The first two phases of Algorithm FullDistParBoX are the same as those of ParBoX. During the third phase, Algorithm FullDistParBoX calls procedure evalDistrST instead of Procedure evalST.

In a nutshell, Procedure evalDistrST (omitted due to space constraints) assumes that each participating site holds a copy of the source tree S_T. Given that the size of S_T is...
expected to be much smaller than the size of \(T \), the assumption adds minimum storage overhead per site. The procedure proceeds in a bottom-up fashion in \(S_T \) by considering initially the sites that appear as leaves in \(S_T \). Consider such a site \(S \) and assume that it is responsible for a leaf fragment \(F \). Site \(S \) sends the request of vectors corresponding to \(F \) to its parent site \(S' \) in \(S_T \). A non-leaf site, like site \(S' \), considers each local fragment \(F' \) and, after receiving the triplets of all subfragments of \(F' \), \(S' \) executes locally Procedure \(\text{evalST} \) using the received triplets along with the triplet for \(F' \). Then, it sends the resulting triplet for \(F' \) to its parent site in \(S_T \). Note that \(S' \) and \(S \) still partially evaluate their local fragments in parallel in the second stage of the algorithm. Also note that no variables appear in the resulting triplet of vectors of \(F' \). The process terminates when it reaches the site at the root of \(S_T \). Procedure \(\text{evalDistrST} \) has the same total/parallel computation and communication costs as Procedure \(\text{evalST} \). Thus Algorithm \(\text{FullDistParBoX} \) is similar to Algorithm \(\text{ParBoX} \). In practical terms we expect that the communication cost of the former algorithm is lower than that of the latter. Indeed, in the former, no variables are sent between sites since they are always unified, before any vector is sent. Although Algorithm \(\text{FullDistParBoX} \) removes the need for a coordinating site it has the drawback that a site might be visited multiple times, once for each time it appears in \(S_T \).

Lazy computation: Algorithm \(\text{ParBoX} \) is eager in that it requests all the sites to evaluate the queries in \(Q \text{List}(q) \) over all their fragments. This approach maximizes parallelism but it does, in certain cases, result in unnecessary computation. To see why this is so, consider the following query, which checks whether there exists in our collection any broker with the name "Merrill Lynch":

\[
[\text{portfolio/broker/name} = \text{"Merrill Lynch"}]
\]

Note that although we do not need to compute the query on fragments \(F_2 \) and \(F_1 \), Algorithm \(\text{ParBoX} \) will do so. We can save some of this unnecessary computation by using a lazy strategy that evaluates the query in increasing depths of the site tree \(S_T \) until it obtains an answer to the query that does not depend on any fragments further down the source tree than the currently evaluated depth.

Algorithm \(\text{LazyParBoX} \) (also omitted) traverses the source tree \(S_T \) in pre-order. At the \(i^{th} \) traversal step of the traversal, the coordinator site identifies all the sites that hold fragments at depth \(i \) from the root of the source tree. For each of these sites, the coordinator requests the evaluation of Procedure \(\text{evalQual} \) for the corresponding fragments. The coordinating site collects the evaluated vectors for all these fragments and, along with the vectors collected from previous traversal steps, it calls Procedure \(\text{evalST} \) to compute the answer to the query. Only if no answer can be computed, due to variables that cannot be unified, the algorithm performs one more step. The total computation cost of Algorithm \(\text{LazyParBoX} \) is the same as that of \(\text{ParBoX} \). However, in cases such as our last example, the algorithm behaves better than \(\text{ParBoX} \). In our example, \(\text{LazyParBoX} \) does not evaluate the query over fragment \(F_2 \), since after one step the given query is evaluated to true. In terms of parallel computation, Algorithm \(\text{LazyParBoX} \) is worse than \(\text{ParBoX} \) since in each traversal step only one fragment is evaluated per site, and only fragments at the same level of the source tree are computed in parallel. Thus the parallel computation cost of the algorithm is \(O(|q|\text{card}(F)\max(|F_i|)) \), where \(\max(|F_i|) \) denotes the size of the maximum fragment of tree \(T \).

