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Abstract— It is cost-prohibitive to find matches Q(G) of a
pattern query Q in a big graph G. We approach this by fetching
a small subgraph GQ of G such that Q(GQ) = Q(G). We show
that many practical patterns are effectively bounded under access
constraints A commonly found in real life, such that GQ can be
identified in time determined by Q and A only, independent of
the size |G| of G. This holds no matter whether pattern queries
are localized (e.g., via subgraph isomorphism) or non-localized
(graph simulation). We provide algorithms to decide whether a
pattern Q is effectively bounded, and if so, to generate a query
plan that computes Q(G) by accessing GQ, in time independent
of |G|. When Q is not effectively bounded, we give an algorithm
to extend access constraints and make Q bounded in G. Using
real-life data, we experimentally verify the effectiveness of the
approach, e.g., about 60% of queries are effectively bounded
for subgraph isomorphism, and for such queries our approach
outperforms the conventional methods by 4 orders of magnitude.

I. INTRODUCTION

Given a pattern query Q and a graph G, graph pattern
matching is to find the set Q(G) of matches of Q in G. It is
used in, e.g., social marketing, knowledge discovery, mobile
network analysis, intelligence analysis for identifying terrorist
organizations [25], and the study of adolescent drug use [17].

When G is big, graph pattern matching is cost-prohibitive.
Facebook has 1.26 billion nodes and 140 billion links in its
social graph, about 300PB of user data [28]. When the size |G|
of G is 1PB, a linear scan of G takes 1.9 days using SSD with
scanning speed of 6GB/s. Worse still, graph pattern matching
is intractable if it is defined with subgraph isomorphism [31],
and it takes O(|Q||G|)-time if we use graph simulation [20],
where |G| = |V |+ |E| and |Q| = |VQ|+ |EQ|.

Can we still efficiently compute exact answers Q(G) when
G is big while we have constrained resources, such as a
single processor? We approach this by making big graphs
small, capitalizing on a set A of access constraints, which
are a combination of indices and simple cardinality constraints
defined on the labels of neighboring nodes of G. We determine
whether Q is effectively bounded under A, i.e., for all graphs
G that satisfy A, there exists a subgraph GQ ⊂ G such that
(a) Q(GQ) = Q(G), and
(b) the size |GQ| of GQ and the time for identifying GQ are

both determined by A and Q only, independent of |G|.
If Q is effectively bounded, we can generate a query plan

that for all G satisfying A, computes Q(G) by accessing
(visiting and fetching) a small GQ in time independent of |G|,
no matter how big G is. Otherwise, we will identify extra
access constraints on an input G and make Q bounded in G.

A large number of real-life queries are effectively bounded
under simple access constraints, as illustrated below.
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Fig. 1. Pattern query Q0 on IMDb

Example 1: Consider IMDb [22], a graph G0 in which nodes
represent movies, casts, and awards from 1880 to 2014, and
edges denote various relationships between the nodes. An
example search on IMDb is to find pairs of first-billed actor
and actress (main characters) from the same country who co-
stared in a award-winning film released in 2011-2013.

The search can be represented as a pattern query Q0 shown
in Fig. 1. Graph pattern matching here is to find the set Q0(G0)
of matches, i.e., subgraphs G′ of G0 that are isomorphic to
Q0; we then extract and return actor-actress pairs from each
match G′. The challenge is that G0 is large: the IMDb graph
has 5.1 million nodes and 19.5 million edges. Add to this that
subgraph isomorphism is NP-complete.

Not all is lost. Using simple aggregate queries one can
readily find the following real-life cardinality constraints on
the movie dataset from 1880–2014: (1) in each year, every
award is presented to no more than 4 movies (C1); (2) each
movie has at most 30 first-billed actors and actresses (C2), and
each person has only one country of origin (C3); and (3) there
are no more than 135 years (C4, i.e., 1880-2014), 24 major
movie awards (C5) and 196 countries (C6) in total [22]. An
index can be built on the labels and nodes of G0 for each of
the constraints, yielding a set A0 of 8 access constraints.

Under A0, pattern Q0 is effectively bounded. We can find
Q0(G0) by accessing at most 17923 nodes and 35136 edges in
G0, regardless of the size of G0, by the following query plan:

(a) identify a set V1 of 135 year nodes, 24 award nodes and
196 country nodes, by using the indices for constraints C4-C6;

(b) fetch a set V2 of at most 24× 3× 4 = 288 award-winning
movies released in 2011–2013, with no more than 288× 2 =
576 edges connecting movies to awards and years, by using
those award and year nodes in V1 and the index for C1;

(c) fetch a set V3 of at most (30+30)∗288 = 17280 actors and
actresses with 17280 edges, using V2 and the index for C2;

(d) connect the actors and actresses in V3 to country nodes in
V1, with at most 17280 edges by using the index for C3. Out-
put (actor, actress) pairs connected to the same country in V1.

The query plan visits at most 135 + 24 + 196 + 288 + 17280
= 17923 nodes, and 576 + 17280 + 17280 = 35136 edges, by
using the cardinality constraints and indices in A0, as opposed



to tens of millions of nodes and edges in IMDb. 2

This example tells us that graph pattern matching is feasible
in big graphs within constrained resources, by making use of
effectively bounded pattern queries. To develop a practical ap-
proach out of the idea, several questions have to be answered.
(1) Given a pattern query Q and a set A of access constraints,
can we determine whether Q is effectively bounded under A?
(2) If Q is effectively bounded, how can we generate a query
plan to compute Q(G) in big G by accessing a bounded GQ?
(3) If Q is not bounded, can we make it “bounded” in G by
adding simple extra constraints? (4) Does the approach work
on both localized queries (e.g., via subgraph isomorphism)
and non-localized queries (via graph simulation)?

Contributions. This paper aims to answer these questions for
graph pattern matching. The main results are as follows.

(1) We introduce effective boundedness for graph pattern
queries (Section II). We formulate access constraints on
graphs, and define effectively bounded pattern queries. We also
show how to find simple access constraints from real-life data.

(2) We characterize effectively bounded subgraph queries Q,
i.e., patterns defined by subgraph isomorphism (Section III).
We identify a sufficient and necessary condition to decide
whether Q is effectively bounded under a set A of access con-
straints. Using the condition, we develop a decision algorithm
in O(|A||EQ|+||A|||VQ|2) time, where |Q| = |VQ|+|EQ|, and
||A|| is the number of constraints inA. The cost is independent
of big graph G, and query Q is typically small in practice.

(3) We provide an algorithm to generate query plans for
effectively bounded subgraph queries (Section IV). After Q
is found effectively bounded under A, the algorithm generates
a query plan that, given a graph G that satisfies A, accesses a
subgraph GQ of size independent of |G|, in O(|VQ||EQ||A|)
time. Moreover, we show that the plan is worst-case-optimal,
i.e., for each input Q and A, the largest GQ it finds from all
graphs G that satisfy A is the minimum among all worst-case
GQ identified by all other query plans.

(4) If Q is not bounded under A, we make it instance-bounded
(Section V). That is, for a given graph G that satisfies A, we
find an extension AM of A such that under AM , we can find
GQ ⊂ G in time decided by AM and Q, and Q(GQ) = Q(G).
We show that when the size of indices in AM is predefined, the
problem for deciding the existence ofAM is in low polynomial
time (PTIME), but it is log-APX-hard to find a minimum
AM . When AM is unbounded, all query loads can be made
instance-bounded by adding simple access constraints.

(5) We extend the study to simulation queries, i.e., patterns
interpreted by graph simulation (Section VI). It is more chal-
lenging to cope with the non-localized and recursive nature of
simulation queries. Nonetheless, we provide a characterization
of effectively bounded simulation queries. We also show that
our algorithms for checking effective boundedness, generating
query plans, and for making queries instance-bounded can be
adapted to simulation queries, with the same complexity.

(6) We experimentally evaluate our algorithms using real-life
data (Section VII). We find that our approach is effective for
both localized and non-localized queries: (a) on graphs G of
billions of nodes and edges [1], our query plans outperform the
conventional methods that computes Q(G) directly by 4 and 3
orders of magnitude on average, for subgraph and simulation
queries, respectively, accessing at most 0.0032% of the data in
G; (b) 60% (resp. 33%) of subgraph (resp. simulation) queries
are effectively bounded under simple access constraints; and
(c) all queries can be made instance-bounded in G by extend-
ing constraints and accessing 0.016% of extra data in G; and
95% become instance-bounded by accessing at most 0.009%
extra data. Our algorithms are efficient: they take at most 37ms
to decide whether Q is effectively bounded and to generate an
optimal query plan for all Q and constraints tested.

