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Abstract
To accurately match records it is often necessary to utilize the se-
mantics of the data. Functional dependencies (FDs) have proven
useful in identifying tuples in a clean relation, based on the se-
mantics of the data. For all the reasons that FDs and their infer-
ence are needed, it is also important to develop dependencies and
their reasoning techniques for matching tuples from unreliable data
sources. This paper investigates dependencies and their reasoning
for record matching. (a) We introduce a class of matching depen-
dencies (MDs) for specifying the semantics of data in unreliable re-
lations, defined in terms of similarity metrics and a dynamic seman-
tics. (b) We identify a special case of MDs, referred to as relative
candidate keys (RCKs), to determine what attributes to compare and
how to compare them when matching records across possibly dif-
ferent relations. (c) We propose a mechanism for inferring MDs, a
departure from traditional implication analysis, such that when we
cannot match records by comparing attributes that contain errors,
we may still find matches by using other, more reliable attributes.
(d) We provide an O(n2) time algorithm for inferring MDs, and
an effective algorithm for deducing a set of RCKs from MDs. (e)
We experimentally verify that the algorithms help matching tools
efficiently identify keys at compile time for matching, blocking or
windowing, and that the techniques effectively improve both the
quality and efficiency of various record matching methods.

1. Introduction
Record matching is the problem for identifying tuples in one or

more relations that refer to the same real-world entity. This prob-
lem is also known as record linkage, merge-purge, duplicate de-
tection and object identification. The need for record matching is
evident. In data integration it is necessary to collate information
about an object from multiple data sources [23]. In data cleaning
it is critical to eliminate duplicate records [7]. In master data man-
agement one often needs to identify links between input tuples and
master data [26]. The need is also highlighted by payment card
fraud, which cost $4.84 billion worldwide in 2006 [1]. In fraud de-
tection it is a routine process to cross-check whether a card user is
the legitimate card holder. In light of these demands a variety of
approaches have been proposed for record matching: probabilistic
(e.g., [17, 21, 34, 32]), learning [12, 27, 30], distance-based [19],
and rule-based [3, 20, 23] (see [14] for a recent survey).

No matter what approach to use, one often needs to decide what
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attributes to compare and how to compare them. Real life data is
typically dirty (e.g., a person’s name may appear as “Mark Clif-
ford” and “Marx Clifford”), and may not have a uniform represen-
tation for the same object in different data sources. To cope with
these it is often necessary to hinge on the semantics of the data. In-
deed, domain knowledge about the data may tell us what attributes
to compare. Moreover, by analyzing the semantics of the data we
can deduce alternative attributes to inspect such that when match-
ing cannot be done by comparing attributes that contain errors, we
may still find matches by using other, more reliable attributes.

Example 1.1: Consider two data sources specified by:

credit (c#, SSN, FN, LN, addr, tel, email, gender, type),
billing (c#, FN, LN, post, phn, email, gender, item, price).

Here a credit tuple specifies a credit card (with number c# and
type) issued to a card holder who is identified by SSN, FN (first
name), LN (last name), addr (address), tel (phone), email and
gender. A billing tuple indicates that the price of a purchased item
is paid by a credit card of number c#, used by a person specified
in terms of name (FN, LN), gender, postal address (post), phone
(phn) and email. An example instance is shown in Fig. 1.

Given an instance (Ic, Ib) of (credit, billing), for payment fraud
detection, one needs to check whether for any tuple t in Ic and any
tuple t′ in Ib, if t[c#] = t′[c#], then t[Yc] and t′[Yb] refer to the
same person, where Yc and Yb are attribute lists:

Yc = [FN, LN, addr, tel, gender], Yb = [FN, LN, post, phn, gender].

Due to errors in the data sources one may not be able to match
t[Yc] and t′[Yb] via pairwise comparison of their attributes. In the
instance of Fig. 1, for example, billing tuples t3–t6 and credit tuple
t1 actually refer to the same card holder. However, no match can
be found when we check whether the Yb attributes of t3–t6 and the
Yc attributes of t1 are identical.

Domain knowledge about the data suggests that we only need to
compare LN, FN and address when matching t[Yc] and t′[Yb] [20]:
if a credit tuple t and a billing tuple t′ have the same address and
last name, and if their first names are similar (although they may
not be identical), then the two tuples refer to the same person. That
is, LN, FN and address are a “key” for matching t[Yc] and t′[Yb]:
• If t[LN, addr] = t′[LN, post] and if t[FN] and t′[FN] are simi-
lar w.r.t. a similarity function≈d, then t[Yc] and t′[Yb] are a match.

The matching key tells us what attributes to compare and how
to compare them in order to match t[Yc] and t′[Yb]. By comparing
only these attributes we can now match t1 and t3 although their FN,
tel, email and gender attributes are not identical.

A closer examination of the domain knowledge may further re-
veal the following: for any credit tuple t and billing tuple t′,

◦ if t[email] = t′[email], then we can identify t[LN, FN] and
t′[LN, FN], i.e., they should be equalized via updates;

◦ if t[tel] = t′[phn], then we can identify t[addr] and t′[post].
None of these makes a key for matching t[Yc] and t′[Yb], i.e., we

cannot match entire t[Yc] and t′[Yb] by just comparing their email



c# SSN FN LN addr tel email gender type
t1: 111 079172485 Mark Clifford 10 Oak Street, MH, NJ 07974 908-1111111 mc@gm.com M master
t2: 222 191843658 David Smith 620 Elm Street, MH, NJ 07976 908-2222222 dsmith@hm.com M visa

(a) Example credit relation Ic

c# FN LN post phn email gender item price
t3: 111 Marx Clifford 10 Oak Street, MH, NJ 07974 908 mc null iPod 169.99
t4: 111 Marx Clifford NJ 908-1111111 mc null book 19.99
t5: 111 M. Clivord 10 Oak Street, MH, NJ 07974 1111111 mc@gm.com null PSP 269.99
t6: 111 M. Clivord NJ 908-1111111 mc@gm.com null CD 14.99

(b) Example billing relation Ib

Figure 1: Example credit and billing relations

or phone attributes. Nevertheless, putting them together with the
matching key given above, we can infer three new matching keys:

1. LN, FN and phone, via =,≈d,= operators, respectively,
2. address and email, to be compared via =, and
3. phone and email, to be compared via =.
These deduced keys have added value. While we cannot match

t1 and t4–t6 by using the key given earlier, we can match these tu-
ples based on the deduced keys. Indeed, using key (3), we can now
match t1 and t6 in Fig. 1: they have the same phone and email, and
can thus be identified, although their name, gender and address at-
tributes are radically different. That is, although there are errors in
those attributes, we are still able to match the records by inspecting
their email and phone attributes. Similarly we can match t1 and t4,
and t1 and t5 using keys (1) and (2), respectively. 2

This example highlights the need for effective techniques to
specify and reason about the semantics of data in unreliable rela-
tions for matching records. One can draw an analogy of this to our
familiar notion of functional dependencies (FDs). Indeed, to iden-
tify a tuple in a relation we use candidate keys. To find the keys
we first specify a set of FDs, and then infer keys by the implication
analysis of the FDs. For all the reasons that we need FDs and their
reasoning techniques for identifying tuples in a clean relation, it is
also important to develop (a) dependencies to specify the seman-
tics of data in relations that may contain errors, and (b) effective
techniques to reason about the dependencies.

One might be tempted to use FDs in record matching. Unfortu-
nately, FDs and other traditional dependencies are defined on clean
(error-free) data, mostly for schema design (see, e.g., [2]). In con-
trast, for record matching we have to accommodate errors and dif-
ferent representations in different data sources. As will be seen
shortly, in this context we need a form of dependencies quite differ-
ent from their traditional counterparts, and a reasoning mechanism
more intriguing than the standard notion of implication analysis.

The need for dependencies in record matching has long been rec-
ognized (e.g., [20, 6, 31, 11, 28]). It is known that matching keys
typically assure high match accuracy [14]. However, no previous
work has studied how to specify and reason about dependencies for
matching records across unreliable data sources.

Contributions. This paper proposes a class of dependencies for
record matching, and provides their reasoning techniques.

(1) Our first contribution is a class of matching dependencies (MDs)
of the form: if some attributes match then identify other attributes.
For instance, all the semantic relations we have seen in Example 1.1
can be expressed as MDs. In contrast to traditional dependencies,
matching dependencies have a dynamic semantics to accommodate
errors in unreliable data sources. They are defined in terms of sim-
ilarity operators and across possibly different relations.

(2) Our second contribution is a formalization of matching keys,
referred to as relative candidate keys (RCKs). RCKs are a special
class of MDs that match tuples by comparing a minimum number

of attributes. For instance, the matching keys (1-3) given in Exam-
ple 1.1 are RCKs relative to (Yc, Yb). The notion of RCKs substan-
tially differs from traditional candidate keys for relations: they aim
to identify tuples across possibly different, unreliable data sources.

(3) Our third contribution is a generic reasoning mechanism for
deducing MDs from a set of given MDs. For instance, keys (1-3) of
Example 1.1 can be deduced from the MDs given there. In light of
the dynamic semantics of MDs, the reasoning is a departure from
our familiar terrain of traditional dependency implication.

(4) Our fourth contribution is an algorithm for determining whether
an MD can be deduced from a set of MDs. Despite the dynamic
semantics of MDs and the use of similarity operators, the deduction
algorithm is in O(n2) time, where n is the size of MDs. This is
comparable to the traditional implication analysis of FDs.

(5) Our fifth contribution is an algorithm for deducing a set of RCKs
from MDs, based on the reasoning techniques of (4). Recall that it
takes exponential time to enumerate all candidate keys from a set
of FDs [24]. For the same reason it is unrealistic to compute all
RCKs from MDs. To cope with this we introduce a quality model
such that for any given number k, the algorithm returns k quality
RCKs w.r.t. the model, in O(kn3) time, where n is as above.

We remark that the reasoning is efficient because it is done at
the schema level and at compile time, and n is the size of MDs
(analogous to the size of FDs), which is typically much smaller than
the size of data on which matching is conducted.