We summarize the discussion of these algorithms in Fig. 4, in which we list the number of times each site is visited, the total (T) and parallel (P) computation costs, and the communication costs. Recall that the first two naïve algorithms do not exploit parallelism and thus we only report their total computation costs. In Fig. 4, we use \(\text{card}(F_i) \) to denote the number of fragments that reside in site \(S_i \).

5. INCREMENTAL VIEW MAINTENANCE

As remarked in Section 1, one often wants to cache the result of a query, treat it as a materialized view, and use it to answer possible future queries (see, e.g., [13, 25]). When a new query is issued, the materialized views are used to provide part of, or the whole of, the answer to the query. With this comes the issue of view maintenance: when the source data is updated, the materialized views must be maintained so as to reflect the current source contents. An approach to maintaining views is by means of an incremental technique: given a query \(Q \), a database \(I \), a view \(V = Q(I) \) and updates \(\Delta_I \) on the source \(I \), we compute update \(\Delta_V \) on the view such that \(V \oplus \Delta_V = Q(I \oplus \Delta_I) \). Incremental maintenance of views has proven effective in many applications (see, e.g., [12, 26]), since small changes \(\Delta_I \) to the source often inflict only small changes \(\Delta_V \) to the view, and thus it is often more efficient to compute \(\Delta_V \) rather than computing the view \(Q(I \oplus \Delta_I) \) starting from scratch.

We next present a mechanism to support incremental view maintenance that is based on extensions of our XPath evaluation algorithms. Our incremental algorithms have the following salient features. (a) The cost of maintaining materialized views depends \textit{neither on the size of the data nor on the size of the update}. (b) The recomputation is localized to the fragments where the updates occur.

Materialized view. A materialized view \(M \) of a query \(q \) over a tree \(T \), denoted as \(M(q,T) \), is a pair \((S_T, \text{ans}) \), where \(S_T \) is the source tree of \(T \) and \(\text{ans} \) is the cached answer of the query \(q \) over \(T \). We refer to the pair \((S_T, \text{ans}) \) as the \textit{state of view} \(M \). A view is materialized at a site if the site maintains its state. Our maintenance algorithm imposes minimum overhead on sites. In Fig. 4, we use \(\text{card}(F_j) \) to denote the query, the source tree and the answer need to be stored.

Update operations. We consider two classes of updates that can alter the state of a materialized view: the first alters the contents of the tree \(T \) and the second alters the fragmentation of \(T \). For each class, there are two primitive operations, which are listed below. All operations are defined with respect to a fragment \(F_j \) of tree \(T \).

(1) insertNode \((A,v) \) : inserts in \(F_j \) a node labeled \(A \) as a child of node \(v \). The operation returns the newly inserted node.

(2) deleteNode \((v) \) : deletes from \(F_j \) the node \(v \).

(3) createFragment \((v) \) : creates a new fragment \(F_k \) which is the subtree rooted at node \(v \). The new fragment \(F_k \) is a sub-fragment of \(F_j \) and its subtree is replaced in \(F_j \) by a virtual node whose label is \(F_k \).

(4) mergeFragment \((v) \) : merges fragment \(F_j \) with the subfragment that corresponds to the virtual node \(v \). If \(v \) is not virtual, no action is taken.

Example 5.1: Consider fragment \(F_j \) in Fig. 2(a). We can use a series of insertNode operations to insert a new stock in the fragment, yielding the fragment in the left of Fig. 5. The
new subtree is indicated by dotted lines. We can continue by applying operation \text{splitFragments}(market) to the new fragment and get two fragments: a revised \(F_0\) and a new fragment \(F_1\) shown in Fig. 5. Note that the subtree rooted at the \text{market} node is replaced by a virtual node \(F_1\). Fragment \(F_1\) can now be assigned to another site, say, \(S_3\).