This work is the first effort to study effectively bounded
graph queries, from fundamental problems to practical algo-
rithms. It suggests an approach to querying graphs: (1) given
a query Q, we check whether Q is effectively bounded under
a set A of access constraints; (2) if so, we generate a query
plan that given a graph G satisfying A, computes Q(G) by
accessing GQ of size independent of |G|, no matter how big G
grows; (3) if not, we make Q instance-bounded in G with extra
simple constraints. The approach works for both localized
subgraph queries and non-localized simulation queries.

Given the prohibitive cost of querying big graphs, this
approach helps even when only limited queries are effectively
bounded. In fact, we find that many queries on real-life
datasets are actually effectively bounded under very simple
access constraints. Moreover, when a finite set of queries is
not effectively bounded, we can make them instance-bounded.

All proofs of the results of the paper can be found in [3].

Related Work. We categorize related works as follows.
Effective boundedness. The study of effective boundedness
traces back to scale independence. The latter was proposed [5]
to approximately answer relational aggregate queries under
certain conditions, for key/value stores. It aims to guarantee
that a bounded amount of work is required to execute
all queries in an application, regardless of the size of the
underlying data. The idea was formalized in [12], along with a
notion of access constraints for relational queries. Recently, the
notion of [12] is revised in [10] by requiring that the amount of
data accessed (i.e., GQ) can be identified in time determined
by query Q and access constraints A only, referred to as
effective boundedness; it is characterized for SPC queries [10].

This work differs from the previous work in the following.
(1) We introduce access constraints on graph data, to specify
cardinality constraints on the labels of neighboring nodes, and
guide us to retrieve small subgraphs GQ. (2) Under such
constraints, we formalize and characterize the effective bound-
edness of graph patterns, an issue harder than its counterpart
for relational queries [10], [12]. (3) We propose instance
boundedness for queries that are not effectively bounded.

Resource-bounded and anytime algorithms. Related are also
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resource-bounded [16] and anytime algorithms [32]. The
former study reachability queries and personalized pattern
queries, in which some pattern nodes are designated to match
fixed nodes in a graph G. It is to compute approximate answers
by accessing no more than α|G| nodes and edges in G, for
α ∈ (0, 1) [16]. Anytime algorithms [32] allow users either
to specify a budget on resources (e.g., running time; known
as contract algorithms [33]), or to terminate the run of the
algorithms at any time and get intermediate answers (known
as interruptible algorithms [19]). Contract anytime algorithms
have been explored for (a) budgeted search such as bounded-
cost planning [4], [29], [30], [32] under a user-specified
budget; and (b) graph search via subgraph isomorphism, to find
intermediate approximate answers within the budget, either by
assigning dynamically maintained budgets and costs to nodes
during the traversal [8], or by deciding search orders based on
the frequencies of certain features in queries and graphs [27].

This work differs from the prior work as follows. (1) We aim
to compute exact answers for pattern queries in big graphs,
as opposed to heuristic answers that may not have a provable
accuracy bound. (2) We characterize what pattern queries can
be answered exactly within a cost independent of the size of
big graph, based on access constraints; in contrast, the prior
work does not study under what budget accurate answers are
warranted by using the semantics of the data. (3) We study
general pattern queries, which may be either localized or non-
localized, and may not be personalized [16].
Graph indexing and compression. There are typically two
ways to reduce search space. (1) Graph indexing uses pre-
computed global information of G to compute distance [11],
shortest paths [18] or substructure matching [26]. (2) Graph
compression computes a summary Gc of a big graph G and
uses Gc to answer all queries posed on G [7], [13], [24].

In contrast to the prior work, (1) we compute exact answers
rather than heuristic. (2) Instead of using the same graph Gc to
answer all queries posed on G, we adopt a dynamic reduction
scheme that finds a subgraph GQ of G for each query Q. Since
GQ consists of only the information needed for answering Q,
it allows us to compute Q(G) by using GQ much smaller than
Gc and hence, much less resources. (3) When Q is effectively
bounded, for all graphs G we can find GQ of size independent
of |G|; in contrast, |Gc| may be proportional to |G|.
Making big graphs small. There have been other techniques
for reducing a big graph into small ones, e.g., distribute
query answering [23], pattern matching using views [15], and
incremental pattern matching [14]. These are complementary
to this work and can be readily combined with ours, e.g., our
methods can be readily adapted to distributed settings.

II. EFFECTIVELY BOUNDED GRAPH PATTERN QUERIES

In this section we define access schema on graphs and
effectively bounded graph pattern queries. We start with a
review of graphs and patterns. Assume an alphabet Σ of labels.
Graphs. A data graph is a node-labeled directed graph G =
(V,E, f, ν), where (1) V is a finite set of nodes; (2) E ⊆

V × V is a set of edges, in which (v, v′) denotes the edge
from v to v′; (3) f() is a function such that for each node
v in V , f(v) is a label in Σ, e.g., year; and (4) ν(v) is the
attribute value of f(v), e.g., year = 2011.

We write G as (V,E) or (V,E, f) when it is clear from the
context. The size of G, denoted by |G|, is defined to be the
total number of nodes and edges in G, i.e., |G| = |V | + |E|.
Remark. To simplify the discussion, we do not explicitly
define edge labels. Nonetheless, our techniques can be readily
adapted to edge labels: for each labeled edge e, we can insert
a “dummy” node to represent e, carrying e’s label.

Labeled set. For a set S ⊆ Σ of labels, we say that VS ⊆ V
is a S-labeled set of G if (a) |VS | = |S| and (b) for each label
lS in S, there exists a node v in VS such that f(v) = lS . In
particular, when S = ∅, the S-labeled set in G is ∅.
Common neighbors. A node v is called a neighbor of another
node v′ in G if either (v, v′) or (v′, v) is an edge in G. We
say that v is a common neighbor of a set VS of nodes in G
if for all nodes v′ in VS , v is a neighbor of v′. In particular,
when VS is ∅, all nodes of G are common neighbors of VS .

Subgraphs. Graph Gs = (Vs, Es, fs, νs) is a subgraph of G
if Vs ⊆ V , Es ⊆ E, and for each (v, v′) ∈ Es, v ∈ Vs and
v′ ∈ Vs, and for each v ∈ Vs, fs(v) = f(v) and νs(v) = ν(v).

Pattern queries. A pattern query Q is a directed graph
(VQ, EQ, fQ, gQ), where (1) VQ, EQ and fQ are analogous
to their counterparts in data graphs; and (2) for each node u
in VQ, gQ(u) is the predicate of u, defined as a conjunction of
atomic formulas of the form fQ(u) op c, where c is a constant,
and op is one of =, >, <, ≤ and ≥. For instance, in pattern
Q0 of Fig. 1, gQ(year) = year ≥ 2011 ∧ year ≤ 2013. We
simply write Q as (VQ, EQ) or (VQ, EQ, fQ).

We consider two semantics of graph pattern matching.

Subgraph queries. A match of Q in G via subgraph isomor-
phism [31] is a subgraph G′(V ′, E′, f ′) of G that is isomorphic
to Q, i.e., there exists a bijective function h from VQ to V ′

such that (a) (u, u′) is in EQ if and only if (h(u), h(u′)) ∈ E′,
and (b) for each u ∈ VQ, fQ(u) = f ′(h(u)) and gQ(ν(h(u)))
evaluates to true, where gQ(ν(h(u))) substitutes ν(h(u)) for
fQ(u) in gQ(u). Here Q(G) is the set of all matches of Q in G.

Simulation queries. A match of Q in G via graph simula-
tion [20] is a binary match relation R ⊆ VQ×V such that (a)
for each (u, v) ∈ R, fQ(u) = f(v) and gQ(ν(v)) evaluates to
true, where gQ(ν(v)) substitutes ν(v) for fQ(u) in gQ(u); (b)
for each node u in VQ, there exists a node v in V such that
(i) (u, v) ∈ R, and (ii) for any edge (u, u′) in Q, there exists
an edge (v, v′) in G such that (u′, v′) ∈ R.

For any Q and G, there exists a unique maximum match
relation RM via graph simulation (possibly empty) [20]. Here
Q(G) is defined to be RM . Simulation queries are widely used
in social community analysis and social marketing [9].

Data locality. A query Q is localized if for any graph G that
matches Q, any node u and neighbor u′ of u in Q, and for
any match v of u in G, there must exist a match v′ of u′ in
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Fig. 2. Pattern query Q1 and data graph G1

G such that v′ is a neighbor of v in G. Subgraph queries are
localized. In contrast, simulation queries are non-localized.