(6) Our final contribution is an experimental study. We first evalu-
ate the scalability of our reasoning algorithms, and find them quite
efficient. For instance, it takes less than 100 seconds to deduce
50 quality RCKs from a set of 2000 MDs. Moreover, we evaluate
the impacts of RCKs on the quality and performance of two record
matching methods: statistical and rule-based. Using real-life data
scraped from the Web, we find that RCKs improve match quality
by up to 20%, in terms of precision (the ratio of true matches cor-
rectly found to all matches returned, true or false) and recall (the
ratio of true matches correctly found to all matches in the data, cor-
rectly found or incorrectly missed). In many cases RCKs improve
the efficiency as well. In addition, RCKs are also useful in blocking
and windowing, two of the widely used optimization techniques
for matching records in large relations (see below). We find that
blocking and windowing based on (part of) RCKs consistently lead
to better match quality, with 10% improvement.

Applications. This work does not aim to introduce another record
matching algorithm. It is to complement existing methods and to
improve their match quality and efficiency when dealing with large,
unreliable data sources. In particular, it provides effective tech-
niques to find keys for matching, blocking and windowing.
Matching. Naturally RCKs provide matching keys: they tell us
what attributes to compare and how to compare them. As observed
in [21], to match tuples of arity n, there are 2n possible compari-
son configurations. Thus it is unrealistic to enumerate all matching



keys exhaustively and then manually select “the best keys” among
possibly exponentially many candidates. In contrast, RCKs are au-
tomatically deduced from MDs at the schema level and at compile
time. In addition, RCKs reduce the cost of inspecting a single pair
of tuples by minimizing the number of attributes to compare.

Better still, RCKs improve match quality. Indeed, deduced RCKs
add value: as we have seen in Example 1.1, while tuples t4–t6 and
t1 cannot be matched by the given key, they are identified by the
deduced RCKs. The added value of deduced rules has long been
recognized in census data cleaning: deriving implicit rules from
explicit ones is a routine practice of US Census Bureau [16, 33].
Blocking. To handle large relations it is common to partition the
relations into blocks based on blocking keys (discriminating at-
tributes), such that only tuples in the same block are compared
(see, e.g., [14]). This process is often repeated multiple times to
improve match quality, each using a different blocking key. The
match quality is highly dependent on the choice of keys. As shown
by our experimental results, blocking can be effectively done by
grouping similar tuples by (part of) RCKs.
Windowing. An alternative way to cope with large relations is by
first sorting tuples using a key, and then comparing the tuples using
a sliding window of a fixed size, such that only tuples within the
same window are compared [20]. As verified by our experimental
study, (part of) RCKs suffice to serve as quality sorting keys.

We contend that the MD-based techniques can be readily incor-
porated into matching tools to improve their quality and efficiency.

Organization. Section 2 defines MDs and RCKs. Section 3 presents
the reasoning mechanism. Algorithms for deducing MDs and RCKs
are provided in Sections 4 and 5, respectively. The experimental
study is presented in Section 6, followed by related work in Sec-
tion 7 and topics for future work in Section 8.

2. Matching Dependencies and Keys
In this section we first define matching dependencies (MDs), and

then present the notion of relative candidate keys (RCKs).

2.1 Matching Dependencies
We want to define MDs as rules for matching records. LetR1 and

R2 be two relation schemas, and Y1 and Y2 lists of attributes in R1

and R2, respectively. The matching problem is stated as follows.
Given an instance (I1, I2) of (R1, R2), the record matching

problem is to identify all tuples t1 ∈ I1 and t2 ∈ I2 such that
t1[Y1] and t2[Y2] refer to the same real-world entity.

Observe the following. (a) Even when t1[Y1] and t2[Y2] refer to
the same entity, one may still find that t1[Y1] 6= t2[Y2] due to errors
or different representations in the data. (b) The problem aims to
match t1[Y1] and t2[Y2], i.e., parts of t1 and t2 specified by lists of
attributes, not necessarily the entire tuples t1 and t2. (c) It is to find
matches across relations of possibly different schemas.

To accommodate these we define MDs in terms of similarity oper-
ators and a notion of comparable lists, a departure from our familiar
FDs. Before we define MDs, we first present these notions.
Similarity operators. Assume a fixed set Θ of domain-specific sim-
ilarity relations. For each ≈ in Θ, and values x, y in the specific
domains in which ≈ is defined, we write x ≈ y if (x, y) is in ≈,
and refer to ≈ as a similarity operator. The operator can be any
similarity metric used in record matching, e.g., q-grams, Jaro dis-
tance or edit distance (see [14] for a survey), such that x ≈ y is
true if x and y are “close” enough w.r.t. a predefined threshold.

In particular, the equality relation = is in Θ.
We assume generic axioms for each similarity operator ≈.
◦ It is reflexive, i.e., x ≈ x.

◦ It is symmetric, i.e., if x ≈ y then y ≈ x.
◦ It subsumes equality, i.e., if x = y then x ≈ y.

Except equality =, ≈ is not assumed transitive in general, i.e., from
x ≈ y and y ≈ z it does not necessarily follow that x ≈ z.

The equality relation = is reflexive, symmetric and transitive, as
usual. In addition, for any similarity operator ≈ and values x and
y, if x ≈ y and y = z, then x ≈ z.

We also use a matching operator 
: for any values x and y,
x 
 y indicates that x and y are identified via updates, i.e., we
update x and y to make them identical (to be elaborated shortly).
Comparable lists. For a list X of attributes in a schema R, we
denote the length of X by |X|, and the i-th element of X by X[i].
We use A ∈ R (resp. A ∈ X) to denote that A is an attribute in R
(resp. X), and use dom(A) to denote its domain.

A pair of lists (X1, X2) are said to be comparable over (R1, R2)
if (a) X1 and X2 are of the same length, and (b) their elements are
pairwise comparable, i.e., for each j ∈ [1, |X1|], X1[j] ∈ R1,
X2[j] ∈ R2, and dom(X1[j]) = dom(X2[j]) (to simplify the
discussion, we assume w.l.o.g. that X1[j] and X2[j] have the same
domain, which can be achieved by data standardization; see [14] for
details). We write (X1[j], X2[j]) ∈ (X1, X2) for j ∈ [1, |X1|].
Matching dependencies. A matching dependency (MD) ϕ for
(R1, R2) is syntactically defined as follows:V

j∈[1,k](R1[X1[j]] ≈j R2[X2[j]]) → R1[Z1] 
 R2[Z2],

where (1) (X1, X2) (resp. (Z1, Z2)) are comparable lists over
(R1, R2), and (2) for each j ∈ [1, k], ≈j is a similarity operator in
Θ, and k = |X1|. We refer to

V
j∈[1,k](R1[X1[j]] ≈j R2[X2[j]])

and (R1[Z1], R2[Z2]) as the LHS and RHS of ϕ, respectively.
Intuitively, ϕ states that if R1[X1] and R2[X2] are similar w.r.t.

some similarity metrics, then identify R1[Z1] and R2[Z2].

Example 2.1: The semantic relations given in Examples 1.1 can be
expressed as MDs, as follows:
ϕ1: credit[LN] = billing[LN] ∧ credit[addr] = billing[post] ∧

credit[FN] ≈d billing[FN] → credit[Yc] 
 billing[Yb]

ϕ2: credit[tel] = billing[phn] → credit[addr] 
 billing[post]

ϕ3: credit[email] = billing[email] →
credit[FN, LN] 
 billing[FN, LN]

where ϕ1 states that for any credit tuple t and billing tuple t′, if t
and t′ have the same last name and address, and if their first names
are similar w.r.t. ≈d (but may not be identical), then identify t[Yc]
and t′[Yb]. Similarly, if t and t′ have the same phone number then
identify their addresses (ϕ2); and if t and t′ have the same email
then identify their names (ϕ3). Note that while name, address and
phone are part of Yb and Yc, email is not, i.e., the LHS of an MD is
neither necessarily contained in nor disjoint from its RHS. 2

Dynamic semantics. Recall that an FD X → Y simply assures
that for any tuples t1 and t2, if t1[X] = t2[X] then t1[Y ] = t2[Y ].
In contrast, to accommodate unreliable data, the semantics of MDs
is more involved. To present the semantics we need the following.
Extensions. To keep track of tuples during a matching process, we
assume a temporary unique tuple id for each tuple. For instances I
and I ′ of the same schema, we write I v I ′ if for each tuple t in
I there is a tuple t′ in I ′ such that t and t′ have the same tuple id.
Here t′ is an updated version of t, and t′ and t may differ in some
attribute values. For two instancesD = (I1, I2) andD′ = (I ′1, I

′
2)

of (R1, R2), we write D v D′ if I1 v I ′1 and I2 v I ′2.
For tuples t1 ∈ I1 and t2 ∈ I2, we write (t1, t2) ∈ D.

LHS matching. We say that (t1, t2) ∈ D match the LHS of MD ϕ

if for each j ∈ [1, k], t1[X1[j]] ≈j t2[X2[j]], i.e., t1[X1[j]] and
t2[X2[j]] are similar w.r.t. the metric ≈j .



tel addr … tel addr …
t1: 908‐1111111 10 Oak Street, MH, 

NJ07974
… t1: 908‐1111111 NJ07974 …

MD φ2 identify
equal equal equal

phn post … phn post …
t4: 908‐1111111 NJ t4: 908‐1111111 NJ07974

φ2 y

t1[addr]  & t4[post]

t4: 908 1111111 NJ … t4: 908 1111111 NJ07974 …

Dc =  (Ic , Ib) Dc’ = (Ic’, Ib’)

Figure 2: MDs expressing matching rules

For example, t1 and t3 of Fig. 1 match the LHS of ϕ1 of Exam-
ple 2.1: t1 and t3 have identical LN and address, and “Mark” ≈d

“Marx” when ≈d is a certain edit distance metric.
Semantics. We are now ready to give the semantics. Consider a
pair (D,D′) of instances of (R1, R2), where D v D′.