Since the first two operations concern the contents of a fragmented tree \(T\), they only affect the \text{ans} part of the state of a view \(M(q,T)\). Given a series of insertions and/or deletions in a fragment \(F_j\), we extend Algorithm \text{ParBoX} to incrementally update \text{ans}; extensions to the variations of the Algorithm \text{ParBoX} are done similarly.

\textbf{Algorithm outline.} To incrementally update \text{ans}, it suffices to augment the state of \(M(q,T)\) so that we also maintain the triplets \((V_{F_j}, C_{F_j}, D_{F_j})\), for each of the fragments \(F_j\) of \(T\). After the series of insertions and/or deletions in fragment \(F_j\), only the site storing \(F_j\) needs to call Procedure \text{bottomUp} and \text{only for fragment} \(F_j\). The resulting triplet \((V_{F_j}, C_{F_j}, D_{F_j})\) is sent back to the site \(S\) storing the state of \(M(q,T)\). The triplet is then compared with the one stored in \(S\) for the same fragment \(F_j\). If they are identical, incremental evaluation terminates without changing the value of \text{ans}. Otherwise site \(S\) uses the new triplet, along with the triplets for the other fragments, in Procedure \text{evalST} to compute the new value of \text{ans}.

The total (and parallel) computation cost of the incremental algorithm is \(O(|q||F_j| + \text{card}(F_j))\) while the communication cost is \(O(|q||\text{card}(F_j)|)\), where \(|F_j|\) is the size of the fragment \(F_j\) while \(\text{card}(F_j)\) and \(\text{card}(F)\) are the number of sub-fragments of \(F_j\) and \(T\), respectively. Observe that the communication cost is independent of both \(|T|\) and the size of the updates. Furthermore, recomputation is localized to fragment \(F_j\), in which updates take place.

Now consider \text{splitFragments}(v), which splits a fragment \(F_j\) into two fragments \(F_j\) and \(F_k\). Obviously, the splitting does not affect the value of \text{ans}. However, both the source tree \(S_T\) and the corresponding fragment vector triplets must be updated. This update is local to the site \(S\) storing the state of \(M\). The only other site involved in the process is site \(S'\) where fragment \(F_j\) used to reside. Site \(S'\) needs to send to site \(S\) two new fragment triplets, one for \(F_j\) and one for \(F_k\). It is not hard to see that the total (and parallel) computation cost for these operations is \(O(|q||F_j|)\), while the communication cost is \(O(|q||\text{card}(F_j)|)\). The analysis for \text{mergeFragments}(v) is similar and results are within the same bounds, where \(F_j\) now denotes the fragment that is the result of merging.

\section{EXPERIMENTAL STUDY}

We have implemented the algorithms of Sections 3 and 4. Below we present four of the conducted experiments. For our experiments we used 10 Linux machines (sites), distributed over a local LAN. We generated multiple \text{XMark} “sites” and in each experiment we assigned (fragments of) \text{XMark} “sites” to Linux machines. The reported times are averaged over multiple runs of each experiment.

\textbf{Experiment 1:} The objective of this experiment is twofold. First, we illustrate the effectiveness of Algorithm \text{ParBoX} when compared with the \text{NaiveCentralized} algorithm. Second, we study the effects of the query size (i.e., its number of sub-queries \(|\text{QList}(q)|\)) on query evaluation time. The fragment trees used in this experiment are similar to tree FT1, shown in Fig. 6. Any fragment tree topology, with the same number of fragments could have been used here without affecting our results. This is because both \text{ParBoX} and \text{NaiveCentralized} communicate directly with all the sites holding fragments, irrespectively of the structure of the tree and the location of the fragments in the tree.

The experiment begins with a single fragment \(F_0\) and in each iteration, it increases the number of fragments in the tree by one, by inserting a new fragment as a sub-fragment of \(F_0\) and assigning it to a different machine. Each fragment \(F_j\) in the tree corresponds to a single \text{XMark} site and all the fragments have the same size \textit{within} each iteration. The cumulative size of all the fragments is kept constant across iterations and equal to 50MB. So, in iteration 1, we have only fragment \(F_0\) of size 50MB, while in iteration 2, we have fragments \(F_0\) and \(F_1\), each of size 25MB. In the last iteration, there are 10 fragments, each of size 5MB.