Example 2: Consider a simulation query Q1 and graph G1

shown in Fig. 2, where G1 matches Q1. Then Q1 is not
localized: u2 matches v2, . . . , v2n−2 and v2n, but for all k ∈
[2, n], v2k−2 has no neighbor in G that matches the neighbor
u3 of u2 in Q. To decide whether u2 matches v2, we have to
inspect all the nodes on an unbounded cycle in G1. 2

We will study effective boundedness for subgraph queries
in Sections III–V, and then extend the results to non-localized
simulation queries in Section VI. To formalize effectively
bounded patterns, we first define access constraints on graphs.

Access schema on graphs. An access schema A is a set of
access constraints of the following form:

S → (l, N),

where S ⊆ Σ is a (possibly empty) set of labels, l is a label
in Σ, and N is a natural number.

A graph G(V,E, f) satisfies the access constraint if
◦ for any S-labeled set VS of nodes in V , there exist at

most N common neighbors of VS with label l; and
◦ there exists an index on S for l such that for any S-labeled

set VS in G, it finds all common neighbors of VS labeled
with l in O(N)-time, independent of |G|.

We say that G satisfies access schema A, denoted by G |= A,
if G satisfies all the access constraints in A.

An access constraint is a combination of (a) a cardinality
constraint and (b) an index on the labels of neighboring nodes.
It tells us that for any S-node labeled set VS , there exist a
bounded number of common neighbors Vl labeled with l and
moreover, Vl can be efficiently retrieved with the index.

Two special types of access constraints are as follows:
(1) |S| = 0 (i.e., ∅ → (l, N)): for any G that satisfies the
constraint, there exist at most N nodes in G labeled l; and
(2) |S| = 1 (i.e., l → (l′, N)): for any G that satisfies the
access constraint and for each node v labeled with l in G, at
most N neighbors of v are labeled with l′.

Intuitively, constraints of type (1) are global cardinality
constraints on all nodes labeled l, and those of type (2) state
cardinality constraints on l′-neighbors of each l-labeled node.

Example 3: Constraints C1-C6 on IMDb given in Example 1
can be expressed as access constraints ϕi (for i ∈ [1, 6]):
ϕ1: (year, award)→ (movie, 4); ϕ4: ∅ → (year, 135);
ϕ2: movie→ (actors/actress, 30); ϕ5: ∅ → (award, 24);
ϕ3: actor/actress→ (country, 1); ϕ6: ∅ → (country, 196).
Here ϕ2 denotes a pair movie → (actors, 30) and movie →
(actress, 30) of access constraints; similarly for ϕ3. Note that

ϕ4 − ϕ6 are constraints of type (1); ϕ2 − ϕ3 are of type (2);
and ϕ1 has the general form: for any pair of year and award
nodes, there are at most 4 movie nodes connected to both, i.e.,
an award is given to at most 4 movies each year. We use A0

to denote the set of these access constraints. 2

Effectively bounded patterns. A pattern query Q is effectively
bounded under an access schema A if for all graphs G that
satisfy A, there exists a subgraph GQ of G such that
(a) Q(GQ) = Q(G); and
(b) GQ can be identified in time that is determined by Q and
A only, not by |G|.

By (b), |GQ| is also independent of the size |G| of G.
Intuitively, Q is effectively bounded under A if for all graphs
G that satisfy A, Q(G) can be computed by accessing a
bounded GQ rather than the entire G, and moreover, GQ can
be efficiently accessed by using access constraints of A.

For instance, as shown in Example 1, query Q0 is effectively
bounded under the access schema A0 of Example 3.

Discovering access constraints. From experiments with real-
life data we find that many practical queries are effectively
bounded under simple access constraints S → (l, N) when
|S| is at most 3. We discover access constraints as follows.
(1) Degree bounds: if each node with label l has degree at most
N , then for any label l′, l→ (l′, N) is an access constraint.
(2) Constraints of type (1): such global constraints are quite
common, e.g., ϕ6 on IMDb: ∅ → (country, 196).
(3) Functional dependencies (FDs): our familiar FDs X → A
are access constraints of the form X → (A, 1), e.g., movie→
year is an access constraint of type (2): movie → (year, 1).
Such constraints can be discovered by shredding a graph into
relations and then using available FD discovery tools.
(4) Aggregate queries: such queries allow us to discover the
semantics of the data, e.g., grouping by (year, country, genre)
we find (year, country, genre) → (movie, 1800), i.e., each
country releases at most 1800 movies per year in each genre.

Maintaining access constraints. The indices in an access
schema can be incrementally and locally maintained in re-
sponse to changes to the underlying graph G. It suffices to
inspect ∆G ∪ NbG(∆G), where ∆G is the set of nodes
and edges deleted or inserted, and NbG(∆G) is the set of
neighbors of those nodes in ∆G, regardless of how big G is.

III. EFFECTIVE BOUNDEDNESS OF SUBGRAPH QUERIES

To make practical use of effective boundedness, we first
answer the following question, denoted by EBnd(Q,A):
◦ Input: A pattern query Q(VQ, EQ), an access schema A.
◦ Question: Is Q effectively bounded under A?

We start with subgraph queries. The good news is that
(a) there exists a sufficient and necessary condition, i.e., a

characterization, for deciding whether a subgraph query
Q is effectively bounded under A; and better still,

(b) EBnd(Q,A) is decidable in low polynomial time in the
size of Q and A, independent of any data graph.

We prove these results in the rest of the section.
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A. Characterizing the Effective Boundedness
The effective boundedness of subgraph queries is character-

ized in terms of a notion of coverage, given as follows.
The node cover of A on Q, denoted by VCov(Q,A), is the

set of nodes in Q computed inductively as follows:
(a) if ∅ → (l, N) is in A, then for each node u in Q with

label l, u ∈ VCov(Q,A); and
(b) if S → (l, N) is in A, then for each S-labeled set VS in

Q, if VS ⊆ VCov(Q,A), then all common neighbors of
VS in Q that are labeled with l are also in VCov(Q,A).

Intuitively, a node u is covered by A if in any graph
G satisfying A, there exist a bounded number of candidate
matches of u, and the candidates can be retrieved by using
indices in A. Obviously, (a) u is covered if its candidates are
bounded by type (1) constraints. (b) If for some ϕ = S →
(l, N) in A, u is labeled with l and is a common neighbor
of VS that is covered by A, then u is covered by A, since its
candidates are bounded (by N and the bounds on candidate
matches of VS), and can be retrieved by using the index of ϕ.

The edge cover of A on Q, denoted by ECov(Q,A), is the
set of edges in Q defined as follows: (u1, u2) is in ECov(Q,A)
if and only if there exist an access constraint S → (l, N) in A
and a S-labeled set VS in Q such that (1) u1 (resp. u2) is in VS
and VS ⊆ VCov(Q,A) and (2) fQ(u2) = l (resp. fQ(u1) = l).

Intuitively, (u1, u2) is in ECov(Q,A) if one of u1 and u2 is
covered byA and the other has a bounded number of candidate
matches by S → (l, N). Thus, we can verify their matches in
a graph G by accessing a bounded number of edges.

Note that VCov(Q,A) ⊆ VQ and ECov(Q,A) ⊆ EQ.
The node and edge covers characterize effectively bounded

subgraph queries (see [3] for a proof, which uses three lemmas
and the data locality of subgraph queries).

Theorem 1: A subgraph query Q is effectively bounded under
an access schema A if and only if (iff) VCov(Q,A) = VQ and
ECov(Q,A) = EQ. 2

Example 4: For query Q0(V0, E0) of Fig. 1 and access schema
A0 of Example 3, one can verify that VCov(Q0,A0) = V0 and
ECov(Q0,A0) = E0. From this and Theorem 1 it follows that
Q0 is effectively bounded under A0. 2

B. Checking Effectively Bounded Subgraph Queries
Capitalizing on the characterization, we show that whether

Q is effectively bounded under A can be efficiently decided.

Theorem 2: For subgraph queries Q, EBnd(Q,A) is in
(1) O(|A||EQ|+ ||A|||VQ|2) time in general; and
(2) O(|A||EQ|+ |VQ|2) time when either
◦ for each node in Q, its parents have distinct labels; or
◦ all access constraints in A are of type (1) or (2). 2

Here |A| denotes the total length of access constraints in
A, ||A|| is the number of constraints in A, and a node u′ is a
parent of u in Q if there exists an edge from u′ to u in Q.

