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Bounded Query Rewriting Using Views

A queryQ in a language L has a bounded rewriting using a set of L-definable views if there exists a queryQ′

in L such that given any datasetD,Q(D) can be computed byQ′ that accesses only cached views and a small
fraction DQ of D. We consider datasets D that satisfy a set of access constraints, which are a combination of
simple cardinality constraints and associated indices, such that the size |DQ| of DQ and the time to identify
DQ are independent of |D|, no matter how big D is.

This paper studies the problem for deciding whether a query has a bounded rewriting given a set V
of views and a set A of access constraints. We establish the complexity of the problem for various query
languages L, from Σp3-complete for conjunctive queries (CQ), to undecidable for relational algebra (FO). We
show that the intractability for CQ is rather robust even for acyclic CQ with fixed V and A, and characterize
when the problem is in PTIME. To make practical use of bounded rewriting, we provide an effective syntax
for FO queries that have a bounded rewriting. The syntax characterizes a key subclass of such queries
without sacrificing the expressive power, and can be checked in PTIME. Finally, we investigate L1-to-L2
bounded rewriting, when Q in L1 is allowed to be rewritten into a query Q′ in another language L2. We
show that this relaxation does not simplify the analysis of bounded query rewriting using views.

Categories and Subject Descriptors: H.2.1 [DATABASE MANAGEMENT]: Logical Design

General Terms: Design, Algorithms, Theory

Additional Key Words and Phrases: Bounded rewriting; big data; complexity

1. INTRODUCTION

To make query answering feasible in big datasets, practitioners have been studying
scale independence [Armbrust et al. 2011; Armbrust et al. 2009; Armbrust et al. 2013].
The idea is to compute the answers Q(D) to a query Q in a dataset D by accessing a
bounded amount of data in D, no matter how big the underlying D is.

This idea was formalized in [Fan et al. 2014; Fan et al. 2015]. As suggested in [Fan
et al. 2014], nontrivial queries can be scale independent under a set A of access con-
straints, a form of cardinality constraints with associated indices. A query Q is bound-
edly evaluable [Fan et al. 2015] if for all datasets D that satisfy A, Q(D) can be com-
puted from a fraction DQ of D, and the time for identifying and fetching DQ, and hence
the size |DQ| of DQ are independent of |D|. We identify DQ by reasoning about the car-
dinality constraints in A, and fetch DQ by using the indices of A.

Bounded evaluation has proven useful [Cao et al. 2014; Cao et al. 2015; Cao and Fan
2016]. Experimenting with several real-life datasets, it was shown that under a cou-
ple of hundreds of access constraints, 77% of randomly generated conjunctive queries
(a.k.a. SPC queries) [Cao et al. 2014], 67% of relational algebra queries [Cao and Fan
2016], and 60% of graph pattern queries [Cao et al. 2015] are boundedly evaluable on
average. Query plans for boundedly evaluable queries outperform commercial query
engines by 3 orders of magnitude, and the gap gets larger on bigger data.

As an example of bounded evaluability, consider a Graph Search query of Facebook
[Facebook 2013]: find me all restaurants in NYC which I have not been to, but in which
my friends have dined in May 2015. A cardinality constraint imposed by Facebook is
that a person can have at most 5000 friends [Facebook 2014]. Another one is that one
dines at most once per day. Given these and another two similar constraints, the query
can be answered by accessing 470000 tuples [Cao and Fan 2016], as opposed to billions
of user tuples and trillions of friend tuples in the Facebook dataset [Grujic et al. 2014].
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A:2 Bounded Query Rewriting Using Views

Still, many queries are not boundedly evaluable. Can we do better for such queries?
An approach that has proven effective by practitioners is by making use of views [Arm-
brust et al. 2013]. The idea is to select and materialize a set V of small views, and an-
swer Q on a dataset D by using views V(D) and an additional small fraction of D. That
is, we cache V(D) with fast access, and compute Q(D) by using V(D) and by restricting
costly I/O operations to (possibly big) D. Many real-life queries that are not boundedly
evaluable can be efficiently answered by using small views and by accessing a bounded
amount of additional data in D [Armbrust et al. 2013].

Example 1.1. Consider a Graph Search query Q0: find movies that were re-
leased by Universal Studios in 2014, liked by people at NASA, and were rated 5.
The query is defined over a relational schema R0 consisting of four relations: (a)
person(pid, name, affiliation), (b) movie(mid,mname, studio, release), (c) rating(mid, rank) for
ranks of movies, and (d) like(pid, id, type), indicating that person pid likes item id of type,
including but not limited to movies. Over R0, Q0 is written as a conjunctive query:
Q0(mid) = ∃xp, x′p, ym

(
person(xp, x

′
p, “NASA”) ∧ movie(mid, ym, “Universal”, “2014”) ∧

like(xp, mid, “movie”) ∧ rating(mid, 5)
)
.

Consider a set A0 of two access constraints: (a) ϕ1 = movie((studio, release)→ mid, N0),
stating that each studio releases at most N0 movies each year, where N0 is obtained
by aggregating R0 instances; an index is built on movie relation such that given any
(studio, release) value, it returns (at most N0) corresponding mids; we find that typically
N0 6 100 in practice; and (b) ϕ2 = rating(mid → rank, 1), stating that each movie has a
unique rating; an index is built on rating to fetch rank as above.

Under A0, query Q0 is not boundedly evaluable. Indeed, an instance D0 of R0 may
have billions of person and like tuples [Grujic et al. 2014], and no constraints in A0 can
help us identify a bounded fraction of these tuples to answer Q0.

Nonetheless, suppose that we are given a view that collects movies liked by NASA
folks, defined as the following conjunctive query:

V1(mid) = ∃xp, x′p, y′m, z1, z2

(
person(xp, x

′
p, “NASA”) ∧

movie(mid, y′m, z1, z2) ∧ like(xp, mid, “movie”)
)
.

As will be seen later, Q0 can be rewritten into a conjunctive query Qξ using V1, such
that for all instances D0 of R that satisfy A0, Q0(D0) can be computed by Qξ that
accesses only V1(D0) and an additional 2N0 tuples from D0, no matter how big D0

grows. Here V1(D0) is a small set, much smaller than D0. 2

To support scale independence using views, practitioners have developed techniques
for selecting views, indexing the views for fast access and for incrementally maintain-
ing the views [Armbrust et al. 2013]. However, there are still fundamental issues that
call for a full treatment. How should we characterize scale independence using views?
What is the complexity for deciding whether a query is scale independent given a set
of views and access constraints? If the complexity of the problem is high, is there any
systematic way that helps us make practical use of cached views for querying big data?