The pair (D,D′) of instances satisfy MD ϕ, denoted by
(D,D′) |= ϕ, if for any tuples (t1, t2) ∈ D, if (t1, t2) match
the LHS of ϕ in the instance D, then in the other instance D′, (a)
t1[Z1] = t2[Z2], i.e., the RHS attributes of ϕ in t1 and t2 are iden-
tified; and (b) (t1, t2) also match the LHS of ϕ.

Intuitively, the semantics states how ϕ is enforced as a match-
ing rule: whenever (t1, t2) in an instance D match the LHS of ϕ,
t1[Z1] and t2[Z2] ought to be made equal. The outcome of the en-
forcement is reflected in the other instance D′. That is, a value V
is to be found such that t1[Z1] = V and t1[Z2] = V in D′.

Example 2.2: Consider the MD ϕ2 of Example 2.1 and the instance
Dc = (Ic, Ib) of Fig. 1, in which (t1, t4) match the LHS of ϕ2. As
depicted in Fig. 2, the enforcement of ϕ2 yields another instance
D′

c = (I ′c, I
′
b) in which t1[addr] = t4[post], while t1[addr] and

t4[post] are different in Dc.
The 
 operator only requires that t1[addr] and t4[post] are iden-

tified, but does not specify how they are updated. That is, in anyD′
c

that extends Dc, if (a) t1[addr] = t4[post], (t1, t4) match the LHS
of ϕ2 in D′

c, and (b) similarly for (t1, t6), then ϕ2 is considered
enforced, i.e., (Dc, D

′
c) |= ϕ2. 2

It should be clarified that we use updates just to give the seman-
tics of MDs. In the matching process instance D may not be up-
dated, i.e., there is no destructive impact on D.

Matching dependencies are quite different from traditional de-
pendencies, e.g., FDs and inclusion dependencies (INDs).
(1) MDs have a “dynamic” semantics to accommodate errors and
different representations in the data: if attributes t1[X1] and t2[X2]
match in instance D, then t1[Z1] and t2[Z2] are updated and iden-
tified. Here t1[Z1] and t2[Z2] are equal in another instanceD′ that
results from the updates to D; in contrast, they may be radically
different in the original instance D. In contrast, FDs and INDs have
a “static” semantics: if certain attributes are equal in D, then some
other attributes are equal or are present in the same instance D.
(2) MDs are defined in terms of similarity metrics and the matching
operator 
, whereas FDs and INDs are defined with equality only.

Example 2.3: Consider two FDs defined on schema R(A,B,C):

f1: A→ B, f2: B → C.

Consider instances I0 and I1 of R shown in Fig. 3. Then s1 and s2
in I0 violate f1: s1[A] = s2[A] but s1[B] 6= s2[B]; similarly, s1
and s2 in I1 violate f2.

In contrast, consider two MDs defined on R:

ψ1: R[A] = R[A] → R[B] 
 R[B],
ψ2: R[B] = R[B] → R[C] 
 R[C],

where ψ1 states that for any instance (I, I ′) of (R,R) and any
(s1, s2) in (I, I ′), if s1[A] = s2[A], then s1[B] and s2[B] are
identified; similarly for ψ2. Let D0 = (I0, I0) and D1 = (I1, I1).

I0:
A B C

enforce
Ψ1

I1:
A B C

enforce 
ψ2

I2:
A B C

s1: a b1 c1 a b c1 a b c
s2: a b2 c2 a b c2 a b c

D0 =  (I0, I0) D1 = (I1, I1) D2 = (I2, I2)
stable for {ψ1} stable for {ψ1, ψ2 }

enforce ψ1 enforce ψ1, ψ2

Figure 3: The dynamic semantics of MDs

Then (D0, D1) |= ψ1. While s1[A] = s2[A] but s1[B] 6= s2[B]
in I0, s1 and s2 are not treated a violation of ψ1. Instead, a value
b is found such that s1[B] and s2[B] are changed to be b, which
results in instance I1. This is how MDs accommodate errors in
unreliable data sources. Note that (D0, D1) |= ψ2 since s1[B] 6=
s2[B] in I0, i.e., (s1, s2) does not match the LHS of ψ2 in I0. 2

A pair (D,D′) of instances satisfy a set Σ of MDs, denoted by
(D,D′) |= Σ, if (D,D′) |= ϕ for all ϕ ∈ Σ.

2.2 Relative Candidate Keys
To decide whether t1[Y1] and t2[Y2] refer to the same real-world

entity, it is natural to consider a minimal number of attributes to
compare. In light of this we identify a special case of MDs, as keys.

A key ψ relative to attribute lists (Y1, Y2) of (R1, R2) is an MD
in which the RHS is fixed to be (Y1, Y2), i.e., an MD of the formV

j∈[1,k](R1[X1[j]] ≈j R2[X2[j]]) → R1[Y1] 
 R2[Y2], where
k = |X1| = |X2|. We write ψ as (X1, X2 ‖ C) when (Y1, Y2) is
clear from the context, where C is [≈1, . . . ,≈k]. We refer to k as
the length of ψ, and C as its comparison vector.

The key ψ assures that for any tuples (t1, t2) of (R1, R2), to
identify t1[Y1] and t2[Y2] it suffices to inspect whether the at-
tributes of t1[X1] and t2[X2] pairwise match w.r.t. C.

The key ψ is a relative candidate key (RCK) if there is no other
key ψ′ = (X ′

1, X
′
2 ‖ C′) relative to (Y1, Y2) such that (1) the

length l of ψ′ is less than the length k of key ψ, and (2) for each
i ∈ [1, l], X ′

1[i], X
′
2[i] and C′[i] are the j-th element of the lists

X1, X2 and C, respectively, for some j ∈ [1, k].
We write ψ′ � ψ if conditions (1) and (2) are satisfied.
Intuitively, in order to identify t1[Y1] and t2[Y2], no other key ψ′

requires less attributes to inspect thanψ. That is, in order to identify
t1[Y1] and t2[Y2], an RCK specifies a minimum list of attributes to
inspect and tells us how to compare these attributes.

Example 2.4: Candidate keys relative to (Yc, Yb) include:

rck1: ([LN, addr, FN], [LN, post, FN] ‖ [=,=,≈d])
rck2: ([LN, tel, FN], [LN, phn, FN] ‖ [=,=,≈d])
rck3: ([email, addr], [email, post] ‖ [=,=])
rck4: ([email, tel], [email, phn] ‖ [=,=])

We remark that email is not part of Yb or Yc. 2

One can draw an analogy of RCKs to the familiar notion of
keys for relations: both notions attempt to provide an invariant
connection between tuples and the real-world entities they repre-
sent. However, there are sharp differences between the two no-
tions. First, RCKs bring domain-specific similarity operators into
the play, carrying a comparison vector. Second, RCKs are defined
across different relations; in contrast, keys are defined on a single
relation. Third, RCKs have a dynamic semantics and aim to identify
unreliable data, a departure from the classical dependency theory.

3. Reasoning about Matching Dependencies
Implication analyses of FDs and INDs can be found in almost ev-

ery database textbook. Along the same lines we want to deduce
MDs from a set of given MDs. As opposed to traditional depen-
dencies, MDs are defined in terms of domain-specific similarity and



matching operators, and they have a dynamic semantics. As a re-
sult, traditional implication analysis no longer works for MDs.

In this section we first propose a generic mechanism to deduce
MDs, independent of any particular similarity operators used. We
then present fundamental results for inference of MDs, which pro-
vide algorithmic insight into deducing MDs.

3.1 A Generic Reasoning Mechanism
Before we present the reasoning mechanism, we first examine

new challenges introduced by MDs.

New challenges. Matching dependencies are defined with simi-
larity operators, which may not be themselves expressible in any
reasonable declarative formalism. In light of these, our reasoning
mechanism is necessarily generic: we only assume the generic ax-
ioms given in Section 2 for similarity operators and for equality.

Another challenge is posed by the dynamic semantics of MDs.
Recall the notion of implication (see, e.g., [2]): given a set Γ of

traditional dependencies and another dependency φ, Γ implies φ
if for any database D that satisfies Γ, D also satisfies φ. For an
example of our familiar FDs, if Γ consists of X → Y and Y → Z,
then it implies X → Z. However, this notion of implication is no
longer applicable to MDs on unreliable data.

Example 3.1: Let Σ0 be the set {ψ1, ψ2} of MDs and Γ0 the set
{f1, f2} of FDs given in Example 2.3. Consider additional MD and
FD given below:

MD ψ3: R[A] = R[A] → R[C] 
 R[C],
FD f3: A→ C.

Then Γ0 implies f3, but Σ0 does not implyψ3. To see this, consider
I0 (D0) and I1 (D1) in Fig. 3. Observe the following.

(1) (D0, D1) |= Σ0 but (D0, D1) 6|= ψ3. Indeed, (D0, D1) |= ψ1

and (D0, D1) |= ψ2. However, (D0, D1) 6|= ψ3: while s1[A] =
s2[A] in D0, s1[C] 6= s2[C] in D1. This tells us that Σ0 does not
imply ψ3 if the notion of implication is used for MDs.

(2) In contrast, neither I0 nor I1 contradicts to the implication of f3
from Γ0. Note that I0 6|= f3: s1[A] = s2[A] but s1[C] 6= s2[C].
That is, s1 and s2 violate f3. However, I0 does not satisfy Γ0

either. Indeed, I0 6|= f1: s1[A] = s2[A] but s1[B] 6= s2[B]. Thus
the implication of FDs remains valid on I0; similarly for I1. 2

Deduction. To capture the dynamic semantics of MDs, we need
another notion.

An instance D of (R1, R2) is said to be stable for a set Σ of
MDs if (D,D) |= Σ. Intuitively, a stable instance D is an ultimate
outcome of enforcing Σ: each and every rule in Σ is enforced until
no more updates have to be conducted.