Figure 7 compares the evaluation times of \text{ParBoX} and \text{NaiveCentralized} of a query with \(|\text{QList}(q)| = 8\), for each iteration. The query is posed at the (coordinating) site holding fragment \(F_0\). The figure clearly demonstrates both the benefits of using \text{ParBoX}, and that data transmission is prohibitively expensive. Notice that as the number of machines increases in each iteration, so does parallelism, resulting in reduced evaluation times. Parallelism proves especially beneficial in the first 4 iterations, but its gains diminish as increasingly smaller fragments are assigned to machines (iterations 8 - 10). Indeed, the evaluation time in iteration 8 (fragment size 6.3MB) is not significantly different from the one in iteration 10 (fragment size 5MB). In terms of the \text{NaiveCentralized} and \text{NaiveDistributed} algorithms, note that the query evaluation time of fragment \(F_0\) (6.8 seconds) is a lower bound for both of these algorithms. The additional cost of \text{NaiveCentralized} in each iteration is the cost of sending the data to the coordinator. This cost is high for the first few iterations and starts to flatten out after iteration 6. Indeed, in iteration 2 we sent fragment \(F_1\) to the coordinator, that is 25MB, while in iteration 3 we sent fragments \(F_1\) and \(F_2\), that is 34MB (9MB more). However, notice that in iteration 8, we sent fragments \(F_1\) to \(F_7\), that is 42MB, while in iteration 10 we sent fragments \(F_1\) to \(F_9\), that is 45MB (only 3MB more).

Figure 8 shows the evaluation times of \text{ParBoX} for queries whose \(|\text{QList}(q)|\) sizes are 2, 8, 15 and 23. As expected, query evaluation time increases linearly with the size of the query and the benefits of parallelism are consistent throughout the different query sizes.

\textbf{Experiment 2:} The aim of this experiment is to highlight the differences between \text{ParBoX} and its variations. To this end, we use fragment trees similar to tree FT2, shown in
In all the other experiments we conducted. This is because we never sent any data fragments between machines. In spite of the overall small traffic in our experiments, FullDistParBoX still results in at most half the traffic of ParBoX. These savings are due to FullDistParBoX not sending any variables.

Next consider a boolean query q_{F_n} that is executed in the (coordinating) machine holding fragment F_0 and is carefully selected so that it is satisfied by the last fragment F_n in each iteration. Figure 10 shows the evaluation times of ParBoX, FullDistParBoX and LazyParBoX of q_{F_n}, for each iteration. Note that in the first two iterations, by design, all algorithms evaluate q_{F_n}, in parallel, in both fragments F_0 and F_1. In subsequent iterations, algorithms ParBoX and FullDistParBoX both continue to evaluate q_{F_n}, in parallel, in all the fragments in FT2 and thus they have almost identical evaluation times. However, the evaluation time of LazyParBoX starts to increase since the algorithm has to consider sequentially the fragments in increasing depths of the tree, until it reaches fragment F_n where the query is satisfied. Due to this sequential access, the evaluation time of LazyParBoX is the sum of the evaluation times in fragments F_2 to F_n plus the (parallel) evaluation time of fragments F_0 and F_1. The increase between iterations is not linear since as the 50MB data are re-distributed between iterations, the total additional data that we need to sequentially evaluate between iterations i and $(i+1)$ are only $\frac{50}{2^{i-1}}$. So, between iterations 2 and 3, the evaluation time is that of iteration 2 plus the cost of evaluating the query additionally over 8.3MB of data, while between iteration 9 and 10 the additional data are only 0.5MB.