Contributions. This paper tackles these questions.

(1) Bounded rewriting. We formalize scale independence using views, referred to as
bounded rewriting (Section 2). Consider a query language L, a set V of L-definable
views and a database schema R. Informally, under a set A of access constraints, we
say that a query Q ∈ L has a bounded rewriting Q′ in the same L using V if for each
instance D of R that satisfies A, there exists a fraction DQ of D such that

—Q(D) = Q′(DQ,V(D)), and
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Bounded Query Rewriting Using Views A:3

— the time for identifying DQ and hence the size |DQ| of DQ are independent of |D|.
That is, we compute the exact answers Q(D) via Q′ by accessing cached V(D) and a
bounded fraction DQ of D. While V(D) may not be bounded, we can select small views
following the methods of [Armbrust et al. 2013], which are cached with fast access. We
formalize the notion in terms of query plans in a form of query trees commonly used
in database systems [Ramakrishnan and Gehrke 2000], which have a bounded size M
determined by our resources such as available processors and time.

(2) Complexity. We study the bounded rewriting problem (Section 3), referred to as
VBRP(L) for a query language L. Given a set A of access constraints, a query Q ∈ L
and a set V of L-definable views, all defined on the same database schema R, and a
boundM , VBRP(L) is to decide whether underA,Q has a bounded rewriting in L using
V with a query plan of size no larger than M , referred to as an M -bounded query plan.

The need for studying VBRP(L) is evident: if Q has a bounded rewriting, then we
can find efficient query plans to answer Q on possibly big datasets D. We investigate
VBRP(L) when L ranges over conjunctive queries (CQ, i.e., SPC), unions of conjunctive
queries (UCQ, i.e., SPCU), positive FO queries (∃FO+, select-project-join-union queries)
and first-order logic queries (FO, the full relational algebra). We show that VBRP is
Σp3-complete for CQ, UCQ and ∃FO+, but it becomes undecidable for FO. In addition, we
explore the impact of various parameters (R, M , A and V) of VBRP on its complexity.

(3) Acyclic conjunctive queries. Worse still, we show that the intractability of VBRP
is quite robust (Section 4). It remains intractable for acyclic conjunctive queries
(denoted by ACQ), when all parameters M , R, A and V are fixed, and even when
access constraints in the fixed A have quite restricted forms. In light of this, we give
a characterization for VBRP(ACQ) to be in PTIME, and identify several sub-classes of
ACQ and CQ for which VBRP is tractable under fixed M , R, A and V.

(4) Effective syntax. To cope with the undecidability of VBRP(FO) and the robust in-
tractability of VBRP(CQ), we develop an effective syntax for FO queries that have a
bounded rewriting (Section 5). For any R,V,A and M , we show that there exists a
class of FO queries, referred to as queries topped by (R,V,A,M), such that under A,
(a) every FO query that has an M -bounded rewriting using V is equivalent to a query

topped by (R,V,A,M);
(b) every query topped by (R,V,A,M) has an M -bounded rewriting in FO using V that

can be identified in PTIME; and
(c) it takes PTIME in M, |Q|, |V|, |R|, |A| to check whether Q is topped by (R,V,A,M),

using an oracle to check whether views in V have bounded output (see below).
That is, topped queries make a key subclass of FO queries with a bounded rewriting
using V, without sacrificing their expressive power, along the same lines as safe-range
queries for safe relational calculus (see, e.g., [Abiteboul et al. 1995]). This allows us to
reduce VBRP to syntactic checking of topped queries. Given a query Q, we can check
syntactically whetherQ is topped by (R,V,A,M) in PTIME, by condition (c) above; if so,
we can find a bounded rewriting in PTIME as warranted by condition (b); moreover, ifQ
has a bounded rewriting, then it can be transformed to a topped query by condition (a).

To check topped queries, we need to determine whether some views of V have
bounded output V(D) over all datasets D that satisfy A, i.e., the size |V(D)| is bounded
by a constant. This is to ensure bounded accesses to D, since a query plan may fil-
ter and fetch data from D by using values from some views in V(D). This problem is,
not surprisingly, undecidable for FO (Section 3). In light of this, we develop an effec-
tive syntax for FO queries with bounded output. That is, given A and R, we identify a
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A:4 Bounded Query Rewriting Using Views

class of FO queries, referred to as size-bounded queries, such that under A, an FO view
(query) over R has bounded output if and only if it is equivalent to a size-bounded
FO query, and it is in PTIME to check whether a query is size-bounded. We use this as
a PTIME oracle when checking topped queries (condition (c)) above.

Experimenting with CDR (call detail record) data and queries from one of our in-
dustry collaborators, we find that bounded query rewriting using views improves more
than 90% of their queries from 25 times to 5 orders of magnitude [Anonymous a ].

(4) Rewriting in another language. Finally, we study L1-to-L2 bounded rewriting, when
we are allowed to rewrite a query Q ∈ L1 into a query Q′ in another query language L2

(Section 6). We reinvestigate the bounded rewriting problem in this setting, denoted
by VBRP+(L1,L2). It is the problem for deciding, given a set A of access constraints, a
query Q ∈ L1, a set V of L1-definable views, and a bound M , whether under A, Q has
a rewriting Q′ ∈ L2 using V that has an M -bounded query plan.

One might be tempted to think that this relaxation would make our lives easier.
However, we show that VBRP+ remains Σp3-hard for CQ-to-L2 when L2 ranges over
UCQ, ∃FO+and FO; similarly when L1 is UCQ or ∃FO+.

This work is an effort to give a formal treatment of scale independence with views,
an approach that has been put in action by practitioners. The complexity bounds re-
veal the inherent difficulty of the problem. The effective syntax, however, suggests a
promising direction for making use of bounded rewriting. Various techniques are used
in the proofs, including characterizations, algorithms and a wide range of reductions.

2. BOUNDED QUERY REWRITING

In this section we formalize bounded query plans and bounded query rewriting using
views under access constraints. We start with a review of basic notions.
Database schema. A relational (database) schema R consists of a collection of rela-
tion schemas (R1, . . . , Rn), where each Ri has a fixed set of attributes. We assume a
countably infinite domain U of data values, on which instances D of R are defined. We
use |D| to denote the size of D, measured as the total number of tuples in D. Instances
of a single relation schema R are denoted by D.

Access schema. Following [Fan et al. 2015], we define an access schema A over a
database schema R as a set of access constraints ϕ = R(X → Y,N), where R is a
relation schema in R, X and Y are sets of attributes of R, and N is a natural number.