Example 3.2: As illustrated in Fig. 3,D2 is a stable instance for Σ0

of Example 3.1. It is an outcome of enforcing MDs in Σ0 as match-
ing rules: when ψ1 is enforced on D0, it yields another instance in
which s1[B] = s2[B], e.g., D1. When ψ2 is further enforced on
D1, s1[C] and s2[C] are identified, yielding D2. 2

We are now ready to formalize the notion of deductions.
For a set Σ of MDs and another MD ϕ on (R1, R2), ϕ is said to

be deduced from Σ, denoted by Σ |=m ϕ, if for any instance D of
(R1, R2), and for each stable instance D′ for Σ, if (D,D′) |= Σ
then (D,D′) |= ϕ.

Intuitively, stable instance D′ is a “fixpoint” reached by enforc-
ing Σ on D. There are possibly many stable instances obtained by
enforcing Σ on D, depending on how D is updated. The deduction
analysis inspects all of the stable instances for Σ.

The notion of deductions is generic: no matter how MDs are in-
terpreted, if Σ is enforced, then so must be ϕ. In other words, ϕ is
a logical consequence of the given MDs in Σ.

Example 3.3: As will be seen in Section 3.2, for Σ0 and ψ3 given
in Example 3.1, Σ0 |=m ψ3. In particular, for the stable instance
D2 of Example 3.2, (D0, D2) |= Σ0 and (D0, D2) |= ψ3. 2

The deduction problem for MDs is to determine, given any set
Σ of MDs defined on (R1, R2) and another MD ϕ on (R1, R2),
whether or not Σ |=m ϕ.

Added value of deduced MDs. While the dynamic semantics of
MDs makes it difficult to reason about MDs, it yields added value of
deduced MDs. Indeed, while tuples in unreliable relations may not
be matched by a given set Σ of MDs, they may be identified by an
MD ϕ deduced from Σ. In contrast, when a traditional dependency
φ is implied by a set of dependencies, any database that violates φ
cannot possibly satisfy all the given dependencies.

Example 3.4: Let Dc be the instance of Fig. 1, and Σ1 consist of
ϕ1, ϕ2, ϕ3 of Example 2.1. As shown in Example 1.1, (t1, t6) in
Dc can be matched by rck4 of Example 2.4, but cannot be directly
identified by Σ1. Indeed, one can easily find an instance D′ such
that (Dc, D

′) |= Σ1 but t1[Yc] 6= t6[Yb] in D′. In contrast, there
is no D′ such that (Dc, D

′) |= rck4 but t1[Yc] 6= t6[Yb] in D′.
As will be seen in Example 3.5, it is from Σ1 that rck4 is deduced.
This shows that tuples that cannot be matched by a set Σ of given
MDs may be identified by MDs deduced from Σ.

The deduced rck4 would not have had added value if the MDs
were interpreted with a static semantics like FDs. Indeed, t1 and t6
have radically different names and addresses, and would be consid-
ered a violation of rck4 if rck4 were treated as an “FD”. At the same
time they would violate ϕ1 in Σ1. Thus in this traditional setting,
rck4 would not be able to identify tuples that Σ1 fails to match. 2

3.2 Inference of Matching Dependencies
Armstrong’s Axioms have proved extremely useful in the impli-

cation analysis of FDs (see, e.g., [2]). Along the same lines we have
developed a finite inference system I for MDs that is sound and
complete: for any set Σ of MDs and another MD ϕ, Σ |=m ϕ iff ϕ
is provable from Σ using axioms in I.

The inference of MDs is, however, more involved than its FDs
counterpart: I consists of 11 axioms. Due to the lack of space we
opt not to present all the axioms in I. Instead, below we provide
several lemmas to illustrate the similarity and difference between
MD analysis and its FD counterpart. We shall use these lemmas
when presenting the deduction algorithm for MDs in Section 4.

Augmentation and transitivity. Recall that for FDs, if X → Y
then XZ → Y Z for any set Z of attributes. For MDs we have:

Lemma 3.1: For any MD ϕ, any comparable attributes (A, B) over
(R1, R2), and similarity operator ≈ in Θ, the following MDs can
be deduced from MD ϕ:

◦ (LHS(ϕ) ∧R1[A] ≈ R2[B]) → RHS(ϕ), and
◦ (LHS(ϕ) ∧R1[A] = R2[B]) → (RHS(ϕ) ∧R1[A] 
 R2[B]).2

That is, one can augment LHS(ϕ) with additional similarity test
R1[A] ≈ R2[B]. In particular, if≈ is equality =, then RHS(ϕ) can
be expanded accordingly. In contrast to their FD counterpart, these
augmentation axioms for MDs have to treat the equality operator
and other similarity operators separately.

To present the transitivity of MDs, we first show:

Lemma 3.2: Let L =
V

i∈[1,k](R1[X1[i]] ≈i R2[X2[i]]).
1. For any MD ϕ = L → R1[Z1] 
 R2[Z2], any instances

(D,D′) |= ϕ, and any (t, t′) ∈ (D,D′), if (t, t′) match
LHS(ϕ) in D, then t[Z1] = t′[Z2] in D′.

2. For any similarity operator ≈ in Θ, from MD (L ∧ R1[A] ≈
R2[B]) → R1[Z1] 
 R2[Z2] the following MD can be de-
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t[A1] = t[A2]

t[A2] = t’[C]

t: V1 V3 V3 …
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t[A1] = t’[B]
t[A2] = t’[B]
t[A1] = t’[C]

X2 C B …
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X1 A1 A2 …

t[A1] ≈ t[A2]
t: V1 V3 V4 …

similar equal

X2 B …
t’: V2 V4 …

(a) (b)

D’ D’

Figure 4: Illustration of Lemma 3.4

duced: (L ∧R1[A] = R2[B]) → R1[Z1] 
 R2[Z2]. 2

Proof sketch: (1) It follows immediately from the semantics of
MDs. (2) Observe that for any similarity operator ≈ and values x
and y, if x = y then x ≈ y (see Section 2.1). 2

Using this lemma, one can verify the transitivity of MDs (recall
that for FDs, if X → Y and Y → Z then X → Z).

Lemma 3.3: For MDs ϕ1, ϕ2 and ϕ3 given as follows:
ϕ1 =

V
i∈[1,k](R1[X1[i]] ≈i R2[X2[i]])→ R1[W1] 
 R2[W2],

ϕ2 =
V

j∈[1,l](R1[W1[j]] ≈j R2[W2[j]])→ R1[Z1] 
 R2[Z2],
ϕ3 =

V
i∈[1,k](R1[X1[i]] ≈i R2[X2[i]])→ R1[Z1] 
 R2[Z2],

Σ |=m ϕ3, where Σ consists of ϕ1, ϕ2, and l = |W1| = |W2|. 2

As shown in Example 3.1, Σ 6|= ϕ3, i.e., when the traditional
notion of implication analysis is adopted, Σ does not imply ϕ3.
In contrast, Σ |=m ϕ3, i.e., ϕ3 can be deduced from Σ when the
generic deduction reasoning is used. This highlights the need for
developing the deduction reasoning mechanism.

Example 3.5: Consider Σc consisting of ϕ1, ϕ2, ϕ3 of Exam-
ple 2.1, and rck4 of Example 2.4. Then Σc |=m rck4 as follows.
(a) credit[tel] = billing[phn] ∧ credit[email] = billing[email]

→ credit[addr, FN, LN] 
 billing[post, FN, LN] (applying
Lemmas 3.1, 3.2 and 3.3 to ϕ2, ϕ3 multiple times)

(b) credit[LN] = billing[LN] ∧ credit[addr] = billing[post] ∧
credit[FN] = billing[FN] → credit[Yc] 
 billing[Yb]

(by ϕ1 and Lemma 3.2)
(c) credit[tel] = billing[phn] ∧ credit[email] = billing[email]

→ credit[Yc] 
 billing[Yb] (rck4, by (a, b) and Lemma 3.3)
Similarly, rck1, rck2 and rck3 can be deduced from Σc. 2

New challenges. Having seen familiar properties, we next show
some results, which tell us that the interaction between the match-
ing operator and equality (similarity) makes our lives much harder.

Lemma 3.4: Let L be
V

i∈[1,k](R1[X1[i]] ≈i R2[X2[i]]), (D,D′)

be any instances of (R1, R2), and (t, t′) ∈ (D,D′). Then
1. if ϕ = L → R1[A1, A2] 
 R2[B, B], (D,D′) |= ϕ, and if

(t, t′) match LHS(ϕ), then t[A1] = t[A2] in D′; if in addi-
tion, (D,D′) |= ϕ′, where ϕ′ = L → R1[A1] 
 R2[C], then
t[A2] = t′[C] in D′;

2. if ϕ = (L ∧ R1[A1] ≈ R2[B]) → R1[A2] 
 R2[B],
(D,D′) |= ϕ, and if (t, t′) match LHS(ϕ) in D, then
t[A2] ≈ t[A1] in D′. 2

As shown in Fig. 4(a), if distinct values t[A1] and t[A2] of t are
to match the same t′[B] by enforcing ϕ on D, then it follows that
t[A1] and t[A2] are equal to each other inD′; if furthermore, t[A1]
and t′[C] are to match, then t[A2] = t′[C] in D′ (Lemma 3.4 (1)).
That is, the matching operator interacts with the equality relation.
In addition, there is also interaction between the matching operator
and similarity operators. As shown in Fig. 4(b), if t[A1] ≈ t′[B]
and t[A2] is to match the same t′[B] by enforcing an MD on D,
then t[A1] ≈ t[A2] in D′ (Lemma 3.4 (2)). These interactions are
not encountered in the implication analysis of FDs.

Proof sketch: (1) Since (D,D′) |= ϕ, we have that t[A1] = t[B]
and t[A2] = t[B] in D′. Hence t[A1] = t[A2] in D′.