Finally, consider a boolean query $q_{F_{[n/2]}}$ that is executed in the (coordinating) machine holding fragment F_0 and in each iteration, it is satisfied by the $F_{[n/2]}$ fragment, in the middle of ST2. Figure 11 shows the evaluation times of ParBoX, FullDistParBoX and LazyParBoX of $q_{F_{[n/2]}}$, for each
iteration. Again for the first two iterations, all three algorithms behave the same. Starting at iteration 3, the evaluation time of LazyParBoX starts to oscillate until it converges to a value of approximately 2.5 seconds. This is because starting at iteration 3, and every other iteration, we increase the depth of fragment \(F_{\lfloor n/2 \rfloor} \) by one. So, the depth of \(F_{\lfloor n/2 \rfloor} \) is 2 in iterations 3 and 4, while it is 3 in iterations 5 and 6 etc. If the depth of \(F_{\lfloor n/2 \rfloor} \) is constant between two consecutive iterations \(i \) and \((i+1) \), the evaluation time of LazyParBoX improves since fragments up to the same depth of tree are considered in both iterations, but in iteration \((i+1) \) less data are traversed (due to the re-distribution of data). This is the case for iteration pairs 3 and 4, 5 and 6 etc. Now, if the depth of \(F_{\lfloor n/2 \rfloor} \) increases between two consecutive iterations \(i \) and \((i+1) \), LazyParBoX considers one additional fragment in iteration \((i+1) \). Therefore, there is a slight increase in evaluation time. This is the case for iteration pairs 3 and 4, 5 and 6 etc. As the size of fragments reduces in later iterations, the gains (losses) in evaluation times are also reduced. This is due to corresponding reduction in the size of less (additional) data considered between consecutive iterations. If we assume that a query is satisfied, on average, by a fragment close to the middle of the fragment tree, then this experiment shows that in LazyParBoX query evaluation is approximately 3 times slower than ParBoX. However, LazyParBoX saves half of the total computation done by ParBoX. Clearly, one is often willing to trade evaluation time for reduced site load.

Experiment 3: In the first two experiments the data size was kept constant. We now investigate the effect of data size on query evaluation times. Additionally, we use a more natural fragment tree like FT3, shown in Fig. 6. In each iteration, we increase the amount of data stored in the fragments of FT3. The fragments do not hold the same amount of data. For example, fragment \(F_0 \) always contains 10MB; fragment \(F_1 \) is the largest in the tree and its size ranges from 10MB up to 50MB, in 5MB increments per iteration; fragment \(F_2 \) ranges from 3.5MB to 15MB in 1.5MB increments; and fragment \(F_3 \) ranges from 700K to 3.7MB. The cumulative size of the fragments, in each iteration, is indicated in Fig. 12 and ranges from 45MB to 160MB. The figure shows the evaluation times of ParBoX for queries whose \(|Q\text{List}(q)| \) sizes are 2, 8, 15 and 23. As expected, for each query the evaluation time is linear w.r.t. the size of data. Moreover, as the query size increases, evaluation time increases gracefully over similarly sized data.

Experiment 4: In the previous experiments, each site was assigned one fragment. Here, we vary the number of fragments assigned to a site. Our objective is to show that the evaluation time of ParBoX depends on the cumulative size of the fragments assigned to a site and not on the number of these fragments. Indeed, this is the case as shown in Fig. 13. The figure shows the (almost constant) evaluation time in ParBoX of a query with \(|Q\text{List}(q)| = 8 \) for a single site, where the cumulative data assigned to it is 50MB. In iteration \(i \) the 50MB are split into \(i \) equi-sized fragments.

7. RELATED WORK

Partial evaluation has found applications ranging from compiler optimization to parallel evaluation of functional programming languages. Its relevance to query evaluation has surfaced from time to time, most notably in the closely related areas of query rewriting with views and deductive databases [9]. From a traditional functional programming perspective, our work is most closely related to the uses of partial evaluation in dataflow architectures [17] in which one evaluates some or all of the arguments of a function in parallel. The difference with our work is that traditional functional programming neglects the benefits of partial evaluation for functions accessing large data sets.

