
An Effective Syntax for Bounded Relational
Queries

Yang Cao Wenfei Fan

University of Edinburgh
Beihang University

SIGMOD 2016
June 29, 2016

Background and Motivation

▶ Motivation: querying big data is cost-prohibitive
▶ old challenge: complexity of query evaluation
▶ new challenge: big data as the input

▶ A recent approach: bounded evaluatility

querying big data by accessing small data of bounded size

▶ Previous works

▶ Formalization

1⃝ On Scale Independence for Querying Big Data, W. Fan, F. Geerts and L. Libkin, PODS’14
2⃝ Querying big data by accessing small data, W. Fan, F. Geerts, Y. Cao, T. Deng, P. Lu, PODS’15

▶ Incorporating views

3⃝ Bounded Query Rewriting Using Views, Y. Cao, W. Fan, F. Geerts and P. Lu, PODS’16

▶ Extending to graph data

4⃝ Making Pattern Queries Bounded in Big Graphs, Y. Cao, W. Fan and R. Huang, ICDE’15

▶ Restrictions and validation

5⃝ Bounded Conjunctive Queries, Y. Cao, W. Fan. T. Wo and W. Yu, VLDB’14

▶ The method was recently tested by a giant company: 3 to
1000+ times faster than conventional approach.

Bounded evaluability is effective for querying big data

SIGMOD 2016 | An Effective Syntax for Bounded Relational Queries 2/8

Background and Motivation

▶ Motivation: querying big data is cost-prohibitive
▶ old challenge: complexity of query evaluation
▶ new challenge: big data as the input

▶ A recent approach: bounded evaluatility

querying big data by accessing small data of bounded size

▶ Previous works

▶ Formalization

1⃝ On Scale Independence for Querying Big Data, W. Fan, F. Geerts and L. Libkin, PODS’14
2⃝ Querying big data by accessing small data, W. Fan, F. Geerts, Y. Cao, T. Deng, P. Lu, PODS’15

▶ Incorporating views

3⃝ Bounded Query Rewriting Using Views, Y. Cao, W. Fan, F. Geerts and P. Lu, PODS’16

▶ Extending to graph data

4⃝ Making Pattern Queries Bounded in Big Graphs, Y. Cao, W. Fan and R. Huang, ICDE’15

▶ Restrictions and validation

5⃝ Bounded Conjunctive Queries, Y. Cao, W. Fan. T. Wo and W. Yu, VLDB’14

▶ The method was recently tested by a giant company: 3 to
1000+ times faster than conventional approach.

Bounded evaluability is effective for querying big data

SIGMOD 2016 | An Effective Syntax for Bounded Relational Queries 2/8

Background and Motivation

▶ Motivation: querying big data is cost-prohibitive
▶ old challenge: complexity of query evaluation
▶ new challenge: big data as the input

▶ A recent approach: bounded evaluatility

querying big data by accessing small data of bounded size

▶ Previous works
▶ Formalization

1⃝ On Scale Independence for Querying Big Data, W. Fan, F. Geerts and L. Libkin, PODS’14
2⃝ Querying big data by accessing small data, W. Fan, F. Geerts, Y. Cao, T. Deng, P. Lu, PODS’15

▶ Incorporating views
3⃝ Bounded Query Rewriting Using Views, Y. Cao, W. Fan, F. Geerts and P. Lu, PODS’16

▶ Extending to graph data
4⃝ Making Pattern Queries Bounded in Big Graphs, Y. Cao, W. Fan and R. Huang, ICDE’15

▶ Restrictions and validation
5⃝ Bounded Conjunctive Queries, Y. Cao, W. Fan. T. Wo and W. Yu, VLDB’14

▶ The method was recently tested by a giant company: 3 to
1000+ times faster than conventional approach.

Bounded evaluability is effective for querying big data

SIGMOD 2016 | An Effective Syntax for Bounded Relational Queries 2/8

Background and Motivation

▶ Motivation: querying big data is cost-prohibitive
▶ old challenge: complexity of query evaluation
▶ new challenge: big data as the input

▶ A recent approach: bounded evaluatility

querying big data by accessing small data of bounded size

▶ Previous works
▶ Formalization

1⃝ On Scale Independence for Querying Big Data, W. Fan, F. Geerts and L. Libkin, PODS’14
2⃝ Querying big data by accessing small data, W. Fan, F. Geerts, Y. Cao, T. Deng, P. Lu, PODS’15

▶ Incorporating views
3⃝ Bounded Query Rewriting Using Views, Y. Cao, W. Fan, F. Geerts and P. Lu, PODS’16

▶ Extending to graph data
4⃝ Making Pattern Queries Bounded in Big Graphs, Y. Cao, W. Fan and R. Huang, ICDE’15

▶ Restrictions and validation
5⃝ Bounded Conjunctive Queries, Y. Cao, W. Fan. T. Wo and W. Yu, VLDB’14

▶ The method was recently tested by a giant company: 3 to
1000+ times faster than conventional approach.