If in addition, (D,D′) |= ϕ′, then t[A1] = t′[C] is also in D′.
Since t[A1] = t[A2], it follows that t[A2] = t′[C].
(2) If (D,D′) |= ϕ, then t[A2] = t′[B] in D′. Since (t, t′) match
LHS(ϕ), we have that t[A1] ≈ t′[B] in D and D′. From these it
follows that t[A2] ≈ t[A1] in D′. 2

4. An Algorithm for Deduction Analysis
We next focus on the deduction problem for matching dependen-

cies. The main result of this section is the following:

Theorem 4.1: There exists an algorithm that, given as input a set
Σ of MDs and another MD ϕ over schemas (R1, R2), determines
whether or not Σ |=m ϕ in O(n2 +h3) time, where n is the size of
Σ and ϕ, and h is the total number of distinct attributes appearing
in Σ or ϕ. 2

The algorithm is in quadratic-time in the size of the input when
(R1, R2) are fixed. Indeed, h is no larger than the arity of (R1, R2)
(the total number of attributes in (R1, R2)) and is typically much
smaller than n. It should be remarked that the deduction analysis of
MDs is carried out at compile time on MDs, which are much smaller
than data relations on which record matching is performed.

Compared to the O(n) time complexity of FD implication, The-
orem 4.1 tells us that although the expressive power of MDs is not
for free, it does not come at too big a price.

Below we present the algorithm. In the next section the algo-
rithm will be used to compute a set of quality RCKs.

Overview. To simplify the discussion we consider w.l.o.g. a nor-
mal form of MDs. We assume that each MD φ is in the form ofV

j∈[1,m](R1[U1[j]]≈jR2[U2[j]]) → R1[A] 
 R2[B], i.e., RHS(φ)

is a single pair of attributes in (R1, R2). This does not lose general-
ity as an MD ψ of the general form, i.e., when RHS(ψ) is (Z1, Z2),
is equivalent to a set of MDs in the normal form, one for each pair
of attributes in (Z1, Z2), by Lemmas 3.1 and 3.3.

In particular, we assume that the input MD ϕ is of the form:

ϕ =
V

i∈[1,k](R1[X1[i]] ≈i R2[X2[i]])→ R1[C1] 
 R2[C2].

The algorithm, referred to as MDClosure, takes MDs Σ and ϕ
as input, and computes the closure of Σ and LHS(ϕ). The closure
is the set of all pairs (R1[A], R2[B]) such that Σ |=m LHS(ϕ) →
R1[A] 
 R2[B]. Thus one can conclude that Σ |=m ϕ if and only
if (iff) (R1[C1], R2[C2]) is in the closure.

While the algorithm is along the same lines as its counterpart for
FD implication [2], it is far more involved.

The closure of Σ and ϕ is stored in an h× h× p array M . The
first two dimensions are indexed by distinct attributes appearing in
Σ or ϕ, and the last one by distinct similarity operators in Σ or ϕ
(including =). Note that p ≤ |Θ|, where the set Θ of similarity
metrics is fixed. In practice, p is a constant: in any application
domain only a small set of predefined similarity metrics is used.

The algorithm computes M based on Σ and LHS(ϕ) such
that for relation schemas R,R′ and for similarity operator ≈,
M(R[A], R′[B],≈) = 1 iff Σ |=m LHS(ϕ) → R[A] ≈ R′[B]. Here
abusing the syntax of MDs, we allow R and R′ to be the same rela-
tion (either R1 or R2), and ≈ to appear in the RHS of MDs in inter-
mediate results during the computation. As shown by Lemma 3.4,
this may happen in MD deduction due to the interaction between
the matching operator and similarity operators.

Putting these together, algorithm MDClosure takes Σ and ϕ as
input, computes the closure of Σ and LHS(ϕ) using M , and con-
cludes that Σ |=m ϕ iff M(R1[C1], R2[C2], =) is 1. By Lemma 3.2,



Algorithm MDClosure

Input: A set Σ of MDs and another MD ϕ, where
LHS(ϕ) =

V
i∈[1,k](R1[X1[i]]≈iR2[X2[i]]).

Output: The closure of Σ and LHS(ϕ), stored in array M .
1. All entries of M are initialized to 0;
2. for each i ∈ [1, k] do
3. if AssignVal (M, R1[X1[i]], R2[X2[i]],≈i)
4. then Propagate (M, R1[X1[i]], R2[X2[i]],≈i);
5. repeat until no further changes
6. for each MD φ in Σ do

/* φ =
V

j∈[1,m](R1[U1[j]]≈jR2[U2[j]])→R1[A]
R2[B]*/
7. if there is d ∈ [1, m] such that M(R1[U1[d]], R2[U2[d]], =) = 0

and M(R1[U1[d]], R2[U2[d]],≈d) = 0 (1 ≤ d ≤ m)
8. then continue ;
9. else {Σ := Σ \ {φ};
10. if AssignVal (M, R1[A], R2[B], =)
11. then Propagate (M, R1[A], R2[B], =);}
12. return M .

Procedure AssignVal (M, R[A], R′[B],≈)
Input: Array M with new similar pair R[A] ≈ R′[B].
Output: Update M , return true if M is updated and false otherwise.
1. if M(R[A], R′[B], =) = 0 and M(R[A], R′[B],≈) = 0
2. then {M(R[A], R′[B],≈) := 1; M(R′[B], R[A],≈) := 1;
3. return true;}
4. else return false;

Figure 5: Algorithm MDClosure

we can set M(R1[C1], R2[C2], =) = 1 iff R1[C1] 
 R2[C2] is de-
duced from Σ and LHS(ϕ) (on stable instances).

Algorithm. Algorithm MDClosure is given in Fig. 5. As opposed
to FD implication, it has to deal with intriguing interactions be-
tween matching 
 and similarity ≈. Before illustrating the algo-
rithm, we first present procedures for handling the interactions.
Procedure AssignVal. As shown in Fig. 5, this procedure takes
a similar pair R[A] ≈ R′[B] as input. It checks whether or
not M(R[A], R′[B],≈) or M(R[A], R′[B],=) is already set to
1 (line 1). If not, it sets both M(R[A], R′[B],≈) and its sym-
metric entry M(R′[B], R[A],≈) to 1, and returns true (lines 2–3).
Otherwise it returns false (line 4).

Observe that if M(R[A], R′[B],=) is 1, then no change is
needed, since from R[A] = R′[B] it follows that R[A] ≈ R′[B].
Indeed, the generic axioms for similarity operators tell us that each
similarity relation ≈ subsumes =.
Procedures Propagate and Infer. When M(R[A], R′[B],≈) is
changed to 1, the change may have to be propagated to other M
entries. Indeed, by the generic axioms for similarity operators,
(1) for each R[C] = R[A] (resp. R′[C] = R[A]), it follows
that R[C] ≈ R′[B] (resp. R′[C] ≈ R′[B]). Hence entries
M(R[C], R′[B],≈) (resp. M(R′[C], R′[B],≈)) should also be
set to 1; similarly for R′[B].
(2) If≈ is =, then for eachR[C] ≈d R[A] (resp.R′[C] ≈d R[A]),
we have that R[C] ≈d R′[B] (resp. R′[C] ≈d R′[B]); thus
M(R[C], R′[B],≈d) (resp. M(R′[C], R′[B],≈d)) is set to 1.

In turn these changes may trigger new changes to M , and so on.
It is to handle this that procedures Propagate and Infer are used,
which recursively propagate the changes.

These procedures are given in Fig. 6. They use a queue Q to keep
track of and process the changes: changes are pushed into Q when-
ever they are encountered, and are popped offQ and processed one
by one until Q is empty.

More specifically, procedure Propagate takes a newly deduced
similar pair R[A] ≈ R′[B] as input, and updates M accordingly.
It first pushes the pair into Q (line 1). Then for each entry R[C] ≈
R′[C′] in Q (line 3), three different cases are considered, depending

Procedure Propagate (M, R1[A], R2[B],≈)
Input: Array M with updated similar pair R1[A] ≈ R2[B].
Output: Updated M to include similarity change propagation.
1. Q.push(R1[A], R2[B],≈);
2. while (Q is not empty) do
3. (R[C], R′[C′],≈d) := Q.pop();
4. case (R, R′) of
5. (1) R = R1 and R′ = R2

6. Infer(Q, M, R2[C′], R1[C], R1,≈d);
7. Infer(Q, M, R1[C], R2[C′], R2,≈d);
8. (2) R = R′ = R1

9. Infer(Q, M, R1[C], R1[C′], R2,≈d);
10. Infer(Q, M, R1[C′], R1[C], R2,≈d);
11. (3) R = R′ = R2

12. Infer(Q, M, R2[C], R2[C′], R1,≈d);
13. Infer(Q, M, R2[C′], R2[C], R1,≈d);

Procedure Infer(Q, M, R[A], R′[B], R′′,≈)
Input: Queue Q, array M , newly updated similar pair

R[A] ≈ R′[B], and relation name R′′.
Output: New similar pairs stored in Q and updated M .
1. for each attribute C of R′′ do
2. if M(R[A], R′′[C], 
) = 1
3. then {if AssignVal (M, R′[B], R′′[C],≈)
4. then Q.push(R′[B], R′′[C],≈);}
5. if ≈ is =
6. then for each similarity operator ≈d (1 ≤ d ≤ p) do
7. {if M(R[A], R′′[C],≈d) = 1 and

AssignVal(M, R′[B], R′′[C],≈d)
8. then Q.push(R′[B], R′′[C],≈d);}

Figure 6: Procedures Propagate and Infer

on whether (R,R′) are (R1, R2) (lines 5–7), (R1, R1) (lines 8–10)
or (R2, R2) (lines 11–13). In each of these cases, procedure Infer
is invoked, which modifies M entries based on the generic axioms
for similarity operators given in Section 2. The process proceeds
until Q becomes empty (line 2).

Procedure Infer takes as input queue Q, array M , a new similar
pair R[A] ≈ R′[B], and relation R′′, where R,R′, R′′ are either
R1 or R2. It infers other similar pairs, pushes them into Q, and
invokes procedure AssignVal to update corresponding M entries.
It handles two cases, namely, the cases (1) and (2) mentioned above
(lines 2–4 and 5–8, respectively). The new pairs pushed into Q are
processed by procedure Propagate, as described above.
Algorithm MDClosure. We are now ready to illustrate the main
driver of the algorithm (Fig. 5), which works as follows. It first
sets all entries of array M to 0 (line 1). Then for each pair
R1[X1[i]]≈iR2[X2[i]] in LHS(ϕ), it stores the similar pair in M
(lines 2–4). After these initialization steps, the algorithm inspects
each MD φ in Σ one by one (lines 6–11). It checks whether LHS(φ)
is matched (line 7), and if so, it invokes procedures AssignVal
and Propagate to update M based on RHS(φ), and propagate the
changes (line 10–11). The inspection of LHS(φ) uses a property
mentioned earlier: if M(R1[U1], R2[U2], =) = 1, then R1[U1] ≈d

R2[U2] for any similarity metric ≈d (line 7).
Once an MD is applied, it will not be inspected again (line 9).