For an instance D of R and an X-value ā in D, we denote by DR:Y (X = ā) the set{
t[Y ] | t ∈ D, t[X] = ā

}
, and write it as DY (X = ā) when R is clear in the context.

An instance D of R satisfies access constraint ϕ if

— for any X-value ā in D, |DR:Y (X = ā)| 6 N ; and
— there exists a function (referred to as an index) that given an X-value ā, returns
DR:XY (X = ā) (i.e.,

{
t[XY ] | t ∈ D, t[X] = ā

}
) from D in O(N) time.

Intuitively, an access constraint is a combination of a cardinality constraint and an
index on X for Y (i.e., the function). It tells us that given any X-value, there exist at
most N distinct corresponding Y -values, and these Y values can be efficiently fetched
by using the index. For instance, A0 described in Example 1.1 is an access schema.

Note that functional dependencies (FDs) are a special case R(X → Y, 1) of access
constraints, i.e., when bound N = 1, provided that an index is built from X to Y .

An instance D of R = {R1, . . . , Rn} satisfies access schema A, denoted by D |= A, if
the instance of Ri in D satisfies all the access constraints ϕ = Ri(X → Y,N) in A.
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Query classes. We express queries and views in the same language L.
Following [Abiteboul et al. 1995], we consider atomic formulas that are either rela-

tion atoms R(x̄) for R ∈ R, or equality atoms x = y or x = c, where x̄, x and y variables
and c is a constant. We consider the following classes L of queries built up from atomic
formulas.
— Queries in first-order logic (FO) are inductively defined as follows: (a) atomic for-

mulas are FO queries, and (b) if Q, Q1 and Q2 are FO queries, then so are Q1 ∧ Q2,
Q1 ∨Q2, ¬Q, ∃x̄ Q and ∀x̄ Q (see Chapter 5 of [Abiteboul et al. 1995] for details).

— Positive existential FO queries (∃FO+) are FO queries in which negation (¬) and
universal quantification (∀) are disallowed.

— Conjunctive queries (CQ) are ∃FO+queries in which disjunction (∨) is disallowed. A
CQ query can be written as Q(x̄) = ∃x̄′ φ(x̄, x̄′), where φ(x̄, x̄′) is a conjunction of
atomic formulas (see Chapter 4 of [Abiteboul et al. 1995]).

— Unions of conjunctive queries (UCQ) are of the form Q(x̄) = Q1(x̄) ∪ · · · ∪ Qk(x̄),
where Qi(x̄) is a CQ for i ∈ [1, k]. It is known that each ∃FO+query Q can be written
as a UCQ, which may possibly result in exponential increase in size |Q| [Sagiv and
Yannakakis 1980].

Bounded query rewriting. To simplify the definition, we present bounded query
rewriting in terms of the relational algebra with projection π, selection σ, Cartesian
product ×, union ∪, set difference \ and renaming ρ. Consider an access schema A and
a set V of views, both defined over the same database schema R. We first extend the
relational algebra under A with V, denoted by RAA,V , as follows:

Q ::= c | fetch(X ∈ Q,R, Y ) | V | πY (Q) | σC(Q) | Q×Q | Q ∪Q | Q \Q | ρx→yQ,
where c is a constant, x and y are variables, V is a view in V, πY (Q), σC(Q), Q×Q,Q∪Q,
Q \Q and ρx→yQ denote projection, selection, Cartesian product, union, set difference
and renaming as in the relational algebra, respectively; fetch(X ∈ Q,R, Y ) requires
that ϕ = R(X → Y,N) is an access constraint in A and that Q(D) returns a set of X-
attributes of R given an instance D of R; for each ā in Q(D), it retrieves DR:XY (X = ā)
in the instance D of R in D by using the index associated with ϕ. Similarly, we also
define LA,V for fragment L of RAA,V that corresponds to CQ, UCQ or ∃FO+.

Intuitively, RAA,V revises the relational algebra by replacing direct access to relation
R with fetch(X ∈ Q,R, Y ), i.e., it accesses instances of R only via the indices of access
constraints in A only. It also allows accesses to cached views of V.

Consider a query Q in a language L. For a natural number M , we say that Q
has an M -bounded rewriting in L using V under A, or simply a bounded rewriting
using V when M and A are clear from the context, if there exists a query Q′ ∈ LA,V
such that (a) all constants in Q′ are taken from Q, (b) for all instances D of R
satisfying A, Q(D) = Q′(D), and (c) there are at most M constants and operations
(fetch, V, π, σ,×,∪, \, ρ) in Q′.

Intuitively, under A, query Q is equivalent to Q′, i.e., Q′ is a rewriting of Q using
V. Moreover, while Q′ can retrieve entire cached views, its access to the underlying
D must be via fetch operations only, by using the indices in the access constraints of
A. Hence only a bounded amount of data is fetched from D. Here M is a threshold
picked by users and is determined by available resources. The less resources we have,
the smaller M we can afford. Without the bound M , we find that the query Q′ is of-
ten of exponential length when experimenting with real-life data, which are not very
practical; indeed, it would be EXPSPACE-hard to decide whether there exists a bounded
rewriting even for CQ, by reduction from the problem for deciding bounded evaluability
for CQ [Fan et al. 2015]. Hence we opt to let users specify M based on their resources.
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A:6 Bounded Query Rewriting Using Views

Fig. 1. A query plan ξ0 using view V1.

We next give an “operational semantics” of rewritings, by means of query plans.

Query plans. Following [Ramakrishnan and Gehrke 2000], we define a query plan us-
ing V, denoted by ξ(V,R), as a tree Tξ that satisfies the following two conditions.

(1) Each node u of Tξ is labeled Si = δi, where Si denotes a relation for partial results,
and δi is as follows:

(a) {c} for a constant c, if u is a leaf of Tξ;
(b) a view V for V ∈ V, if u is a leaf of Tξ;
(c) fetch(X ∈ Sj , R, Y ) if u has a single child v labeled with Sj = δj , and Sj has at-

tributes X; here X and Y are attributes in R and X can possibly be empty;
(d) πY (Sj), σC(Sj) or ρ(Sj), if u has a single child v labeled with Sj = δj ; here Y is a

set of attributes in Sj , and C is a condition defined on Sj ; or
(e) Sj × Sl, Sj ∪ Sl or Sj \ Sl, if u has two children v and v′ labeled with Sj = δj and

Sl = δl, respectively.