Bounded evaluability is effective for querying big data

SIGMOD 2016 | An Effective Syntax for Bounded Relational Queries 2/8

Background and Motivation

▶ Motivation: querying big data is cost-prohibitive
▶ old challenge: complexity of query evaluation
▶ new challenge: big data as the input

▶ A recent approach: bounded evaluatility

querying big data by accessing small data of bounded size

▶ Previous works
▶ Formalization

1⃝ On Scale Independence for Querying Big Data, W. Fan, F. Geerts and L. Libkin, PODS’14
2⃝ Querying big data by accessing small data, W. Fan, F. Geerts, Y. Cao, T. Deng, P. Lu, PODS’15

▶ Incorporating views
3⃝ Bounded Query Rewriting Using Views, Y. Cao, W. Fan, F. Geerts and P. Lu, PODS’16

▶ Extending to graph data
4⃝ Making Pattern Queries Bounded in Big Graphs, Y. Cao, W. Fan and R. Huang, ICDE’15

▶ Restrictions and validation
5⃝ Bounded Conjunctive Queries, Y. Cao, W. Fan. T. Wo and W. Yu, VLDB’14

▶ The method was recently tested by a giant company: 3 to
1000+ times faster than conventional approach.

Bounded evaluability is effective for querying big data
SIGMOD 2016 | An Effective Syntax for Bounded Relational Queries 2/8

Bounded Evaluability: Review
Answering queries with bounded data access

Basic idea: compute Q(D) via query plans that access only a small
subset DQ of D, via indices built w.r.t. a set A of access constraints.

▶ Access constraints: a combination of cardinality constraints
R(X → Y ,N) with indices;

▶ Boundedly evaluable query plan ξQ: extended relational algebra
query plans with a fetch operation fetch(X ∈ T ,R,Y) w.r.t. A;

▶ Boundedly evaluable queries: queries with boundedly evaluable
plans under A.

Making the cost of computing Q(D) independent of |D|!

SIGMOD 2016 | An Effective Syntax for Bounded Relational Queries 3/8

Bounded Evaluability: Review
Answering queries with bounded data access

Basic idea: compute Q(D) via query plans that access only a small
subset DQ of D, via indices built w.r.t. a set A of access constraints.

▶ Access constraints: a combination of cardinality constraints
R(X → Y ,N) with indices;

▶ Boundedly evaluable query plan ξQ: extended relational algebra
query plans with a fetch operation fetch(X ∈ T ,R,Y) w.r.t. A;

▶ Boundedly evaluable queries: queries with boundedly evaluable
plans under A.

Making the cost of computing Q(D) independent of |D|!

SIGMOD 2016 | An Effective Syntax for Bounded Relational Queries 3/8

Bounded Evaluability: Review
Answering queries with bounded data access

Basic idea: compute Q(D) via query plans that access only a small
subset DQ of D, via indices built w.r.t. a set A of access constraints.

▶ Access constraints: a combination of cardinality constraints
R(X → Y ,N) with indices;

▶ Boundedly evaluable query plan ξQ: extended relational algebra
query plans with a fetch operation fetch(X ∈ T ,R,Y) w.r.t. A;

▶ Boundedly evaluable queries: queries with boundedly evaluable
plans under A.

Making the cost of computing Q(D) independent of |D|!

SIGMOD 2016 | An Effective Syntax for Bounded Relational Queries 3/8

Bounded Evaluability: Review
Answering queries with bounded data access

Basic idea: compute Q(D) via query plans that access only a small
subset DQ of D, via indices built w.r.t. a set A of access constraints.

▶ Access constraints: a combination of cardinality constraints
R(X → Y ,N) with indices;

▶ Boundedly evaluable query plan ξQ: extended relational algebra
query plans with a fetch operation fetch(X ∈ T ,R,Y) w.r.t. A;

▶ Boundedly evaluable queries: queries with boundedly evaluable
plans under A.

Making the cost of computing Q(D) independent of |D|!