Algorithm. We prove Theorem 2 by providing a checking
algorithm. The algorithm is denoted by EBChk and shown

Algorithm EBChk

Input: A subgraph query Q and an access schema A.
Output: “yes” if Q is effectively bounded and “no” otherwise.

1. for each S → (l, N) in A (S 6= ∅) do
2. find all V̄ u

S 7→ (u,N) in Q and add them to Γ; /*f(u) = l*/
3. B := {v ∈ VQ | ∅ → (fQ(v), N) is in A};
4. C := B; /*Initialize VCov(Q,A)*/
5. InitAuxi(L, ct); /*Initialize auxiliary structures*/
6. while B is not empty do
7. v = B.pop();
8. for each φ in L[v] do
9. Update (ct[φ]); /*Update counter ct[φ]*/
10. if ct[φ] = ∅ and u 6∈ C do /*suppose φ: V̄ u

S 7→ (u,N)*/
11. B := B ∪ {u}; C := C ∪ {u};
12. if VQ ⊆ C and all edges in Q are in ECov(Q,A) then
13. return “yes”;
14. return “no”;

Fig. 3. Algorithm EBChk

in Fig. 3. Given a subgraph query Q(VQ, EQ) and an access
schema A, it checks whether (a) VQ ⊆ VCov(Q,A) and (b)
EQ ⊆ ECov(Q,A); it returns “yes” if so, by Theorem 1.

To check these conditions, we actualize A on Q: for each
S → (l, N) in A (S 6= ∅), and each node u in Q with fQ(u) =
l, the actualized constraint is V̄ u

S 7→ (u,N), where V̄ u
S is the

maximum set of neighbors of u in Q such that (a) there exists a
S-labeled set VS ⊆ V̄ u

S and (b) for each u′ in V̄ u
S , fQ(u′) ∈ S.

Actualized constraints help us deduce VCov(Q,A): a node
u of Q is in VCov(Q,A) if and only if either
◦ there exists ∅ → (l, N) in A and fQ(u) = l; or
◦ V̄ u

S 7→ (u,N) and there exists a S-labeled set of Q that
is a subset of V̄ u

S ∩ VCov(Q,A).
When VCov(Q,A) is in place, we can easily check whether

EQ ⊆ ECov(Q,A) by definition and using the actualized
constraints, without explicitly computing ECov(Q,A).

We next present the details of algorithm EBChk.
Auxiliary structures. EBChk uses three auxiliary structures.

(1) It maintains a set B of nodes in Q that are in VCov(Q,A)
but it remains to be checked whether other nodes can be
deduced from them. Initially, B includes nodes whose labels
are covered by type (1) constraints in A (line 3). EBChk uses
B to control the while loop (lines 5-10): it terminates when
B = ∅, i.e., all candidates for VCov(Q,A) are found.

(2) For each node v, EBChk uses an inverted index L[v] to
store all actualized constraints V̄ u

S 7→ (u,N) such that v ∈ V̄ u
S .

That is, L[v] indexes these constraintsthat can be used on v.

(3) For each actualized constraint φ = V̄ u
S 7→ (u,N), EBChk

maintains a set ct[φ] to keep track of those labels of S that
are not covered by nodes in V̄ u

S ∩ VCov(Q,A) yet. Initially,
ct[φ] = S. When ct[φ] is empty, EBChk concludes that there
is a S-labeled subset of V̄ u

S covered by VCov(Q,A), and thus
deduces that u should also be in VCov(Q,A) (line 10).

Using these, EBChk works in the following two steps.

(1) Computing Γ. It finds all actualized constraints of A on Q
and puts them in Γ (lines 1-2). This can be done by scanning
all nodes of Q and their neighbors for each access constraint
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in A. Observe that there are at most ||A|||VQ| actualized
constraints in Γ, i.e., Γ is bounded by O(||A|||EQ|).

(2) Computing VCov(Q,A), stored in a variable C. After
initializing auxiliary structures as described above via proce-
dure InitAuxi (omitted; lines 3-5), EBChk processes nodes in
B one by one (lines 6-11). For each u ∈ B and each actualized
constraint φ = V̄ v

S 7→ (v,N) in L[u], it updates the set ct[φ] by
removing label fQ(u) by procedure Update (omitted; line 9).
When ct[φ] = ∅, i.e., there exists a S-labeled subset in V̄ v

S

that is covered by C, EBChk adds u to C and B (lines 10-11).
When B is empty, i.e., all nodes have been inspected, EBChk
checks whether VQ ⊆ VCov(Q,A) and whether all edges are
covered by ECov(Q,A). It returns “yes” if so (lines 12-13).

Example 5: Given subgraph query Q0 of Fig. 1 and access
schema A0 of Example 3, EBChk first computes the set Γ of
actualized constraints: φ1 = (u1, u2) 7→ (u3, 4), φ2 = u3 7→
(u4/u5, 30), and φ3 = u4/u5 7→ (u6, 1). It then sets both B
and C to be {u1, u2, u6}, and initializes ct[φ1], . . . , ct[φ3]
and lists L[u1], . . . , L[u6] accordingly. EBChk then pops u1

and u2 off from B and finds that u3 can be deduced. Thus it
adds u3 to B and C. It then pops u3 off from B, processes
u4 and u5, and confirms that u4 and u5 should be included
in C. At this point, it finds that C contains all the nodes in Q
and moreover, each edge in Q is also covered by at least one
access constraint in A0. Thus it returns “yes”. 2

Correctness & Complexity. The correctness of EBChk follows
from Theorem 1 and the properties of actualized constraints
stated above. We next analyze the time complexity of EBChk.

(1) General case. Observe the following. (a) Computing Γ is in
O(|A||EQ|) time, since for each ϕ in A, we can find all actu-
alized constraints of ϕ in O(Σv∈VQ

deg(v)|ϕ|) = O(|ϕ||EQ|)
time, where deg(v) is the number of neighbors of v. (b)
Computing VCov(Q,A) takes O(||A|||VQ|2) time. For each ϕ
in A, the sets ct(φ) for all corresponding actualized constraints
φ in Γ are updated in time O(Σv∈VQ

(deg(v)2)) = O(|VQ|2).
As each φ in Γ is processed once, the total time is bounded
by O(||A|||VQ|2). (c) The checking of lines 12-13 takes
O(|A||EQ| + |VQ|2) time. Thus, EBChk takes O(|A||EQ| +
||A|||VQ|2 + |VQ|2) = O(|A||EQ|+ ||A|||VQ|2) time.

(2) Special cases. We next show that EBChk can be optimized
to O(|A||EQ|+ |VQ|2) time for each of the two special cases
given in Theorem 2. The idea is to use a counter n[φ] instead
of ct[φ] in EBChk such that n[φ] always equals |ct[φ]|. This
does not hurt the correctness since in the special cases, each
time when we update ct[φ], we remove a distinct label. With
this new auxiliary structure, step (b) in the analysis above is
in O(||A|||EQ|) time in total since the counters are updated
O(||A||(Σv∈VQ

deg(v))) = O(||A|||EQ|) times in total, and
each updates takes O(1) time: it just decreases n[φ] by 1.

IV. GENERATING QUERY PLANS

After a subgraph query Q(VQ, EQ) is found effectively
bounded under an access schema A, we need to generate a

“good” query plan for Q that, given any (big) graph G, com-
putes Q(G) by fetching a small GQ such that Q(G) = Q(GQ)
and |GQ| is determined by Q and A, independent of |G|.

The main results of this section are as follows:
◦ a notion of worst-case optimality for query plans; and
◦ an algorithm to generate worst-case-optimal query plans

in O(|VQ||EQ||A|) time.
Below we first formalize query plans and define the worst-

case optimality. We then present the algorithm.

Query plans. A query plan P for Q under A is a sequence
of node fetching operations of the form ft(u, VS , ϕ, gQ(u)),
where u is a l-labeled node in Q, VS denotes a S-labeled set
of Q, ϕ is a constraint ϕ = S → (l, N) in A, and gQ(u) is
the predicate of u (refer to Section II for the definition).

On a graph G, the operation is to retrieve a set cmat(u) of
candidate matches for u from G: given VS that was retrieved
from G earlier, it fetches common neighbors of VS from G
that (i) are labeled with l and (ii) satisfy the predicate gQ(u)
of u. These nodes are fetched by using the index of ϕ and are
stored in cmat(u). In particular, when S = ∅, the operation
fetches all l-labeled nodes in G as cmat(u) for u.