Intuitively, given an instance D of R, relations Si’s are computed by δi, bottom up in
Tξ [Ramakrishnan and Gehrke 2000]. More specifically, δi may (a) extract constant
values, (b) access cached views V (D), and (c) access D via a fetch operation, which, for
each ā ∈ Sj , retrieves DR:XY (X = ā) from the instance D of R in D on which the fetch
operator is defined; it may also be a relational operation ((d) and (e) above).

(2) For each instance D of R, the result ξ(D) of applying ξ(V,R) to D is the relation Sn
at root of Tξ computed as above.

The size of plan ξ is the number of nodes in Tξ. We use Dξ to denote the bag of all
tuples fetched for computing ξ(D), i.e., the multiset that collects tuples in DR:XY (X =
ā) for all fetch(X ∈ Sj , R, Y ). Intuitively, it measures the amount of I/O operations used
to access D. Note that tuples retrieved from the cached views do not incur any I/O.

Example 2.1. A plan ξ0(V1,R0) using view V1 is depicted in Fig. 1. Given an in-
stance D of R0, (a) it fetches the set S4 of mids of all movies released by Universal
Studios in 2014; (b) filters S4 with mids in V1(D) via join, to get a subset S8 of S4 of
movies liked by NASA folks; (c) fetches rating tuples using the mids of S8; and (d) finds
the set S11 of mids. One can verify that ξ0(D) = Q0(D) for Q0 given in Example 1.1. 2
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Bounded plans. Consider an access schema A over R. A query plan ξ(V,R) is said to
conform to A if (a) for each fetch(X ∈ Sj , R, Y ) operation in ξ, there exists an access
constraint R(X → Y ′, N) in A such that Y ⊆ X ∪Y ′, and (b) there exists a constant Nξ
such that for all instances D |= A of R, |Dξ| 6 Nξ.

That is, ξ can access cached views, and fetch Dξ from D controlled by access schema
A. Plan ξ tells us how to retrieve Dξ such that ξ(D) is computed by using the data in
Dξ and V(D) only. Better still, Dξ is bounded: |Dξ| is decided by Q and constants N in
A only, and is independent of possibly big |D|. The time for identifying and fetching Dξ

is also independent of |D| (assuming that given an X-value ā, it takes O(N) time to
fetch DR:XY (X = ā) from the instance D of R in D, via the index for R(X → Y,N)).

Given a natural number M , we say that ξ(V,R) is M -bounded for query Q using
V under A if (a) ξ conforms to A, (b) the size of ξ is at most M , (c) for all D |= A,
Q(D) = ξ(D), i.e., Q is equivalent to ξ on all instances D |= A, and (d) ξ only uses
constants from Q. If these hold, then we write ξ(Q,V,R) to indicate that ξ answers Q.

If ξ(Q,V,R) is M -bounded under A, then for all datasets D that satisfy A, we can
efficiently answer Q in D by carrying out ξ and accessing a bounded amount of data
from D in addition to cached views V(D), as opposed to Q(D) that accesses D only.

Example 2.2. Plan ξ0 shown in Fig. 1 is 11-bounded for Q0 using V1 under A0.
Indeed, (a) both fetch operations (S4 and S9) are controlled by the access constraints
of A0, and (b) for any instance D |= A0 of R0, ξ0 accesses at most 2N0 tuples from D,
where N0 is the constant in ϕ1 of A0, since |S4| 6 N0 by ϕ1, and |S9| 6 N0 by S8 ⊆ S4

and constraint ϕ2 on rating in A0; and (c) eleven operations are conducted in total.
Observe that rating tuples in D are fetched by using S8, which is obtained by rela-

tional operations on V1(D) and S4. While V1 is not boundedly evaluable under A0, the
amount of data fetched from D is independent of |D|. 2

Bounded query rewriting (revisited). We conclude this section by rephrasing bounded
query rewriting in terms of query plans. Consider a query Q in a language L, a set V of
L-definable views, and an access schema A, all defined over the same database schema
R. For a bound M , it is readily verified that Q has an M -bounded rewriting in L using
V under A if it has an M -bounded query plan ξ(Q,V,R) under A such that ξ is a query
plan in L, i.e., in each label Si = δi of ξ,

— if L is CQ, then δi is a fetch, π, σ, × or ρ operation;
— if L is UCQ, δi can be fetch, π, σ,×, ρ or ∪, and for any node labeled ∪, all its ancestors

in the tree Tξ of ξ are also labeled with ∪; that is, ∪ is at “the top level” only;
— if L is ∃FO+, then δi is fetch, π, σ, ×, ∪ or ρ; and
— if L is FO, δi can be fetch, π, σ, ×, ∪, \ or ρ.

One can verify that if ξ is a plan in L, then there exists a query Qξ in L such that
for all instances D of R, ξ(D) = Qξ(D), and the size |Qξ| of Qξ is linear in the size of ξ.
Such query Qξ is unique up to equivalence. We refer to Qξ as the query expressed by ξ.
Both ξ and Qξ may access V(D), and ξ(D) = Qξ(D) for all D, either D |= A or not.

Example 2.3. The CQ Q0 of Example 1.1 has an 11-bounded rewriting in CQ using
V1 under A0. Indeed, ξ0 of Fig. 1 is such a bounded plan, which expresses

Qξ(mid) = ∃ym
(
movie(mid, ym, “Universal”, “2014”) ∧ V1(mid) ∧ rating(mid, 5)

)
.

It is a rewriting of Q0 using V1 in CQ. 2
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A:8 Bounded Query Rewriting Using Views

For the converse, if Q is a query in L using L-definable views V, then syntactic safety
conditions on Q are required to ensure that there is a query plan ξQ in L such that
ξQ(D,V(D)) = Q(D,V(D)). We refer to Chapter 5 of [Abiteboul et al. 1995] for details
on safety. We will come back to this issue in Section 5 when we present a syntactic
fragment for bounded rewriting of FO queries using views under access constraints.
Notations used in this paper are summarized in Table II in the electronic appendix.

3. DECIDING BOUNDED REWRITING

To make effective use of bounded rewriting, we need to settle the bounded rewriting
problem, denoted by VBRP(L) for a query language L and stated as follows.

— INPUT: A database schema R, a natural number M (in unary), an access schema
A, a query Q ∈ L and a set V of L-definable views all defined on R.

— QUESTION: Under A, does Q have an M -bounded rewriting in L using V?

The problem VBRP(L) has, however, high complexity and can be even undecidable.

THEOREM 3.1. Problem VBRP(L) is

(1) Σp3-complete when L is CQ, UCQ or ∃FO+; and
(2) undecidable when L is FO. 2

Below we first reveal the inherent complexity of VBRP(L) by studying problems em-
bedded in it, and prove Theorem 3.1 for various L (Section 3.1). We then investigate
the impact of parameters R, A, V and M on the complexity of VBRP(L) (Section 3.2).