SIGMOD 2016 | An Effective Syntax for Bounded Relational Queries 3/8

Bounded Evaluability: Review
Answering queries with bounded data access

Basic idea: compute Q(D) via query plans that access only a small
subset DQ of D, via indices built w.r.t. a set A of access constraints.

▶ Access constraints: a combination of cardinality constraints
R(X → Y ,N) with indices;

▶ Boundedly evaluable query plan ξQ: extended relational algebra
query plans with a fetch operation fetch(X ∈ T ,R,Y) w.r.t. A;

▶ Boundedly evaluable queries: queries with boundedly evaluable
plans under A.

Making the cost of computing Q(D) independent of |D|!

SIGMOD 2016 | An Effective Syntax for Bounded Relational Queries 3/8

Bounded Evaluability: An Example
Graph search (Facebook)

Find me restaurants in San Francisco my Facebook friends have been to in 2015

select rid
from friend(pid1, pid2), person(pid, name, city),

dine(pid, rid, dd,mm, yy)
where pid1 = p0 and pid2 = person.pid and

pid2 = dine.pid and city = sf and yy = 2015

Q(rid) = ∃p, p1,n, c, d,m, y (friend(p0, p) ∧ person(p,n, sf)∧
dine(p, rid, d,m, 2015)

Access constraints (cardinality + indices) from data semantics

SIGMOD 2016 | An Effective Syntax for Bounded Relational Queries 4/8

Bounded Evaluability: An Example
Graph search (Facebook)

Find me restaurants in San Francisco my Facebook friends have been to in 2015

Q(rid) = ∃p, p1,n, c, d,m, y (friend(p0, p) ∧ person(p,n, sf)∧
dine(p, rid, d,m, 2015)

Access constraints (cardinality + indices) from data semantics

SIGMOD 2016 | An Effective Syntax for Bounded Relational Queries 4/8

Bounded Evaluability: An Example
Graph search (Facebook)

Find me restaurants in San Francisco my Facebook friends have been to in 2015

Q(rid) = ∃p, p1,n, c, d,m, y (friend(p0, p) ∧ person(p,n, sf)∧
dine(p, rid, d,m, 2015)

Access constraints (cardinality + indices) from data semantics

▶ friend(pid1, pid2): pid1 → (pid2, 5000) 5000 friends per person
▶ dine(pid, rid, dd,mm, yy): pid, yy → (rid, 366) each year has at

most 366 days and each person dines at most once per day
▶ person(pid, name, city): pid → (city, 1) pid is a key for person

SIGMOD 2016 | An Effective Syntax for Bounded Relational Queries 4/8

Bounded Evaluability: An Example
Graph search (Facebook)

Find me restaurants in San Francisco my Facebook friends have been to in 2015

Q(rid) = ∃p, p1,n, c, d,m, y (friend(p0, p) ∧ person(p,n, sf)∧
dine(p, rid, d,m, 2015)

Access constraints (cardinality + indices) from data semantics

A boundedly evaluable query plan:
▶ Fetch 5000 pid’s (p) for friends of p0 – 5000 friends per person
▶ For each p, check whether she lives in sf – 5000 person tuples
▶ For each p living in sf, find restaurants (rid) where she dined in

2015 – 5000× 366 tuples at most

SIGMOD 2016 | An Effective Syntax for Bounded Relational Queries 4/8

Bounded Evaluability: An Example
Graph search (Facebook)

Find me restaurants in San Francisco my Facebook friends have been to in 2015

Q(rid) = ∃p, p1,n, c, d,m, y (friend(p0, p) ∧ person(p,n, sf)∧
dine(p, rid, d,m, 2015)

Access constraints (cardinality + indices) from data semantics

A boundedly evaluable query plan:
▶ Fetch 5000 pid’s (p) for friends of p0 – 5000 friends per person
▶ For each p, check whether she lives in sf – 5000 person tuples
▶ For each p living in sf, find restaurants (rid) where she dined in

2015 – 5000× 366 tuples at most

Accessing 5000 + 5000 + 5000× 366 tuples in total

SIGMOD 2016 | An Effective Syntax for Bounded Relational Queries 4/8

Bounded Evaluability: An Example
Graph search (Facebook)

Find me restaurants in San Francisco my Facebook friends have been to in 2015

Q(rid) = ∃p, p1,n, c, d,m, y (friend(p0, p) ∧ person(p,n, sf)∧
dine(p, rid, d,m, 2015)

Access constraints (cardinality + indices) from data semantics

Price to use bounded evaluability:
▶ EXPSPACE-hard to decide whether an SPC query (CQ; basic