The operations ft1ft2 · · · ftn in P are executed one by one,
in this order. There may be multiple operations for the same
node u in Q, each fetching a set V u

i of candidates for u from
G. We will ensure that for fti and ftj for u, V u

j has less nodes
than V u

i if i < j, and we say that ftj reduces cmat(u) fetched
by fti. We denote V u

k by Vu, where ftk is the last operation
for u in P , i.e., it fetches the smallest cmat(u) for u.
Building GQ. Intuitively, P tells us what nodes to retrieve
from G. From the data fetched by P , a subgraph GQ(VP , EP)
is built and used to compute Q(G). More specifically, (a)
VP =

⋃
u∈Q Vu, i.e., it contains maximally reduced cmat(u)

for each node u in Q; and (b) EP consists of the following: for
each node pairs (v, v′) in Vu×Vu′ , if (u, u′) is an edge in Q,
we check whether (v, v′) is an edge in G and if so, include it in
EP . This is done by accessing a bounded amount of data: we
first find ϕu′ = S → (fQ(u′), N) in A and a S-labeled set Vs
such that v ∈ VS ; we then fetch common neighbors of VS by
using the index of ϕu′ and check whether v′ is one of them. As
Q is effectively bounded under A (i.e., ECov(Q,A) = EQ),
if (v, v′) is an edge in G then such ϕu′ and VS exist.
Bounded plans. We say that a query plan P for Q under A
is effectively bounded if for all G |= A, it builds a subgraph
GQ of G such that (a) Q(GQ) = Q(G) and (b) the time for
fetching data from G by all operations in P depends on A
and Q only. That is, P fetches a bounded amount of data from
G and builds GQ from it. By (b), |GQ| is independent of |G|.
Optimality. We naturally want an optimal plan P that finds
us a minimum GQ, i.e., for each graph G |= A, GQ identified
by P has the smallest size among all subgraphs identified by
any effectively bounded query plans. Unfortunately, the result
below shows that this is impossible (see [3] for a proof).

Theorem 3: There exists no query plan that is both effectively
bounded and optimal for all graphs G |= A. 2
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Algorithm QPlan

Input: An effectively bounded subgraph query Q, access schema A.
Output: A worst-case optimal and effectively bounded query plan P .

1. Build actualized graph QΓ(VΓ, EΓ) from Q and Γ;
2. for each u in VΓ do
3. size[u] := +∞; sn[u] := false;
4. if there exists ϕ = ∅ → (l, N) in A with fQ(u) = l do
5. append ft(u, nil, ϕ, gQ(u)) to P;
6. sn[u] := true; size[u] := N ;
7. while there exists u in VΓ such that check(u) = true do
8. (Vu, ϕu, size[u], sn[u]) := ocheck(u);
9. append ft(u, Vu, ϕu, gQ(u)) to P;
10. return P;

Fig. 4. Algorithm QPlan

This motivates us to introduce worst-case optimality. An
effectively-bounded query plan P for Q under A is worst-
case optimal if for any other effectively bounded query plan
P ′ for Q under A, max

G|=A
|GQ| ≤ max

G|=A
|G′Q|, where GQ and

G′Q are subgraphs identified by P and P ′, respectively.
That is, given any Q and A, for all G |= A, the largest sub-

graph GQ identified by P is no larger than the worst-case sub-
graphs identified by any other effectively bounded query plans.

Worst-case optimal query plans are within reach in practice.

Theorem 4: There exists an algorithm that, given any effec-
tively bounded subgraph query Q under an access schema A,
finds a query plan that is both effectively bounded and worst-
case optimal for Q under A, in O(|VQ||EQ||A|) time. 2

Algorithm. We prove Theorem 4 by giving such an algorithm,
denoted by QPlan and shown in Fig. 4. The algorithm inspects
each node u of Q, finds an access constraint ϕ in A such that
its index can help us retrieve candidates cmat(u) for u from
an input graph G, generates a fetching operation accordingly,
and stores it in a list P . It then iteratively reduces cmat(u) for
each u in Q to optimize P , until P cannot be further improved.

The algorithm uses the following structures.
(1) An actualized graph QΓ(VΓ, EΓ), which is a directed
graph constructed from Q and the set Γ of all actualized
constraints of A on Q (see Section III). Here (a) VΓ = VQ;
and (b) for any two nodes u1 and u2 in VΓ, (u1, u2) is in EΓ

iff there exists a constraint V̄S 7→ (u2, N) in Γ such that u1 is
in V̄S . Intuitively, QΓ represents deduction relations for nodes
in VQ, and guides us to extract candidate matches for Q.
(2) For each node u in Q, a counter size[u] to store the
cardinality of cmat(u), and a Boolean flag sn[u] to indicate
whether the fetching operations in current P can find cmat(u).

With these structures, algorithm QPlan works as follows. It
first builds actualized graph QΓ (line 1), and initializes size[u]
= +∞ and sn[u] = false for all the nodes u in QΓ (lines 2-3).
It then finds nodes u0 for which cmat(u) can be retrieved by
using the index specified in some type (1) constraints ∅ →
(l, N) in A (lines 4-6). For each u0, QPlan adds a fetching
operation to P and sets sn[u0] = true and size[u0] = N .

After the initialization, QPlan recursively processes nodes
u of Q to retrieve or reduce their cmat(u) (lines 7-9), starting

from those nodes u0 identified in line 4. It picks the next
node u by a function check (omitted). Here check(u) does the
following: it (i) finds the set V p

u of parents of u in QΓ such
that sn[v] = true for all v ∈ V p

u , (ii) selects a subset Vu of
V p
u such that Vu forms a S-labeled set for some constraint ϕu

= S → (fQ(u), N) in A, and moreover, N ∗ Πv∈Vusize[v] is
minimum among all such S-labeled sets of u; and (iii) returns
true if N ∗Πv∈Vusize[v] < size[u]. If check(u) = true, QPlan
sets size[u] = N ∗Πv∈Vu

size[v] and sn(u) = true by function
ocheck (omitted), and adds a fetching operation to P for u
using ϕu and Vu. It proceeds until for no u in Q, check(u) =
true (line 7). At this point, QPlan returns P (line 10).

Example 6: Given query Q0 of Fig. 1 and access schema A0

of Example 3, QPlan finds P as follows. Using the actualized
constraints Γ of A0 on Q0 (see Example 5), it first builds QΓ,
which is the same as Q0 except the directions of the edges
(u3, u1) and (u3, u2) are reversed. Using type (1) constraints
in A0, QPlan adds ft1(u1, nil, ϕ5, true), ft2(u2, nil, ϕ4, year ≥
2011 ∧ year ≤ 2013) and ft3(u6, nil, ϕ6, true) to P . In the
while loop, it finds check(u3) = true and adds ft4(u3, {u1, u2},
ϕ1, true) to P . As a consequence of ft4, it finds that check(u4)
and check(u5) become true and thus adds ft5(u4, {u3}, ϕ2,
true) and ft6(u5, {u4}, ϕ2, true) to P . Now P cannot be
further improved, and it returns P with 6 fetching operations,

We next show how this P identifies GQ from the IMDb
graph G0 of Example 1 for Q0. (a) It executes its fetching
operations one by one, and retrieves cmat(u) from G0 for u
ranging over u1–u6, with at most 24, 3, 288, 8640, 8640 and
196 nodes, respectively. These are treated as the nodes of GQ,
no more than 17791 in total. (b) It then adds edges to GQ.
For each (v3, v1) ∈ cmat(u3) × cmat(u1), it checks whether
(v3, v1) is an edge in G0 by using cmat(u1), cmat(u2) and
cmat(u3), and the index of ϕ1 of A0, as suggested by fetching
operation ft4 for u3 given above. If so, (v3, v1) is included in
GQ. This checks 24×3×4 neighbors of cmat(u3) in the worst
case. Similarly, it examines at most 288, 8640, 8640, 8640 and
8640 candidates matches in G0 for edges (u3, u2), (u3, u4),
(u3, u5), (u4, u6) and (u4, u6) in Q0, respectively. This yields
at most 34848 edges in GQ in total. Note that query plan P is
exactly the one described in Example 1, and accesses at most
17923 nodes and 35136 edges in total. Only part of the data
accessed by P is included in GQ for answering Q. 2

Correctness & Complexity. For the correctness of QPlan, ob-
serve the following about the query plan P generated for Q
and A. (1) P is effectively bounded: indeed, (a) the total
amount of data fetched by P is decided by A and Q since
P only uses indices in A to retrieve data; and (b) Q(GQ) =
Q(G) since GQ includes all candidate matches from G for
nodes and edges in Q. By the data locality of subgraph queries,
if a node v in G matches a node u in Q, then for any neighbor
u′ of u in Q, matches of u′ must be neighbors of v in G.
That is why cmat(u) collects candidate node matches from
neighbors; similarly for edges. (2) P is worst-case optimal:
since the while loop reduces |cmat(u)| to be the minimum.
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To see that QPlan is in O(|VQ||EQ||A|) time, observe the
following. (1) Line 1 is in O(|A||EQ|) time. (2) The for loop
(lines 2-6) is in O(|VQ|) time by using the inverted indices.
(3) The while loop (lines 7-9) iterates |VQ|2 times, since for
each node u in Q, (a) cmat(u) is reduced only if cmat(u′) is
reduced for its “ancestors” u′ in QΓ, |VQ|−1 times at most, by
the definition of size[u] and check (i.e., size[u] remains larger
than size[u′]), and (b) each reduction to cmat(u′) requires us to
check once whether cmat(u) is also reduced as a consequence.
In each iteration, check(u) and ocheck(u) take O(deg(u)|A|)
time. As O(|VQ| ∗ Σu∈VQ

deg(u)|A|) = O(|VQ||EQ||A|), the
while loop takes O(|VQ||EQ||A|) time in total.