3.1. The Bounded Rewriting Problem

To understand where the complexity of VBRP(L) arises, consider a problem embedded
in it. Given an access schema A, a query Q, a set V of views, and a query plan ξ of
length M , it is to decide whether ξ is a bounded plan for Q using V under A. This
requires that we check the following: (a) Is the query Qξ expressed by ξ equivalent to
Q under A? (b) Does ξ conform to A? None of these questions is trivial. To simplify the
discussion, we focus on CQ for our examples.

A-equivalence. Consider a database schema R and two queries Q1 and Q2 defined
overR. Under an access schemaA overR, we say thatQ1 isA-contained inQ2, denoted
by Q1 vA Q2, if for all instances D of R that satisfy A, Q1(D) ⊆ Q2(D). We say that Q1

and Q2 are A-equivalent, denoted by Q1 ≡A Q2, if Q1 vA Q2 and Q2 vA Q1.
This is a notion weaker than the conventional notion of query equivalence Q1 ≡ Q2.

The latter is to decide whether for all instances D of R, Q1(D) = Q2(D), regardless of
whether D |= A. Indeed, if Q1 ≡ Q2 then Q1 ≡A Q2, but the converse does not hold.
It is known that query equivalence for CQ is NP-complete [Chandra and Merlin 1977].
In contrast, it has been shown that A-equivalence is Πp

2-complete for CQ [Fan et al.
2015]. We show below that the upper bound remains valid for ∃FO+.

LEMMA 3.2 [Fan et al. 2015]: Given access schema A, it is Πp
2-complete to decide

whether Q1 ≡A Q2 and Q1 vA Q2, for queries Q1 and Q2 in CQ, UCQ or ∃FO+. 2

Proof: Since it has been proven that it is Πp
2-hard to decide whether Q1 ≡A Q2 and

Q1 vA Q2 for CQ in [Fan et al. 2015], we only need to give an Σp2 algorithm to check
whether Q1 6≡A Q2 for ∃FO+(similarly for Q1 6vA Q2). The algorithm works as follows.
(1) guess a disjunction Q1

1 of Q1, a disjunction Q1
2 of Q2, a valuation ν1 of the tableau

representation (TQ1
1
, ū) of Q1

1, and a valuation ν2 of the tableau (TQ1
2
, ū) of Q1

2;
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(2) check whether ν1(TQ1
1
) 6|= A or ν2(TQ1

2
) 6|= A; if so, reject the current guess; other-

wise, continue;
(3) check for all disjunctions Q2

2 of Q2, whether ν1(ū) 6∈ Q2
2(ν1(TQ1

1
)); if so, return true;

(4) check for all disjunctions Q2
1 of Q1, whether ν2(ū) 6∈ Q2

1(ν2(TQ1
2
)); if so, return true.

The tableau representation of a CQ Q(x̄) is of the form (TQ, ū), where TQ is an “in-
stance” of R obtained by taking all relation atoms in Q and (transitively) equating
variables and constants as specified in the equality atoms in Q; the summary ū of the
tableau is obtained from x̄ by equating variables and constants as described.

The correctness of the algorithm follows from the semantics of Q1 ≡A Q2. For the
complexity of the algorithm, step (2) is in PTIME, which follows from the definition
of the access schema. Step (3) is in coNP, since we can check whether there exists a
disjunction Q2

2 of Q2 such that ν1(ū) ∈ Q2
2(ν1(TQ1

1
)) as follows: guess a disjunction Q2

2 of
Q2 and a homomorphism h from Q2

2 to ν1(TQ1
1
), and check whether ν1(ū) ∈ Q2

2(ν1(TQ1
1
));

if so, return true; otherwise, reject the guess. Similarly, step (4) is also in coNP. Hence
the algorithm is in NPcoNP. That is, checking whether Q1 ≡A Q2 is in Πp

2 for ∃FO+. 2

Coming back to VBRP, for a query plan ξ and a query Q, we need to check whether
ξ is a query plan for Q, i.e., whether Qξ ≡A Q, where Qξ is the query expressed by ξ.
This step is Πp

2-hard for CQ, and is undecidable when it comes to FO.

Bounded output. Another complication is introduced by views. To decide whether
a query plan ξ is bounded for a query Q using V under A, we need to verify that ξ
conforms to A. This may require to check whether a view V ∈ V has “bounded output”.

Example 3.3. Recall schema R0, query Q0, and access schema A0 of Example 1.1.
(a) Suppose that instead of V1, a CQ view V2 is given:

V2(pid) = ∃x′p person(pid, x′p, “NASA”).
Given an instance D of R0, V2(D) consists of people who work at NASA. Extend A0

to A1 by including ϕ3 = like((pid, id) → (pid, id, type), 1), i.e., (pid, id) is a key of relation
like. Then Q0 has a rewriting Q2 using V2:

Q2(mid) = ∃xp, ym
(
V2(xp) ∧ like(xp, mid, “movie”) ∧
movie(mid, ym, “Universal”, “2014”) ∧ rating(mid, 5)

)
.

One can verify that Q2 is a bounded rewriting of Q0 using V2 under A1 if and only if
there exists a constant N1 such that for all instances D of R, if D |= A1, then |V2(D)| 6
N1; that is, NASA has at most N1 employees. For if it holds, then we can extract a set S
of at most N0 mids by using constraint ϕ1 of A1 on movie, and select pairs (pid,mid) from
V2(D) × S that are in a tuple (pid,mid, “movie”) in the like relation, by making use of
access constraint ϕ3 given above. For each mid that passes the test, we check its rating
via the index in ϕ2, by accessing at most 1 tuple in rating. Putting these together, we
access at most N1 ·N0 + 2 ·N0 tuples from D. Conversely, if the output of V2(D) is not
bounded, then Q has no bounded rewriting using V2 under A1.

(b) In contrast, when rewriting some queries, we do not always have to check whether
a view has bounded output. As an example, consider a rewriting Q(x) = Q3(x) ∧ V3(x)
of query Q over a database schema R, where V3 is a view, and Q3 has a bounded query
plan under an access schema A and does not use any view. Then Q has a bounded
rewriting under A no matter whether |V3(D)| is bounded or not for instances D of R.
Indeed, all fetching operations are conducted by Q3; for each x-value a computed by
Q3(x), we only need to validate whether a ∈ V3(D). This involves only cached V3(D),
without accessing D, and hence, |V3(D)| does not need to be bounded. 2
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To check whether views have a bounded output when it is necessary, we study the
bounded output problem, denoted by BOP(L) and stated as follows:

— Input: A database schema R, an access schema A and a query V ∈ L, both over R.
— QUESTION: Is there a constant N such that for all instances D |= A of R, |V (D)| 6
N?