Select-From-Where clause) is boundedly evaluable
▶ undecidable for RA (FO; sql) queries

SIGMOD 2016 | An Effective Syntax for Bounded Relational Queries 4/8

Bounded Evaluability: An Example
Graph search (Facebook)

Find me restaurants in San Francisco my Facebook friends have been to in 2015

Q(rid) = ∃p, p1,n, c, d,m, y (friend(p0, p) ∧ person(p,n, sf)∧
dine(p, rid, d,m, 2015)

Access constraints (cardinality + indices) from data semantics

Price to use bounded evaluability:
▶ EXPSPACE-hard to decide whether an SPC query (CQ; basic

Select-From-Where clause) is boundedly evaluable
▶ undecidable for RA (FO; sql) queries

How to make practical use of bounded evaluability
without sacrificing its express power?

SIGMOD 2016 | An Effective Syntax for Bounded Relational Queries 4/8

An Effective Syntax for Bounded Evaluable RA Queries
Covered queries

Covered RA queries Lc
RA: RA queries whose relation atoms are all

“syntactically” covered by access constraints.

SIGMOD 2016 | An Effective Syntax for Bounded Relational Queries 5/8

An Effective Syntax for Bounded Evaluable RA Queries
Covered queries

Covered RA queries Lc
RA: RA queries whose relation atoms are all

“syntactically” covered by access constraints.

Under a set A of access constraints,
1. any boundedly evaluable RA query is A-equivalent to a

query covered by A;
2. every covered query is also boundedly evaluable;
3. it takes PTIME to check whether Q is covered by A.

Effective Syntax

SIGMOD 2016 | An Effective Syntax for Bounded Relational Queries 5/8

An Effective Syntax for Bounded Evaluable RA Queries
Covered queries

Covered RA queries Lc
RA: RA queries whose relation atoms are all

“syntactically” covered by access constraints.

Under a set A of access constraints,
1. any boundedly evaluable RA query is A-equivalent to a

query covered by A;
2. every covered query is also boundedly evaluable;
3. it takes PTIME to check whether Q is covered by A.

Effective Syntax

Lc
RA identifies the core subclass of boundedly evaluable RA
queries, without sacrificing their expressive power

SIGMOD 2016 | An Effective Syntax for Bounded Relational Queries 5/8

A Bounded Evaluation Framework
A constructive proof of the effective syntax (2-3)

SIGMOD 2016 | An Effective Syntax for Bounded Relational Queries 6/8

A Bounded Evaluation Framework
A constructive proof of the effective syntax (2-3)

▶ C2: a proof of property 3
▶ C4: a proof of property 2
▶ C3: optimizing bounded plans
▶ C5: ensure dbms-independence

SIGMOD 2016 | An Effective Syntax for Bounded Relational Queries 6/8

Experimental results

We evaluated the bounded evaluation framework:
▶ easy-to-use

▶ easy to find 100+ access constraints in real-life data by extending
constraints discovery algorithms

▶ half of queries over the attributes in the constraints are covered
▶ dbms-independence:

▶ access constraints index is easy to build via dbms
▶ bounded plans can be directly executed on dbms engines

▶ speedup of boundedly evaluable plans vs conventional
▶ 5.9 seconds by accessing at most 0.00017% of the data (60GB)

VS. 3000+ seconds (3.75GB) for many-join queries
▶ guaranteed scale independence once covered

With the effective syntax, we can use bounded evaluability to query
big data by accessing bounded small data.

SIGMOD 2016 | An Effective Syntax for Bounded Relational Queries 7/8

Experimental results

We evaluated the bounded evaluation framework:
▶ easy-to-use

▶ easy to find 100+ access constraints in real-life data by extending
constraints discovery algorithms

▶ half of queries over the attributes in the constraints are covered
▶ dbms-independence:

▶ access constraints index is easy to build via dbms
▶ bounded plans can be directly executed on dbms engines

▶ speedup of boundedly evaluable plans vs conventional
▶ 5.9 seconds by accessing at most 0.00017% of the data (60GB)

VS. 3000+ seconds (3.75GB) for many-join queries
▶ guaranteed scale independence once covered

With the effective syntax, we can use bounded evaluability to query
big data by accessing bounded small data.

SIGMOD 2016 | An Effective Syntax for Bounded Relational Queries 7/8

The End

THANK YOU!

Q&A

SIGMOD 2016 | An Effective Syntax for Bounded Relational Queries 8/8