V. MAKING QUERIES INSTANCE BOUNDED

Consider a frequent query load Q, such as a finite set of
parameterized queries as found in recommendation systems.
If some queries Q in Q are not effectively bounded under an
access schema A, can we still compute Q(G) in a big graph
G? The main conclusion of this section is positive: one can
often make all queries in Q instance-bounded in G and answer
them in G by accessing a bounded amount of data.

Extending access schemas. The idea is to extend A such
that its indices suffice to help us fetch bounded subgraphs of
G for answering Q. Consider a constant M . An M -bounded
extensionAM ofA includes all access constraints inA and ad-
ditional access constraints of types (1) and (2) (see Section II):

Type (1): ∅ → (l′, N) Type (2): l→ (l′, N)

such that N ≤M . Note that AM is also an access schema.

Instance-bounded patterns. Consider G |= AM . A set Q of
pattern queries is instance-bounded in G under AM if for all
Q ∈ Q, there exists a subgraph GQ of G such that
(a) Q(GQ) = Q(G); and
(b) GQ can be found in time determined by AM and Q only.

As a result of (b) and the use of constant M , |GQ| is a function
of A, Q and M . As opposed to effective boundedness, instance
boundedness aims to process a finite set Q of queries on a
particular instance G by accessing a bounded amount of data.

Given these, we answer Q in a big G as follows. If some
queries in Q are not effectively bounded under A, we extend
A to AM by adding simplest access constraints such that all
queries in Q are instance-bounded in G under AM .

Proposition 5: For any finite setQ of subgraph queries, access
schemaA and graph G |=A, there exist M and an M -bounded
extension AM under which Q is instance-bounded in G. 2

That is, additional access constraints of types (1) and (2)
suffice to make Q instance-bounded in G. We show in [3] that
AM extends A with at most LQ(LQ+1)

2 additional constraints,
where LQ is the total number of labels in Q.

Resource-bounded extensions. Proposition 5 always holds
when M is sufficiently large. When M is a small predefined
bound indicating our constrained resources, we have to answer
the following question, denoted by EEP(Q,A,M,G):

◦ Input: A finite set Q of subgraph queries, an access
schema A, a natural number M , and a graph G |= A.
◦ Question: Does there exist a M -bounded extension AM

of A such that Q is instance-bounded in G under AM?
This problem is decidable in PTIME.

Theorem 6: EEP(Q,A,M,G) is in O(|G|+(|A|+|Q|)|EQ|+
(||A|| + |Q|)|VQ|2) time, where |G| = |V | + |E|, |EQ| =∑

Q∈Q |EQ|, |VQ| =
∑

Q∈Q |VQ| and |Q| = |EQ|+ |VQ|. 2

For a frequent query load Q, we identify AM ; if AM exists,
we build additional indices on G and make G |= AM , as
preprocessing offline. We can then repeatedly instantiate and
process query templates of Q by accessing a bounded amount
of data in G, and incrementally maintain indices in response
to changes to G. Note that real-life queries are typically small.

We prove Theorem 6 by giving a checking algorithm. The
algorithm, denoted by EEChk, consists of two steps.
Step (1) (Maximum M -bounded extension): Find all types (1)
and (2) constraints ∅ → (l′, N) and l → (l′, N) on G for all
labels l and (l, l′) that are in both Q and G, such that N ≤M
and G satisfies their corresponding cardinality constraints.
Let AM include all these constraints and all those in A.

Step (2) (Checking): Check whether Q is instance-bounded in
G under AM by using a mild revision of EBChk(Q,AM ) (see
Section III) for each Q ∈ Q; return “yes” if EBChk(Q,AM )
returns “yes” for all Q in Q, and “no” otherwise.

Example 7: Consider a given bound M = 150, the IMDb
graph G0 of Example 1, a set Q with only Q0 of Fig. 1,
and an access schema A consisting of all constraints in A0

of Example 3 except ϕ4 and ϕ5. Given these, EEChk finds a
M -bounded extension AM of A. (1) It finds, among others,
that G satisfies the cardinality constraints of two type 1 access
constraints ϕ4 = ∅ → (year, 135) and ϕ5 = ∅ → (award, 24),
and 135 < M and 24 < M . It extends A by including ϕ4

and ϕ5, yielding AM . (2) It then invokes EBChk(Q,AM ) and
confirms that Q is instance-bounded in G under AM . 2

Correctness & Complexity. The correctness of EEChk is en-
sured by the following. (1) If there exists A′M such that Q is
instance-bounded in G under A′M , then Q is instance-bounded
in G under AM for A′M ⊆ AM ; hence it suffices to consider
the maximum M -bounded extension AM of A. (2) Checking
instance boundedness is a mild revision of EBChk(Q,AM ),
with the same complexity stated in Theorem 2.

For the complexity, observe that Step (1) of EEChk is in
O(|G|) time, |AM | and ||AM || are bounded by |A|+ |Q| and
||A||+ |Q|, respectively. Step (2) takes O((|A|+ |Q|)|EQ|+
(||A||+ |Q|)|VQ|2) time by the complexity of EBChk.

Remark. One might want to find a minimum M -extension AM

of A such that Q is instance-bounded under AM , and AM has
the least number of access constraints among all M -extensions
of A that make Q instance-bounded in G. Unfortunately, it
is log APX-hard to find such a minimum M -extension for
given Q, A, M and G. Here log APX-hard problems are NP
optimization problems for which no PTIME algorithms have
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approximation ratio below c log n, where c is some constant
and n is the input size (cf. [6]; see [3] for a proof of this).

VI. EFFECTIVELY BOUNDED SIMULATION QUERIES

We have seen that effective boundedness helps us answer
subgraph queries in big graphs within constrained resources.
A natural question asks whether the same idea works for
simulation queries, which are non-localized and recursive.

This section settles this question in positive. For effectively
bounded simulation queries, we provide (1) a characterization
(Section VI-A); (2) a checking algorithm (Section VI-B); and
(3) an algorithm for generating effectively bounded and worst-
case optimal query plans (Section VI-C), all with the same
complexity as their counterparts for subgraph queries. We also
give (4) an algorithm for making a finite set of unbounded sim-
ulation queries instance-bounded (Section VI-D). We contend
that the effective-boundedness approach is generic: it works
on general pattern queries, localized or non-localized.

A. Characterization for Simulation Queries
Simulation queries introduce challenges to the analysis.

Example 8: Consider the simulation query Q1(V1, E2) of
Example 2, and an access schema A1 with ϕA = B → (A, 2),
ϕB = CD → (B, 2), ϕC = ∅ → (C, 1), and ϕD = ∅ → (D, 1).
One can verify that VCov(Q1,A1) = V1 and ECov(Q1,A1)
= E1. However, Q1 is not effectively bounded. Indeed, G1 of
Fig. 2 matches Q1, and the maximum match relation Q1(G1)
“covers” a cycle in G1 with length proportional to |G1|. That
is, while A1 constrains the neighbors of each node in Q1, it
does not suffice: as shown in Example 2, to check whether
v1 of G1 matches u1 of Q1, we need to inspect nodes of G1

far beyond the neighbors of v1, due to the non-localized and
recursive nature of simulation queries. 2

This suggests a stronger notion of node covers. The node
cover of an access schema A on a simulation query Q, denoted
by sVCov(Q,A), is the set of nodes in Q computed as follows:
(a) if a type (1) constraint ∅ → (l, N) is in A, then for each

node u in Q with label l, u ∈ sVCov(Q,A); and
(b) if S → (l, N) is in A, then for each S-labeled set VS in

Q, a common neighbor u of VS in Q is in sVCov(Q,A)
if (i) u is labeled with l, (ii) VS ⊆ sVCov(Q,A) and (iii)
for each node uS in VS , (u, uS) is an edge of Q.