The analysis of the bounded output problem is also nontrivial.

THEOREM 3.4. Problem BOP(L) is

(1) coNP-complete when L is CQ, UCQ or ∃FO+; and
(2) undecidable when L is FO.
When database schema R and access schema A are both fixed, BOP remains coNP-hard
for CQ, UCQ and ∃FO+, and is still undecidable for FO. 2

Proof: We first show that BOP is coNP-complete for CQ, UCQ and ∃FO+, and then prove
that it is undecidable for FO.

(1) CQ, UCQ and ∃FO+. We show that BOP is coNP-hard for CQ and is in coNP for ∃FO+.
The proof is based on a characterization of bounded-output ∃FO+queries, i.e., a query
Q in ∃FO+for which there exists a constant N such that |Q(D)| 6 N for any D |= A. To
introduce the characterization, we first present two notations.

Notations. When considering a CQ Q posed on instances that satisfy a set A of access
constraints, it will often be convenient to regard Q as an UCQ consisting of special
CQ’s Qe, referred to as the element queries of Q under A. The idea of element queries
was mentioned in [Fan et al. 2015] but was not explored there. To define element
queries we use the tableau formalism of CQ (cf. [Abiteboul et al. 1995], Chapter 4). As
remarked earlier, the tableau representation of a CQ Q(x̄) is of the form (TQ, ū).

Consider an instance D of R such that D |= A. Let ā ∈ Q(D). This implies that
there exists a homomorphism h : TQ → D such that h(ū) = ā and h(TQ) |= A. It is
easy to verify that there is a conjunction ψ of equality conditions among variables and
constants in Q such that when considering Qe = Q ∧ ψ, we have that for the tableau
(TQe , ū

′) ofQe, (i) h : TQe → D is a homomorphism such that h(ū′) = ā; and (ii) TQe |= A,
where we view TQe as an instance ofR, by treating variables as constants. We call such
Qe’s element queries and say that Qe satisfies A because TQe |= A. In general, we say
that a CQ Q satisfies A if its tableau satisfies A. Observe that any element query Qe of
Q is contained in Q. Indeed, any Qe is obtained from Q by adding equality conditions
and Qe is therefore more specific than Q. Conversely, Q is A-contained in the union of
all of its element queries. That is, Q vA Qe1 ∪ · · · ∪ Qen . Indeed, given an instance D
of R, for any ā ∈ Q(D) there exists an element query Qe such that ā ∈ Qe(D). Hence,
Q ≡A Qe1 ∪ · · · ∪Qen .

Note that Q has at most exponentially many element queries under A, since there
are O(2|Q|) possible ψ. Furthermore, an element query may not be satisfiable. Indeed,
this happens when the conditions in ψ equate two different constants in Qe = Q ∧ ψ.
The satisfiability of element queries can be checked in PTIME. Therefore, in the sequel
we consider w.l.o.g. only satisfiable element queries.

For instance, consider R with a single relation R(X,Y ), query Q(x) = R(y, x1) ∧
R(y, x2) ∧ R(y, x3) ∧ R(x3, x) ∧ (x1 = 1) ∧ (x2 = 2) ∧ (y = k), for a constant k and
access schema A = {R(X → Y, 2)}. Example element queries of Q include Q1(x) =
Q(x) ∧ (x1 = x2), Q2(x) = Q(x) ∧ (x2 = x3), Q3(x) = Q(x) ∧ (x1 = x3) and Q4(x) =
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Q(x) ∧ ((x1 = x3) ∧ (x1 = x2) ∧ (x2 = x3) ∧ (x3 = x)). Note that Q1 and Q4 are not
satisfiable.

As we will show below, element queries also make the bounded output analysis eas-
ier. When the tableau of Q does not satisfy A, it is unclear what variables in Q have a
bound on their valuations. Taking Q(x) above as an example, we do not know whether
there exists a bound on the valuation of x3. Indeed, the access constraints only bound
variables in atoms that occur in the Y attributes of R. In contrast, when considering
element queries Q2(x) and Q3(x), we can easily see the bounds on valuations of x3.
Indeed, x3 is bound to constant “2” in Q2 and to constant “1” in Q3.

LetQ be a CQ that satisfiesA. For example,Q could be an element query. To simplify
the discussion, we assume w.l.o.g. that relation atoms in Q do not contain constants.
Instead, all constants appear in equality conditions of the form x = a for some variable
x and constant a. We denote by cvars(Q) the set of constant variables in Q that are
(transitively) equal to some constant due to the equality conditions inQ, and by vars(Q)
the set of remaining variables in Q, i.e., those that are not equal to some constant.

We also need a notion of covered variables [Fan et al. 2015]. We define the set of
covered variables of Q under A, denoted by cov(Q,A), and computed as follows:

(1) cov0(Q,A) := ∅;
(2) For i > 0, do the following steps until no further variables in vars(Q) can be added:

• covi(Q,A) := covi−1(Q,A);
• if there exist an atom R(x̄, ȳ, z̄) in Q and an access constraint R(X → Y,N) in
A, where x̄ corresponds to X and ȳ corresponds to Y , and if all non-constant
variables in x̄ are in covi−1(Q,A), then covi(Q,A) is expanded by including all
the non-constant variables in ȳ that are not already in covi−1(Q,A).

We denote by cov(Q,A) the result set of the process. Note that cov(Q,A) consists of
non-constant variables only. Indeed, constant variables have bounded output (as they
equal some constant) and hence do not affect the boundedness of a query.

Example 3.5. Consider the above element query Q2(x) = Q(x) ∧ (x2 = x3). The
constant variables in cvars(Q2) are y, x1, x2, x3. The only non-constant variable is x,
i.e., vars(Q2) = {x}. Let us compute cov(Q2,A). Initially, cov0(Q2,A) := ∅. The only
atom in Q2 that contains the non-constant variable x is R(x3, x). If we consider access
constraint R(X → Y, 2) ∈ A, all non-constant variables in R(x3, x) corresponding to the
X-attribute belong to cov0(Q2,A). Indeed, no non-constant variables are present in the
X-attribute of atom R(x3, x). Hence, cov1(Q2,A) = {x}, i.e., the non-constant variable
x is added. Since x is the only variable in vars(Q2), cov(Q2,A) = cov1(Q2,A) = {x}. 2

Characterizations. Given these, we start with bounded-output queries that satisfy A.