The process proceeds until no more changes can be made to array
M (line 5). Finally, the algorithm returns M (line 12).

Example 4.1: Recall Σc and rck4 from Example 3.5. We show
how rck4 is deduced from Σc by MDClosure. We use the table
below to keep track of the changes to array M after step 4 of the
algorithm, when MDs in Σc are applied. We use c and b to denote
relations credit and billing, respectively.

After step 4, M is initialized with c[email] = b[email] and
c[tel] = b[phn], as given by LHS(rck4). Now both LHS(ϕ2) and
LHS(ϕ3) are matched, and thus M is updated with c[addr] 




b[post] (as indicated by M(c[addr], b[post],=)), c[FN] 
 b[FN]
and c[LN] 
 b[LN]. As a result of the changes, LHS(ϕ1) is
matched, and M(c[Yc], b[Yb],=) is set to 1. After that, no more
changes can be made to array M . Since M(c[Yc], b[Yb],=) = 1,
we conclude that Σ |=m rck4.

step new updates to M
step 4 M(c[email], b[email], =) = M(b[email], c[email], =) = 1

M(c[tel], b[phn], =) = M(b[phn], c[tel], =) = 1
ϕ2 M(c[addr], b[post], =) = M(b[post], c[addr], =) = 1
ϕ3 M(c[FN], b[FN], =) = M(b[FN], c[FN], =) = 1

M(c[LN], b[LN], =) = M(b[LN], c[LN], =) = 1
ϕ1 M(c[Yc], b[Yb], =) = M(b[Yb], c[Yc],=) = 1

2

Complexity analysis. MDClosure executes the repeat loop at
most n times, since in each iteration it calls procedure Propagate,
which applies at least one MD in Σ. That is, Propagate can be
called at most n times in total. Each iteration searches at most all
MDs in Σ. For the k-th call of Propagate (1 ≤ k ≤ n), let Lk

be the number of while-loops it executes. For each loop, it takes at
most O(h) time since procedure Infer is in O(h) time. Hence the
total cost of updating array M is in O((L1 + . . . + Ln)h) time.
Note that (L1 + . . .+ Ln) is the total number of changes made to
array M , which is bounded by O(h2). Taken these together, algo-
rithm MDClosure is in O(n2 +h3) time. As remarked earlier, h is
usually much smaller than n, and is a constant when (R1, R2) are
fixed. The algorithm can possibly be improved to O(n+ h3) time
by leveraging the index structures of [8, 25] for FD implication.

5. Computing Relative Candidate Keys
As remarked in Section 1, to improve match quality we often

need to repeat blocking, windowing and matching processes mul-
tiple times, each using a different key [14]. This gives rise to the
problem for computing RCKs: given a set Σ of MDs, a pair of com-
parable lists (Y1, Y2), and a natural number m, it is to compute a
set Γ of m quality RCKs relative to (Y1, Y2), deduced from Σ.

The problem is nontrivial. One question concerns what metrics
we should use to select RCKs. Another question is how to find m
quality RCKs using a metric. One might be tempted to first com-
pute all RCKs from Σ, sort these keys based on the metric, and
then select the top m keys. This is beyond reach in practice: it is
known that for a single relation, there are possibly exponentially
many traditional candidate keys [24]. For RCKs, unfortunately, the
exponential-time complexity remains intact.

In this section we first propose a model to assess the quality of
RCKs. Based on the model, we then develop an efficient algorithm
to infer m RCKs from Σ. As will be verified by our experimental
study, even when Σ does not contain many MDs, the algorithm still
finds a reasonable number of RCKs. On the other hand, in practice
it is rare to find exponentially many RCKs; indeed, the algorithm
often finds the set of all RCKs when m is not very large.

Quality model. We select RCKs to add to Γ based on the following.

(a) The diversity of RCKs in Γ. We do not want those RCKs defined
with pairs (R1[A], R2[B]) if the pairs appear frequently in RCKs that
are already in Γ. That is, we want Γ to include diverse attributes so
that if errors appear in some attributes, matches can still be found
by comparing other attributes in the RCKs of Γ. To do this we
maintain a counter ct(R1[A], R2[B]) for each pair, and increment it
whenever an RCK with the pair is added to Γ.

(b) Statistics. We consider the accuracy of each attribute pair
ac(R1[A], R2[B]), i.e., the confidence placed by the user in the
attributes, and average lengths lt(R1[A], R2[B]) of the values of

each attribute pair. Intuitively, the longer lt(R1[A], R2[B]) is,
the more likely errors occur in the attributes; and the greater
ac(R1[A], R2[B]) is, the more reliable (R1[A], R2[B]) are.

Putting these together, we define the cost of including attributes
(R1[A], R2[B]) in an RCK as follows:

cost(R1[A], R2[B]) = w1·ct(R1[A], R2[B]) + w2·lt(R1[A], R2[B])

+ w3/ac(R1[A], R2[B])

where w1, w2, w3 are weights associated with these factors. Our
algorithm selects RCKs with attributes of low cost (high quality).

Overview. We provide an algorithm for computing RCKs, referred
to as findRCKs. Given Σ, (Y1, Y2) andm as input, it returns a set Γ
consisting of at most m RCKs relative to (Y1, Y2) that are deduced
from Σ. The algorithm selects RCKs defined in terms of low-cost
attribute pairs. The set Γ contains m quality RCKs if there exist at
least m RCKs, and otherwise it consists of all RCKs deduced from
Σ. The algorithm is in O(m(l + n)3) time, where l is the length
|Y1| (|Y2|) of Y1 (Y2), and n is the size of Σ. In practice, m is often
a predefined constant, and the algorithm is in cubic-time.

To determine whether Γ includes all RCKs that can be deduced
from Σ, algorithm findRCKs leverages a notion of completeness,
first studied for traditional candidate keys in [24]. To present this
we need the following notations.

For pairs of lists (X1, X2) and (Z1, Z2), we denote by (X1, X2)\
(Z1, Z2) the pair (X′

1, X′
2) obtained by removing elements of

(Z1, Z2) from (X1, X2). That is, for any (A,B) ∈ (Z1, Z2),
(A,B) 6∈ (X′

1, X′
2). We also define (X1, X2) ∪ (Z1, Z2) by

adding elements of (Z1, Z2) to (X1, X2). Similarly, we can define
(X1, X2 ‖ C) \ (Z1, Z2 ‖ C′), for relative keys.

Consider an RCK γ = (X1, X2 ‖ C) and an MD φ defined asV
j∈[1,k](R1[W1[j]]≈jR2[W2[j]])→R1[Z1] 
 R2[Z2]. We define

apply(γ, φ) to be relative key (X′
1, X′

2 ‖ C′), where (X′
1, X′

2) =
((X1, X2)\ (Z1, Z2)) ∪ (W1, W2), i.e., by removing from (X1, X2)

pairs of RHS(φ) and adding pairs of LHS(φ); and C′ is obtained
from C by removing corresponding operators for attributes in
RHS(φ) and adding those for each pair in LHS(φ). Intuitively,
apply(γ, φ) is a relative key deduced by “applying” MD φ to γ.

A nonempty set Γ is said to be complete w.r.t. Σ if for each RCK
γ in Γ and each MD φ in Σ, there exists some RCK γ1 in Γ such
that γ1 � apply(γ, φ) (recall the notion � from Section 2.2).

That is, for all apply(γ, φ)’s deduced by possible applications of
MDs in Σ, they are already covered by “smaller” RCKs in the set Γ.

Proposition 5.1: A nonempty set Γ consists of all RCKs deduced
from Σ iff Γ is complete w.r.t. Σ. 2

The algorithm uses this property to determine whether or not Γ
needs to be further expanded.

Algorithm. Algorithm findRCKs is shown in Fig. 7. Before we
illustrate the details, we first present procedures it uses.

(a) Procedure minimize takes as input Σ and a relative key γ =
(X1, X2 ‖ C) such that Σ |=m γ; it returns an RCK by minimizing
γ. It first sorts (R1[A], R2[B],≈) in γ based on cost(R1[A], R2[B])

(line 1). It then processes each (R1[A], R2[B],≈) in the descending
order, starting from the most costly one (line 2). More specifically,
it removes V = (R1[A], R2[B] ‖≈) from γ, as long as Σ |=m γ \ V

(lines 3-4). Thus when the process terminates, it produces γ′, an
RCK such that Σ |=m γ′. The procedure checks derivation by
invoking algorithm MDClosure (Section 4).

(b) Procedure incrementCt (not shown) takes as input a set S of
attribute pairs and an RCK γ. For each pair (R1[A], R2[B]) in S
and γ, it increments ct(R1[A], R2[B]) by 1.

(c) Procedure sortMD (not shown) sorts MDs in Σ based on the sum



Algorithm findRCKs

Input: Number m, a set Σ of MDs, and pairwise comparable (Y1, Y2).
Output: A set Γ of at most m RCKs.
1. c := 0; S := pairing (Σ, Y1, Y2);
2. let ct(R1[A], R2[B]) := 0 for each (R1[A], R2[B]) ∈ S;
3. γ := (Y1, Y2 ‖ C), where |C| = |Y1| and C consists of = only;
4. γ′ := minimize (γ, Σ); Γ := {γ′}; incrementCt(S, γ′);
5. for each RCK γ ∈ Γ do
6. LΣ := sortMD(Σ);
7. for each φ in LΣ in the ascending order do
8. LΣ := LΣ \ {φ};
9. γ′ := apply(γ, φ); flag := true;
10. for each γ1 ∈ Γ do
11. flag := flag and (γ1 6� γ′);
12. if flag then
13. γ′ := minimize (γ′, Σ); Γ := Γ ∪ {γ′};
14. c := c + 1; incrementCt(S, γ′); LΣ := sortMD(LΣ);
15. if c = m then return Γ;
16. return Γ.