As opposed to VCov for subgraph queries, a node u is in
sVCov(Q,A) if in any graph G |= A, the number of candidate
matches of u is bounded in G, no matter whether these
nodes are in the same neighborhood or not. We include u in
sVCov(Q,A) only if some of its children are covered byA and
they bound the candidate matches of u by an access constraint.
When we enforce VQ = sVCov(Q,A) (see Theorem 9 below),
this ensures that all children of u have a bounded number
of candidates in G. This rules out unbounded matches when
retrieving maximum matches by using the indices of A.

The edge cover of A on Q, denoted by sECov(Q,A), is
defined in the same way as ECov(Q,A) for subgraph queries
(Section III), using sVCov(Q,A) instead of VCov(Q,A).

Covers for simulation queries are more restrictive than
their counterparts for subgraph queries: sVCov(Q,A) ⊆
VCov(Q,A) ⊆ VQ and sECov(Q,A) ⊆ ECov(Q,A) ⊆ EQ.

Analogous to Theorem 1, one can verify the following
(see [3] for a proof, which does not use data locality).

Theorem 7: A simulation query Q(VQ, EQ) is effectively
bounded under an access schema A if and only if VQ =
sVCov(Q,A) and EQ = sECov(Q,A). 2

Example 9: Recall Q1 and A1 from Example 8. One can
verify that neither u1 nor u2 in Q1 is in sVCov(Q1,A1) and
hence, Q1 is not effectively bounded under A1 by Theorem 7.
This is consistent with the observation of Example 8.

Now define Q2(V2, E2) by reversing the directions of
(u3, u2) and (u4, u2) in Q1. Then sVCov(Q2,A1) = V2

and sECov(Q2,A1) = E2. Hence, Q2 is effectively bounded
under A1 by Theorem 7. Given G1 of Fig. 2, we can find
Q2(G1) = ∅ without fetching the unbounded cycle of G1. 2

B. Deciding Effective Boundedness of Simulation Queries
We now revisit EBnd(Q,A) (Section III): given a sim-

ulation query Q and an access schema A, it is to decide
whether Q is effectively bounded underA. We show that graph
simulation does not increase the complexity of EBnd(Q,A).

Theorem 8: For simulation queries Q, EBnd(Q,A) has the
same complexity as for subgraph queries, in both the general
case and the two special cases stated in Theorem 2. 2

To prove Theorem 8 we give a checking algorithm, denoted
by sEBChk, which is the same as EBChk of Fig. 3 except that
it uses a revised notion of actualized constraints. For each
S → (l, N) in A with S 6= ∅, and each node u in Q with
fQ(u) = l, its actualized constraint for simulation is V̄ u

S 7→
(u,N), where V̄ u

S is the maximum set of neighbors of u in Q
such that (a) there exists a S-labeled set VS ⊆ V̄ u

S , and (b) for
each u′ ∈ V̄ u

S , (i) fQ(u′) ∈ S; and (ii) (u, u′) is an edge of Q.
In contrast to its counterpart defined in Section III, this notion
further requires condition (ii) to cope with sVCov(Q,A).

Example 10: Given Q2(V2, E2) and A1 considered in Exam-
ple 9, sEBChk first computes the set Γ of actualized constraints
for A1 on Q2: φ1 = (u3, u4) 7→ (u2, 2), φ2 = u2 7→ (u1, 2).
It then initializes both B and C to be {u3, u4}, sets ct[φ1] = 2,
ct[φ2] = 1, and initializes lists L[u1], . . . , L[u4] accordingly
(see Fig. 3). As in Example 5, it finds that V2 ⊆ C and that
each edge of E2 is covered by some constraint in A1. Thus
it returns “yes”, i.e., Q2 is effectively bounded under A1. 2

The correctness of sEBChk follows from the characteriza-
tion of Theorem 7. Along the same lines as the analysis of
EBChk, the proof uses the following property of sVCov(Q,A):
a node u of Q is in sVCov(Q,A) if and only if either
◦ there exists ∅ → (l, N) in A and fQ(u) = l; or
◦ V̄ u

S 7→ (u,N) and there exists a S-labeled set of Q that
is a subset of V̄ u

S ∩ sVCov(Q,A).

Algorithm sEBChk has the same complexity as EBChk:
sEBChk is the same as EBChk except the computation of the
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set Γ of all actualized constraints (lines 1-2 of Fig. 3), which
remains in O(|A||EQ|) time, the same as for subgraph queries.

C. Generating Effectively Bounded Query Plans

We next show that for effectively-bounded simulation
queries Q under an access schema A, we can generate query
plans P such that in any graph G, P computes Q(G) by
accessing a bounded subgraph GQ of Q, leveraging the indices
of A, such that Q(G) = Q(GQ). Indeed, Theorem 4, the result
for subgraph queries, carries over to simulation queries.

Theorem 9: There exists an algorithm that, given any effec-
tively bounded simulation query Q under an access schema
A, generates an effectively bounded and worst-case optimal
query plan in O(|VQ||EQ||A|) time. 2

We show that a minor revision sQPlan of algorithm QPlan
(Fig. 4) suffices to do these, retaining the same complexity
as QPlan. The only difference is that we use actualized
constraints for simulation given above, and the stronger notion
of node covers instead of data locality. Due to the space
constraint we defer the proof and analysis to [3].

Example 11: Given Q2(V2, E2) of Example 9 and A1 of
Example 8, sQPlan generates a query plan P . Using the set Γ
of actualized constraints ofA1 on Q2 (see Example 10), QPlan
builds QΓ(VΓ, EΓ), where VΓ = V2, and EΓ contains (u3, u2),
(u4, u2) and (u2, u1). Initially, it adds ft(u3, nil, ϕC , true) and
ft(u4, nil, ϕD, true) to P . It then finds that u2 and u1 can
be deduced from u3 and u4 by using QΓ, and thus adds
ft(u2, {u3, u4}, ϕB , true) and ft(u1, {u2}, ϕA, true) to P .

For any graph G |= A1, we compute Q2(G) by using P . It
retrieves 8 candidate matches for nodes in Q2, i.e., 4 for u1, 2
for u2, 1 for each of u3 and u4. It then finds at most 12 edges
between these candidates that are possible edge matches by
using the indices of A1: 4 for each of (u1, u2) and (u2, u1),
and 2 for each of (u2, u3) and (u2, u4). That is, P fetches a
subgraph GQ2

of Q2, by accessing 8 nodes and 12 edges. 2

D. Making Simulation Queries Instance Bounded

Finally, we study finite sets Q of simulation queries when
they are not effectively bounded under an access schema A.
We show that Proposition 5 also holds here: for any graph
G |= A, there exists an M -bounded extension AM of A under
which Q is instance-bounded in G for some bound M (see
Section V for M -bounded extensions, and [3] for a proof).

For a predefined and small M , we revisit EEP(Q,A,M,G)
to decide whether there exists an M -bounded extension AM

of A that makes Q instance-bounded in G (see Section V).
We show that Theorem 6 remains intact on simulation queries.

Theorem 10: For simulation queries, EEP(Q,A,M,G) is in
O(|G|+ (|A|+ |Q|)|EQ|+ (||A||+ |Q|)|VQ|2) time. 2

As a proof, we show that a minor revision sEEChk of
EEChk (Section V) can check EEP for simulation queries, with
the same complexity as EEChk (see [3] for a proof).

VII. EXPERIMENTAL STUDY

Using real-life data, we conducted three sets of experiments
to evaluate (1) the effectiveness of our query evaluation ap-
proach based on effective boundedness, (2) the effectiveness of
instance boundedness and (3) the efficiency of our algorithms.