LEMMA 3.6. A CQ query Q(v̄) that satisfies A has bounded output if and only if all
non-constant variables in v̄ belong to cov(Q,A). 2

Proof: (⇐) First assume that all non-constant variables in v̄ belong to cov(Q,A).
Let Q′(ū) be the CQ obtained from Q(v̄) by removing all existential quantifiers, i.e.,
Q(v̄) = ∃z̄ Q′(ū), where z̄ consists of all variables (constant or non-constant) in ū \ v̄. It
is easy to see that cov(Q,A) = cov(Q′,A). Indeed, no distinction is made between free
and quantified variables in the definition of covered variables of a query under access
constraints. We show that for all variables x ∈ cov(Q′,A), Q′′x(x) = ∃ū \ {x}Q′(ū) has
bounded output, by induction on the computation of cov(Q′,A). This suffices, for if the
statement holds, then Q(v̄) has bounded output, since Q(v̄) = ∃z̄ Q′(ū) and Q′(ū) is
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contained in Q′′u1
(u1) ∧ · · · ∧ Q′′uk(uk) ∧ uk+1 = ck+1 ∧ . . . ∧ un = cn, where (u1, . . . , uk)

are non-constant variables in ū, “specialized query” Q′′uj (uj) takes parameter uj , and
for each i ∈ [k + 1, n], ui is a constant variable in ū that is equal to constant ci.

For the base case, i = 0 and cov0(Q′,A) = ∅. Clearly, ∃ū Q′(ū) is a Boolean query and
hence has bounded output.

Assume that the induction hypothesis holds for any j ∈ [0, i − 1]. That is, for any
variable y ∈ covi−1(Q′,A), Q′′y(y) = ∃ū \ {y}Q′(ū) has bounded output.

We next show that the statement holds for each variable in covi(Q
′,A). Let y be a

variable in covi(Q
′,A) \ covi−1(Q′,A). Suppose that y is added to covi(Q

′,A) via access
constraint R(X → Y,N) ∈ A and atom R(x̄, ȳ, z̄) in Q′. Then y ∈ ȳ, and any (non-
constant) variable x ∈ x̄ must be in covi−1(Q′,A). From the induction hypothesis we
know that Q′′x(x) = ∃ū \ {x}Q′(ū) has bounded output. That is, there exists a natural
number Nx such that for any instance D satisfying A, |Q′′x(D)| 6 Nx. Moreover, since
∃ū \ x̄ Q′(ū) is contained in Q′′′(x̄) =

∧
xi∈x̄Q

′′
xi(xi), and for any D |= A, |Q′′′(D)| 6M =∏

xi∈x̄Nxi , we can see that ∃ū \ x̄ Q′(ū) also has bounded output. From the definition
of access constraints, we can further deduce that ∃ū \ ȳ Q′(ū) generates at most M ×N
tuples when evaluated onD. In particular, this holds forQ′′y(y) = ∃ū\{y}Q′(ū); thus the
statement also holds for y. The argument works for any y in covi(Q

′,A) \ covi−1(Q′,A).
Hence for any y ∈ covi(Q

′,A), Q′′y(y) = ∃ū \ {y}Q′(ū) has bounded output.

(⇒) Conversely, assume that there exists a (non-constant) variable v ∈ v̄ such that
v 6∈ cov(Q,A). Note that v is a free variable in Q′(v̄). Let Q′(v) = ∃v̄ \ {v}Q(v̄). It
suffices to show that Q′ does not have bounded output. We have that (v) ∈ Q′(TQ),
where (TQ, ūQ) is the tableau representation of Q. We next construct instances DK

of R for all natural numbers K > 0 such that |Q′(TQ ∪ DK)| > K × |Q′(TQ)| and
TQ ∪DK |= A. Hence, Q′ (and thus also Q) does not have bounded output.

We illustrate the construction of DK for K = 1. Let D1 consist of a copy of TQ.
That is, D1 is TQ except that every variable z that is not in cov(Q,A) is replaced by a
primed copy z′. Note that when considering tableaux, we do not need to differentiate
between constant and non-constant variables, since constant variables correspond to
constants in the tableau representation. We can show that {(v), (v′)} ⊆ Q′(TQ ∪ D1),
since (v) ∈ Q′(TQ) and v 6∈ cov(Q,A). Indeed, because (v) ∈ Q′(TQ), there exists a
homomorphism h from Q′ to TQ. Then we can obtain a homomorphism h1 from Q′ to
D1 as follows: for each variable x in Q′, if h(x) ∈ cov(Q,A) or h(x) is a constant, then
h1(x) = h(x); otherwise h(x) is a variable z such that z 6∈ cov(Q,A), and we define
h1(x) = z′, the primed copy of z. We can verify that h1 is a homomorphism of Q′ to D1.
Since (v) ∈ Q′(TQ) and v 6∈ cov(Q,A), we know that (v′) ∈ Q′(D1). By the monotonicity
of CQ, we have that {(v), (v′)} ⊆ Q′(TQ∪D1). Thus |Q′(TQ∪D1)| > |Q′(TQ)|. It remains
to show that TQ ∪ D1 satisfies A. We show this by contradiction. Suppose that (TQ ∪
D1) 6|= R(X → Y,N) for some access constraint R(X → Y,N) in A. This means that
there exist N + 1 tuples t1, . . . , tN+1 in TQ ∪ D1 such that t1[X] = · · · = tN+1[X], but
ti[Y ] 6= tj [Y ] for all i 6= j, i, j ∈ [1, N + 1]. We distinguish the following three cases:

(a) When t1[X] consists of constants and variables in cov(Q,A). In this case, each
ti[Y ] also consists of constants and variables in cov(Q,A) by the access con-
straint R(X → Y,N) and the computation of cov(Q,A). Since all variables in
ti[X ∪ Y ] (i ∈ [1, N + 1]) are contained in cov(Q,A), these variables are also in
TQ. By the construction of TQ ∪ D1, there must exist N + 1 tuples s1, . . . , sN+1

in TQ such that si[X ∪ Y ] = ti[X ∪ Y ] for i ∈ [1, N + 1]. This, however, contra-
dicts the assumption that TQ |= A. Note that by the construction of D1, there
also exist N + 1 tuples s′1, . . . , s

′
N+1 in D1 such that s′i[X ∪ Y ] = ti[X ∪ Y ] for
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I01 =
A
1
0

I∨ =

B A1 A2

0 0 0
1 0 1
1 1 0
1 1 1

I∧ =

B A1 A2

0 0 0
0 0 1
0 1 0
1 1 1

I¬ =
A Ā
0 1
1 0

Fig. 2. Relation instances used in the proof of Theorem 3.4.