Procedure minimize ((X1, X2 ‖ C), Σ)
Input: Relative key γ = (X1, X2 ‖ C) and a set Σ of MDs.
Output: An RCK.
1. L := sort (X1, X2, C);
2. for each V =(R1[A], R2[B] ‖≈) in L in the descending order do
3. if Σ |=m γ \ V /* using algorithm MDClosure */
4. then γ := γ \ V ;
5. return γ;

Figure 7: Algorithm findRCKs

of the costs of their LHS attributes. The sorted MDs are stored in a
list LΣ, in ascending order.

We are now ready to describe algorithm findRCKs. The algo-
rithm uses a counter c to keep track of the number of RCKs in Γ,
initially set to 0 (line 1). It first collects in S all pairs (R1[A], R2[B])

that are either in (Y1, Y2) or in some MD of Σ (referred to as
pairing(Σ, Y1, Y2), line 1). The counters of these pairs are set to
0 (line 2). It constructs γ = (Y1, Y2 ‖ C), where C is a list of equal-
ity operators and |C| = |Y1| (line 3). Obviously γ is a key relative
to (Y1, Y2). Then the set Γ is initialized by including an RCK γ′

obtained from γ by procedure minimize. For each attribute pair in
γ′, its counter is incremented by 1 (line 4).

After the initialization steps, the algorithm repeatedly checks
whether Γ is complete w.r.t. Σ. If not, it adds new RCKs to Γ
(lines 5-15). More specifically, for each γ ∈ Γ and φ ∈ Σ, it
inspects the condition for the completeness (lines 7-11). If Γ is not
complete, an RCK γ′ is added to Γ, where γ′ is obtained by first
applying φ to γ and then invoking minimize. The algorithm in-
crements the counter c by 1, and re-sorts MDs in Σ based on the
updated costs (lines 12-14).

The process proceeds until either Γ contains m RCKs (line 15),
or it cannot be further expanded (line 16). In the latter case, Γ
includes all RCKs that can be deduced from Σ, by Proposition 5.1.

The algorithm deduces RCKs defined with attribute pairs of low
costs. Indeed, it sorts MDs in Σ based on their costs, and ap-
plies low-cost MDs first (lines 6-7). Moreover, it dynamically
adjusts the costs after each RCK γ′ is added, by incrementing
ct(R1[A], R2[B]) of each (R1[A], R2[B]) in γ′ (lines 4, 14). Fur-
ther, Procedure minimize retains attributes pairs with low costs in
RCKs and removes those of high costs.

Example 5.1: Consider MDs Σc described in Example 3.5, and
attribute lists (Yc, Yb) of Example 1.1. We illustrate how algorithm
findRCKs computes a set of RCKs relative to (Yc, Yb) from Σc. We
fix m = 6, weights w1 = 1 and w2 = w3 = 0.

The table below shows the changes of (1) cost(R1[A], R2[B]) for

each pair (R1[A], R2[B]) appearing in Σc and (Yc, Yb), (2) the cost
of each MD in Σc and (3) the set Γ of RCKs deduced. For the lack
of space, when counter c = 0, the table shows the values after step
4 of the algorithm. For c ≥ 1, the values after step 15 are given.

counter cattribute pairs/MDs 0 1 2 3 4
cost(LN, LN) 0 1 2 2 2
cost(FN, FN) 0 1 2 2 2
cost(addr, post) 0 1 1 2 2
cost(tel, phn) 0 0 1 1 2
cost(email, email) 0 0 0 1 2
cost(Yc, Yb) 1 1 1 1 1
cost(LHS(ϕ1)) 0 3 5 6 6
cost(LHS(ϕ2)) 0 0 1 1 2
cost(LHS(ϕ3)) 0 0 0 1 2

c new RCKs added to set Γ
0 rck0: ([Yc], [Yb] ‖ [=])
1 rck1: ([LN, addr, FN], [LN, post, FN] ‖ [=, =,≈d])
2 rck2: ([LN, tel, FN], [LN, phn, FN] ‖ [=, =,≈d])
3 rck3: ([email, addr], [email, post] ‖ [=, =])
4 rck4: ([email, tel], [email, phn] ‖ [=, =])

The algorithm deduces RCKs as follows. (a) When c = 0, it
applies MD ϕ1 to rck0 and gets rck1. (b) When c = 1, rck2 is
deduced by applying ϕ2 to rck1. (c) When c = 2, rck3 is deduced
from ϕ3 and rck1. (d) When c = 3, rck4 is found by applying ϕ2

to rck3. (e) When c ≥ 4, nothing is changed since no new RCKs
can be found. In fact the process terminates when c = 4 since no
more RCKs are added to Γ, and all MDs in Σ have been checked
against RCKs in Γ. The final Γ is {rck0, rck1, rck2, rck3, rck4}. In
the process the MD with the lowest cost is always chosen first. 2

Complexity analysis. Let l be the length of (Y1, Y2) and n be
the size of Σ. Observe the following. (a) The outer loop (line 5)
of findRCKs executes at most m iterations. (b) In each iteration,
sortMD(Σ) (line 6) takes O(n logn) time. (c) The innermost loop
(lines 10–11) takes O(n|Γ|) time in total. (d) Procedure minimize
is invoked at mostm times in total, which in turns calls MDClosure
at most O(|γ|) times (line 13), where |γ| ≤ l + n. Thus the total
cost of running MDClosure is inO(m(n+ l)3) time (Theorem 4.1,
for fixed schemas). (e) |Γ| ≤ m(l + n). Putting these together,
algorithm findRCKs is in O(m(l + n)3) time.

We remark that the algorithm is run at compile time,m is often a
small constant, and n and l are much smaller than data relations.

6. Experimental Evaluation
In this section we present an experimental study of our tech-

niques. We conducted four sets of experiments. The focus of the
first set of experiments is on the scalability of algorithms findRCKs
and MDClosure. Using data taken from the Web, we then evalu-
ate the utility of RCKs in record matching. In experiments 2 and 3
we evaluate the impacts of RCKs on the performance and accuracy
of statistical and rule-based matching methods, respectively. Fi-
nally, the fourth set of experiments demonstrates the effectiveness
of RCKs in blocking and windowing.

We have implemented findRCKs, MDClosure, and two match-
ing methods: sorted neighborhood [20] and Fellegi-Sunter model
[17, 21] with expectation maximization (EM) algorithm for assess-
ing parameters, in Java. The experiments were run on a machine
with a Quad Core Xeon (2.8GHz) CPU and 8GB of memory. Each
experiment was repeated over 5 times and the average is reported.

6.1 The Scalability of findRCKs and MDClosure

The first set of experiments evaluates the efficiency of algorithms
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Figure 8: Scalability of Algorithm findRCKs

findRCKs and MDClosure. Since the former makes use of the lat-
ter, we just report the results for findRCKs. Given a set Σ of MDs,
a number m, and pairwise compatible lists (Y1, Y2) over schemas
(R1, R2), algorithm findRCKs finds a set ofm candidate keys rela-
tive to (Y1, Y2) if there existm RCKs. We investigated the impact of
the cardinality card(Σ) of Σ, the numberm of RCKs, and the length
|Y1| (equivalently |Y2|) of Y1 on the performance of findRCKs.

The MDs used in these experiments were produced by a gener-
ator. Given schemas (R1, R2) and a number l, the generator ran-
domly produces a set Σ of l MDs over the schemas.

Fixing m = 20, we varied card(Σ) from 200 to 2,000 in 200
increments, and studied its impact on findRCKs. The result is re-
ported in Fig. 8(a), for |Y1| ranging over 6, 8, 10 and 12. We then
fixed card(Σ) = 2, 000 and varied the number m of RCKs from 5
to 50 in 5 increments. We report in Fig. 8(b) the performance of
findRCKs for various m and |Y1|. Figures 8(a) and 8(b) verify that
findRCKs scales well with the number of MDs, the number of RCKs
and the length |Y1|. These results also show that the larger |Y1| is,
the longer it takes, as expected.

We have also inspected the quality of RCKs found by findRCKs.
We find that these RCKs are reasonably diverse when the weights
w1, w2, w3 used in our quality model (Section 5) are 1, 1, 1, and
ac(R1[A], R2[B]) = 1 for all attribute pairs. We also used these
cost parameters in other experiments.

Figure 8(c) reports the total number of RCKs derived from small
sets Σ. It shows that when there are not many MDs available, we
can still find a reasonable number of RCKs that, as will be seen
shortly, suffice to direct quality matching.

6.2 Improvement on the Quality and Efficiency
The next three sets of experiments focus on the effectiveness of

RCKs in record matching, blocking and windowing.

Experimental setting. We used an extension of the credit and
billing schemas (Section 1), also referred to as credit and billing,
which have 13 and 21 attributes, respectively. We picked a pair
(Y1, Y2) of lists over (credit, billing) for identifying card holders.
Each of the lists consists of 11 attributes for name, phone, street,
city, county, zip, etc. The experiments used 7 simple MDs over
credit and billing, which specify matching rules for card holders.

We populated instances of these schemas using real-life data, and
introduced duplicates and noises to the instances. We evaluated the
ability of our MD-based techniques to identify the duplicates. More
specifically, we scraped addresses in the US from the Web, and sale
items (books, DVDs) from online stores. Using the data we gen-
erated datasets controlled by the number K of credit and billing
tuples, ranging from 10k to 80k. We then added 80% of duplicates,
by copying existing tuples and changing some of their attributes
that are not in Y1 or Y2. Then more errors were introduced to
each attribute in the duplicates, with probability 80%, ranging from
small typographical changes to complete change of the attribute.

We used the DL metric (Damerau-Levenshtein) [18] for simi-

larity test, defined as the minimum number of single-character in-
sertions, deletions and substitutions required to transform a value
v to another value v′. We used the implementation �θ of the
DL-metric provided by SimMetrics (http://www.dcs.shef.ac.uk/˜
sam/simmetrics.html). For any values v and v′, v �θ v′ if
the DL distance between v and v′ is no more than (1 − θ)% of
max(|v|, |v′|). In all the experiments we fixed θ = 0.8.