Distributed query evaluation has been extensively studied (see, e.g., [19]). The key issue is minimizing data movement across sites as the communication costs are dominant [19]. Our algorithms minimize data movement by shipping partially evaluated functions (Boolean expressions) rather than data. Partial evaluation of XPath queries can also be combined with other distributed query processing techniques e.g., hybrid shipping, two-phase optimization [19] and replication [1]. Also related is parallel query evaluation [7, 14], in particular in shared-nothing database machines. The main difference is the amount of communication involved. By shipping Boolean expressions rather than re-partitioning/distributing data, we communicate relatively small amounts of data, and guarantee that each site is visited a bounded number of times. To our knowledge, no previous work has explored partial evaluation of XML queries in distributed or parallel database systems, by performing XPath tree traversal, the most time consuming part, in parallel. The benefits of the partial evaluation technique are also evident in querying distributed catalogs (LDAP [3, 23]), and in XML query processing in systems where transmission delays are significant, such as in P2P systems. Our technique can be readily applied to evaluating Boolean XPath queries in a P2P system and it can be combined with existing techniques in this field (e.g., [6, 8]).

XPath evaluation has been extensively studied for centralized systems, but the optimal strategies (e.g., [10, 18]) may not work well in a distributed setting. Optimization techniques (e.g., [5, 21]) are complementary to ours.

Most closely related to our work is [24], which studies distributed query evaluation on semistructured data with performance bounds on total network traffic and total computation. Its main technique is query decomposition: rewrite the input query \(Q \) into sub-queries based on the accessibility information of the distributed data, evaluate sub-queries on the corresponding data components to get partial results, and finally assemble the partial results to get the result of \(Q \). The obvious difference is that in our work no query decomposition is necessary. Furthermore, [24] does not leverage (residual) functions. Another difference concerns the performance metric: [24] emphasizes the number of communication steps and counts a “broadcast” to (resp. a “gather”
from) \(n \) sites as a single step. Though this is admittedly an approximation of the communication costs, it can be further improved. It also differs from our work in the queries and the distributed systems considered. Another related work is [26], which proposes the mutant query plans (MQP) for distributed XML queries. When a site receives a MQP it partially evaluates as much of the plan as it can, producing a new MQP plan and passes it to some other site that can continue processing. The sites evaluate queries in sequence rather than in parallel, as is the case in our work.

Incremental view maintenance has been studied for traditional databases (see [12]), data warehouses (e.g., [26]), semistructured data (e.g., [24]), and recently for XPath views of XML data [22]. These differ from our incremental algorithm in that they focus on centralized algorithms and/or different classes of views. An important criterion for incremental view maintenance in a de-centralized system is minimizing unnecessary visits to data fragments and remote sites, which our algorithm provides. To our knowledge, our algorithm is the first for incremental maintenance of Boolean XPath views in a de-centralized system.

8. CONCLUSIONS

We have shown that partial evaluation is effective in processing XML queries in a de-centralized system. We have proposed the first evaluation and incremental maintenance algorithms with performance guarantees for Boolean XPath queries. Our experimental study has verified the effectiveness of our technique. In addition to its application to query processing in such systems, we believe that the technique has the potential to be useful in other applications, in distributed and centralized systems alike.

We plan to extend the current work in a number of directions. First, we plan to extend our algorithms to handle more general queries in XPath and XQuery. A recent extension is capable of processing data selection XPath queries with the performance guarantee that each site is visited at most twice, and thus demonstrates the potential of the technique to process non-Boolean queries. Second, we aim to incorporate other optimization techniques for XML query processing, in the presence of replication. Third, we plan to apply the technique to processing queries over large documents in (centralized) native XML stores. Finally, it is not difficult to identify other situations in which partial evaluation could yield major benefits in a de-centralized system. For example, numerical and aggregating computations over large data sets can benefit from the technique. We believe that the general topic deserves a broader study.

9. REFERENCES