Experimental setting. We used three real-life datasets.
Internet Movie Data Graph (IMDbG) was generated from the
Internet Movie Database (IMDb) [22], with 5.1 million nodes,
19.5 million edges and 168 labels in IMDbG.
Knowledge graph (DBpediaG) was taken from DBpedia 3.9
[2], with 4.1 million nodes, 19.5 million edges and 1434 labels.
Webbase-2001 (WebBG) recorded Web pages produced in
2001 [1], in which nodes are URLs, edges are directed links
between them, and labels are domain names of the URLs. It
has 118 million nodes, 1 billion edges and 0.18 million labels.
Access schema. We extracted 168, 315 and 204 access con-
straints from IMDbG, DBpediaG and WebBG, respectively, by
using degree bounds, label frequencies and data semantics. For
example, (actress, year) → (feature film, 104) is a constraint
on IMDbG, stating that each actress starred in no more
than 104 feature films per year. We found it easy to extract
access constraints from real-life data. There are many more
constraints for our datasets, which we did not use in our tests.

For each constraint S → (l, N), we built index by (a)
creating a table in which each tuple encodes an actualized
constraint VS 7→ (u,N); and (b) building an index on the
attributes for VS in the new table, using MySQL 5.5.35.
Pattern queries. For each dataset, we randomly generated 100
pattern queries using its labels, controlled by #n, #e and #p,
the number of nodes, edges and match predicates in the ranges
[3, 7], [#n-1, 1.5*#n ] and [2, 8], respectively. We did not use
big patterns to favor conventional methods VF2 and optVF2
(see below), which do not work on large queries.
Algorithms. We implemented the following algorithms in C++:
(1) EBChk, QPlan, EEChk for subgraph queries, and sEBChk,
sQPlan, sEEChk for simulation queries; (2) pattern match-
ing algorithms bVF2 and bSim for subgraph and simulation
queries, by using query plans generated by QPlan and sQPlan,
respectively; (3) conventional matching algorithms gsim [21]
and VF2 (using C++ Boost Graph Library) for simulation and
subgraph queries, respectively, and their optimized versions
optgsim and optVF2 by using indices in the access constraints.

The experiments were conducted on an Amazon EC2
memory optimized instance r3.4xlarge with 122GB memory
and 52 EC2 compute units. All the experiments were run 3
times. The average is reported here.

Experimental results. We next report our findings.
Exp-1: Effectiveness of effective boundedness.
(1) Percentage of effectively bounded queries. We checked
the randomly generated queries using algorithms EBChk and
sEBChk, and found the following: (1) 61%, 67% and 58%
of subgraph queries on IMDbG, DBpediaG and WebBG are
effectively bounded under the access constraints described
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Fig. 5. Effectiveness of effectively bounded query evaluation

above, and (2) 32%, 41% and 33% for simulation queries,
respectively. These tell us that (a) by using a small number
of simple access constraints, many subgraph and simulation
queries are effectively bounded; and (b) more subgraph queries
are bounded than simulation queries under the same con-
straints, due to their locality (Section II), as expected.

(2) Effectiveness of bounded queries. To evaluate the impact
of effectively bounded queries, we compared their running
time by bVF2 and bSim (with query plans generated by QPlan
and sQPlan) vs. the conventional methods VF2, optVF2 and
gsim, optgsim. As VF2 and optVF2 are slow, we only report
their performance when they ran to completion. Unless stated
otherwise, we used all access constraints and full-size datasets.

(a) Impact of |G|. Varying the size |G| by using scale factors
from 0.1 to 1, we report the results on the three datasets in Fig-
ures 5(a), 5(e) and 5(i). Observe the following. (1) The evalua-
tion time of effectively bounded queries is independent of |G|.
Indeed, bVF2 and bSim consistently took 4.45s, 2.02s, 5.8s
and 0.25s, 0.23s, 0.34s on all subgraphs of IMDbG, DBpediaG
and WebBG, respectively. (2) VF2 and optVF2 could not run
to completion within 40000s on all subgraphs of WebBG,
and on subgraphs of IMDbG and DBpediaG with scale factor
above 0.3. On the full-size WebBG, bVF2 took 0.9s as opposed
to 25729s by optVF2 for queries that optVF2 could process
within reasonable time, at least 28587 times faster. (3) Algo-
rithms optgsim and gsim are sensitive to |G| (note the logarith-
mic scale of the y-axis), and are much slower than bSim. For
instance, on the full-size WebBG, bSim took 0.34s vs. 1630s
by optgsim, 4793 times faster. The improvement of bVF2 over
optVF2 is bigger than that of bSim over optgsim as optVF2

has a higher complexity and thus, is more sensitive to |G|.
(b) Impact of Q. To evaluate the impact of patterns, we varied
#n of Q from 3 to 7. The results, as shown in Figures 5(b), 5(f)
and 5(j), tell us the following. (1) The smaller Q is, the faster
all the algorithms are, as expected. (2) For all queries, bVF2
and bSim are efficient: they return answers within 12.7s on all
three datasets. (3) Algorithms VF2 and optVF2 do not scale
with Q. When #n > 4, none of them could run to completion
within 40000s, on all three datasets. (4) Algorithms gsim and
optgsim are much slower than bSim for all queries.

(c) Impact of ||A||. To evaluate the impact of access constraints
on bVF2 and bSim, we varied ||A|| from 12 to 20 and
processed effectively bounded queries using the varied indices
in A. As shown in Figures 5(c), 5(g) and 5(k), more access
constraints help QPlan and sQPlan get better query plans, as
expected. For example, on WebBG, when 20 access constraints
were used, bSim and bVF2 took 0.36s and 5.6s, respectively,
while they were 9.3s and 75.1s when ||A|| = 12.
(3) Size of accessed data. In the same setting as Exp-1(2)(b)
above, we examined the size of data accessed by bVF2 and
bSim. For each effectively bounded query Q, we examined (a)
|accessedQ|, the size of data accessed, and (b) |indexQ|, the
size of indices in those access constraints used, by bVF2 and
bSim for answering Q. We report the average in Figures 5(d),
5(h) and 5(l). The results tell us that the query plans accessed
no more than 0.13% of |G| for all subgraph and simulation
queries on all datasets, with indices less than 8% of |G|. This
further confirms the effectiveness of our approach.

Exp-2: Effectiveness of instance boundedness. Varying x,
we examined the minimum M that makes x% of queries
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Fig. 6. Effectiveness of instance boundedness

instance-bounded under M -bounded extensions on IMDbG,
DBpediaG and WebBG, via EEChk and sEEChk. As Figures
6(a) and 6(b) show, a small M (compared to |G|) suffices to
make a large percentage of the queries instance-bounded. For
instance, when M is 14113, 25218 and 70916 (resp. 77873,
89068, 101134), over 95% of all subgraph (resp. simulation)
queries randomly generated are instance-bounded in IMDbG,
DBpediaG and WebBG, respectively; that is, M is 0.057%,
0.107% and 0.006% of |G| (resp. 0.32%, 0.38% and 0.009%).
When M is 181448 (0.016% of WebBG), all subgraph and
simulation queries become instance-bounded in all datasets.

Expt-3: Efficiency. Finally, we evaluated the efficiency of
our algorithms. We found that EBChk, QPlan, sEBChk and
sQPlan took at most 7ms, 37ms, 6ms and 32ms, respectively,
for all queries on three datasets with all the access constraints.

Summary. From the experiments we find the following. (1)
The approach by effective boundedness is practical for pattern
queries on large graphs. (a) It is easy to find access constraints
from real-life datasets. (b) About 60% (resp. 33%) subgraph
(resp. simulation) queries are effectively bounded under a
small number of access constraints. (c) Effectively bounded
queries scale well with big graphs: their evaluation time is
independent of |G|. (2) The approach is effective for both
localized and non-localized queries: bVF2 and bSim outper-
form optVF2 and optgsim by 4 and 3 orders of magnitude
on average on WebBG, respectively. (3) A small M suffices
to make queries instance-bounded: 0.006% (resp. 0.009%) of
|G| for 95% of subgraph (resp. simulation) queries on WebBG,
and 0.013% (resp. 0.016%) to bound all queries. (4) Our algo-
rithms are efficient: they take no more than 37ms in all cases.

VIII. CONCLUSION

We propose to answer graph pattern queries in big graphs
by making use of effective boundedness. We have developed
techniques underlying the approach: access constraints on
graphs, effectively bounded pattern queries, characterizations
and algorithms for deciding whether pattern queries are effec-
tively bounded, algorithms for generating (worst-case) optimal
query plans if so, and otherwise, algorithms for making
queries instance-bounded. We have verified, analytically and
experimentally, the effectiveness of the approach: it works for
both localized queries and non-localized queries.

One topic for future work is to develop a systematic method
for discovering access constraints on graphs. Another topic is
to study incremental boundedness: Given an access schema
A, a graph G and a pattern query Q, it is to incrementally

compute Q(G⊕∆G) in response to all changes ∆G to G, by
accessing a bounded amount of data from G under A.
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