To measure the quality of matches we used (a) precision, the
ratio of true matches (true positive) correctly found by a matching
algorithm to all the duplicates found, and (b) recall, the ratio of true
matches correctly found to all the duplicates in the dataset.

To measure the benefits of blocking (windowing), we use sM and
sU to denote the number of matched and non-matched pairs with
blocking (windowing), and similarly, nM and nU for matched and
non-matched pairs without blocking (windowing). We then define
pairs completeness to be PC = sM/nM , and reduction ratio as
RR = 1 − (sM + sU )/(nM + nU ). Intuitively, (a) the larger PC
is, the more effective the blocking (windowing) strategy is, and (b)
RR indicates the saving in comparison space.

Since the noises and duplicates in the datasets were introduced
by the generator, precision, recall, PC and RR can be accurately
computed from the results of matching, blocking and windowing
by checking the truth held by the generator.

Experiments 2 and 3 employed windowing to improve efficiency,
with a fixed window size of 10 (i.e., the sliding window contained
no more than 10 tuples). The same set of windowing keys were
used in these experiments to make the evaluation fair.

Exp-2: Fellegi-Sunter method (FS) [17]. This statistical method
is widely used to process, e.g., census data. This set of experiments
used FS to find matches, based on two comparison vectors: (a) one
was the union of top five RCKs derived by our algorithms; (b) the
other was picked by an EM algorithm on a sample of at most 30k
tuples. The EM algorithm is a powerful tool to estimate parameters
such as weights and threshold [21]. We evaluated the performance
of FS using these vectors, denoted by FS and FSrck, respectively.
Accuracy. Figures 9(a) and (b) report the accuracy of FS and FSrck,
when the number K of tuples ranged from 10k to 80k. The results
tell us that FSrck performs better than FS in precision, by 20% when
K = 80k. Furthermore, FSrck is less sensitive to the size of the data:
while the precision of FS decreases when K gets larger, FSrck does
not. Observe that FSrck and FS have almost the same recalls. This
shows that RCKs effectively improve the precision (increasing the
number of true positive matches) without lowering the recall.

In the experiments we also found that a single RCK tended to
yield a lower recall, because any noise in the RCK attributes might
lead to a miss-match. This is mediated by using the union of several
RCKs, such that miss-matches by some RCKs could be rectified by
the others. We found that FSrck became far less sensitive to noises
when the union of RCKs was used.
Efficiency. As shown in Fig. 9(c), FSrck and FS have comparable
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Figure 9: Fellegi-Sunter method
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Figure 10: Sorted Neighborhood method

performance. That is, RCKs do not incur extra cost while they may
substantially improve the accuracy.

Exp-3: Sorted Neighborhood method (SN) [20]. This is a popu-
lar rule-based method, which uses (a) rules of equational theory to
guide how records should be compared, and (b) a sliding window to
improve the efficiency. However, the quality of rule-based methods
highly depends on the skills of domain experts to get a good set of
rules. We run SN on the same dataset as Exp-2, based on two sets
of rules: (a) the 25 rules used in [20], denoted by SN; (b) the union
of top five RCKs derived by our algorithms, denoted by SNrck.
Accuracy. The results on match quality are reported in Fig-
ures 10(a) and 10(b), which show that SNrck consistently outper-
forms SN in both precision and recall, by around 20%. Observe
that the precision of SN slightly decreases when K increases. In
contrast, SNrck is less sensitive to the size of the data.
Efficiency. As shown in Fig. 10(c), SNrck consistently performs
better than SN. This shows that RCKs effectively reduce compar-
isons (the number of attributes compared, and the number of rules
applied), without decreasing the accuracy. Furthermore, the results
tell us that both SNrck and SN scale well with the size of dataset.

Exp-4: Blocking and windowing. To evaluate the effectiveness
of RCKs in blocking, we conducted experiments using the same
dataset as before, and based on two blocking keys. One key consists
of three attributes in top two RCKs derived by our algorithms. The
other contains three attributes manually chosen. In both cases, one
of the attributes is name, encoded by Sounex before blocking.

The results for pairs completeness PC and reduction ratios RR
are shown in Fig. 9(d) and Fig. 10(d), respectively (recall that the
PC and RR can be computed by referencing the truth held by the
data generator, without relying on any particular matching method).
The results tell us that blocking keys based on partially encoded
attributes in RCKs often yield comparable reduction ratios; at the
same time, they lead to substantially better pairs completeness. In-
deed, the improvement is consistently above 10%.

We also conducted experiments to evaluate the effectiveness of
RCKs in windowing, and found the results (not shown for the lack
of space) comparable to those reported in Fig. 9(d) and Fig. 10(d).

Summary. From the experimental results we find the following.
(a) Algorithms findRCKs and MDClosure scale well and are effi-
cient. It takes no more than 100 seconds to deduce 50 quality RCKs

from a set of 2000 MDs. (b) RCKs improve both the precision and
recall of the matches found by FS and SN, and in most cases, im-
prove the efficiency as well. It outperforms SN by around 20% in
both precision and recall, and up to 30% in performance. Further-
more, using RCKs as comparison vectors, FS and SN become less
sensitive to noises. (c) Using partially encoded RCK attributes as
blocking (windowing) keys consistently improves match quality.

7. Related Work
A variety of methods (e.g., [3, 10, 12, 16, 17, 18, 19, 21, 20, 23,

27, 30, 32, 33]) and tools (e.g., Febrl, TAILOR, WHIRL, BigMatch)
have been developed for record matching (see [14] for a recent sur-
vey). There has also been a host of work on more general data
cleaning and ETL tools (see [7] for a survey). This work does not
aim to provide another record matching algorithm. Instead, it com-
plements prior matching methods by providing dependency-based
reasoning techniques to help decide keys for matching, blocking or
windowing. As remarked earlier, an automated reasoning facility
effectively reduces manual effort and improves match quality and
efficiency. While such a facility should logically become part of
the record matching process, we are not aware of analogous func-
tionality currently in any systems or tools.

Rules for matching are studied in [3, 5, 6, 11, 20, 23, 29, 28,
31]. A class of rules is introduced in [20], which can be expressed
as relative keys of this paper; in particular, the key used in Exam-
ple 1.1 is borrowed from [20]. Extensions of [20] are proposed
in [3, 5], by supporting dimensional hierarchies and constant trans-
formations to identify domain-specific abbreviations and conven-
tions (e.g., “United States” to “USA”). It is shown that matching
rules and keys play an important role in industry-scale credit check-
ing [31]. The need for dependencies for record matching is also
highlighted in [11, 28]. A class of constant keys is studied in [23],
to match records in a single relation. Recursive algorithms are de-
veloped in [6, 29], to compute matches based on certain dependen-
cies. The AJAX system [18] also advocates matching transforma-
tions specified in a declarative language. However, to the best of
our knowledge, no previous work has formalized matching rules
or keys as dependencies in a logic framework, or has studied au-
tomated techniques for reasoning about dependencies for record
matching. This work provides the first formal specifications and
static analyses of matching rules, to deduce keys for matching,
blocking and windowing via automated reasoning of dependencies.



It should be mentioned that the idea of this work was presented in
an invited tutorial [15], without revealing technical details.

An approach to deciding what attributes are important in com-
parison is based on probabilistic models, using an expectation max-
imization (EM) algorithm [21, 32]. In contrast, this work aims to
decide what attributes to compare by the static analyses of MDs at
the schema level and at compile time. As verified by our exper-
imental results, the MD-based method outperforms the EM-based
approach. In fact the two approaches complement each other: one
can first discover a small set of MDs via sampling and learning, and
then leverage the reasoning techniques to deduce RCKs. The initial
set of MDs can also be produced by domain knowledge analysis,
along the same lines as the design of FDs and INDs.

Dependency theory is almost as old as relational databases them-
selves. Traditional dependencies, e.g., FDs and INDs, are first-order
logic sentences in which domain-specific similarity metrics are not
expressible. There have been efforts to incorporate similarity met-
rics into FDs [9, 22]. These extensions have a static semantics, just
like traditional FDs. As remarked earlier, for record matching the
static semantics is no longer appropriate. Indeed, the semantics of
MDs and the notion of their deductions are a departure from their
traditional counterparts for dependencies and implication.

FDs studied for uncertain relations are for schema design with a
static semantics [4]. In contrast, MDs are defined for record match-
ing with a dynamic semantics, across (possibly) different relations
of predefined schemas and in terms of similarity operators. Such
constraints have not been studied for uncertain relations.

8. Conclusion
We have introduced a class of matching dependencies (MDs) and

a notion of RCKs for record matching. As opposed to traditional
dependencies, MDs and RCKs have a dynamic semantics and are
defined in terms of similarity metrics, to accommodate errors and
different representations in unreliable data sources. To reason about
MDs, we have proposed a deduction mechanism to capture their dy-
namic semantics, a departure from the traditional notion of impli-
cation. We have also provided algorithms for deducing MDs and
quality RCKs, for matching, blocking and windowing. Our conclu-
sion is that the techniques are a promising tool for improving match
quality and efficiency, as verified by our experimental results.

Several extensions are targeted for future work. First, an ex-
tension of MDs is to support “negation”, to specify when records
cannot be matched. Second, one can augment similarity relations
with constants, to capture domain-specific synonym rules along the
same lines as [3, 5, 23]. Third, we have so far focused on 1-1 cor-
respondences between attributes, as commonly assumed for record
matching after data standardization [14]. As observed in [13],
complex matches may involve correspondences between multiple
attributes of one schema and one or more attributes of another.
We are extending MDs to deal with such structural heterogeneity.
Fourth, we are investigating, experimentally and analytically, the
impact of different similarity metrics on match quality, and the im-
pact of various quality models on deducing RCKs. Finally, an im-
portant topic is to develop algorithms for discovering MDs from
sample data, along the same lines as discovery of FDs.
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