i ∈ [1, N + 1]. For example, consider database schema R = {R(X,Y, Z)}, access
schema A = {R((X,Y ) → Z, 1)}, and Q = R(1, 1, z1) ∧ R(1, z1, z2) ∧ R(1, z3, z4).
Then cov(Q,A) = {z1, z2}, D1 = {R(1, 1, z1), R(1, z1, z2), R(1, z′3, z

′
4)}, and TQ ∪D1 =

{R(1, 1, z1), R(1, z1, z2), R(1, z3, z4), R(1, z′3, z
′
4)}. Since all variables in R(1, z1, z2) are

in cov(Q,A), TQ contains the tuple R(1, z1, z2), and D1 also contains R(1, z1, z2).
(b) When t1[X] consists of constants and variables in TQ, but at least one of these

variables is not in cov(Q,A). By the construction of TQ ∪D1, only tuples in TQ can
contain variables, which are in TQ, but are not in cov(Q,A), then t1, . . . , tN+1 are
tuples in TQ. This contradicts again the assumption that TQ |= A. For the example
in case (a), since z3, z4 6∈ cov(Q,A), only TQ contains the tuple R(1, z3, z4).

(c) When t1[X] contains a primed copy x′ of a variable x in TQ. In this case, t1, . . . , tN+1

are tuples in D1. Similar to case (a), we can prove that D1 6|= A. But since D1 is a
copy of TQ, where every variable z that is not in cov(Q,A) is replaced by a primed
copy z′, we have that D1 |= A, a contradiction. For the example in case (a), since
the primed variables z′3 and z′4 can only appear in D1, R(1, z′3, z

′
4) only exists in D1.

Putting these together, we can conclude that TQ ∪D1 |= A.

For K > 1, DK is defined to consist of K distinct copies of TQ. Along the same
lines, one can verify that Q′(TQ ∪DK) contains at least K distinct copies of v, and thus
|Q′(TQ ∪DK)| > K × |Q′(TQ)|. Moreover, TQ ∪DK |= A.

Hence, if Q(ū) has bounded output, then each variable u ∈ ū must be in cov(Q,A). 2

From Lemma 3.6 it follows that we can characterize bounded-output queries in
∃FO+even when they do not necessarily satisfy A. Indeed, recall from Section 2 that
every ∃FO+query Q is equivalent to a UCQ query Q1 ∪ · · · ∪ Qn. Furthermore, each
CQ Qi is A-equivalent to a UCQ consisting of Qi’s element queries. That is, Q ≡A⋃
i∈[1,n](Q

e
i,1 ∪ · · · ∪ Qei,ni) where Qi ≡A Qei,1 ∪ · · · ∪ Qei,ni and each Qei,j (j ∈ [1, ni])

is an element query of Qi under A. Obviously, Q has bounded output if and only if
each element query Qei,j has bounded output. Furthermore, by definition, each element
query Qei,j is a CQ that satisfies A. Thus the characterization below is immediate.

LEMMA 3.7. For a query Q(x̄) in CQ (UCQ, ∃FO+) and an access schemaA, Q(x̄) has
bounded output if and only if for every element query Qe(x̄′) of Q(x̄), all (non-constant)
variables in x̄′ belong to cov(Qe,A). 2

We are now ready to show that BOP is coNP-hard for CQ and is in coNP for ∃FO+.

Lower bound. We show that BOP is coNP-hard for CQ by reduction from the comple-
ment of the 3SAT problem. The 3SAT problem is to decide, given a propositional formula
ψ = C1∧· · ·∧Cr defined over variables X = {x1, . . . , xm }, whether there exists a truth
assignment for X that satisfies ψ. Here for each i ∈ [1, r], clause Ci is of the form
`i1 ∨ `i2 ∨ `i3, and for each j ∈ [1, 3], literal `ij is either a variable xl in X or the negation
¬xl of xl. It is known that 3SAT is NP-complete (cf. [Garey and Johnson 1979]).
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Given an instance ψ of 3SAT, we define a relational schema R, an access schema A,
and a CQ query Q(w) such that Q(w) has bounded output if and only if ψ is false.

(a) The database schema R contains the following two kinds of relation schemas: (i)
R01(A), R∨(B,A1, A2), R∧(B,A1, A2), and R¬(A, Ā), to store constant relations encod-
ing truth values, disjunction, conjunction and negation of variables, respectively, as
shown in Figure 2; and (ii) Ro(I,X) to constrain the output.

(b) The access schema A contains (i) four constraints to ensure valid instances of Fig-
ure 2: R01(∅ → A, 2), R∨(∅ → (B,A1, A2), 4), R∧(∅ → (B,A1, A2), 4), R¬(∅ → (A, Ā), 2);
intuitively, they constrain the number of tuples in the corresponding instances; and
(ii) one access constraint Ro(I → X, 2) to bound the output.

(c) The query Q in CQ is defined as follows:

Q(w) = ∃x̄, w1, k

(
Qc()∧QX(x̄)∧Qψ(x̄, w1)∧R01(w1)∧Ro(k, 1)∧Ro(k,w1)∧Ro(k,w)

)
,

where Qc, QX , and Qψ are in CQ. Query Qc is to ensure that the instances of R01,
R∨, R∧, and R¬ contain all the tuples shown in Figure 2. For example, to include the
two tuples in I01, Qc contains R01(0) ∧ R01(1). Together with the constraints of A, this
implies that whenever Q(D) 6= ∅ for an instance D |= A, Qc(D) = {()} and hence D
consists of the instances I01, I∨, I∧, I¬ of Figure 2, and a non-empty instance Io of Ro.

Query QX(x̄) is to ensure that x̄ is a truth-assignment of X. From the definition of
Qc and the constraint R01(∅ → A, 2), QX(x̄) can be defined as

∧
16i6m

R01(xi).

Query Qψ(x̄, w1) is defined such that when given a truth-assignment µX encoded by
x̄, it sets w1 = 1 if ψ(µX) is true and sets w1 = 0 otherwise. It is easily verified that Qψ
can be expressed in CQ by leveraging R01, R∨, R∧ and R¬.

Finally, consider the sub-query Ro(k, 1)∧Ro(k,w1)∧Ro(k,w). If Qψ sets w1 = 1 then
we know from Ro(I → X, 2) ∈ A that w can be any value. In contrast, if Qψ sets w1 = 0,
then w can only be 0 or 1. In other words, w is bounded if and only if w1 = 0.

The correctness of the reduction follows from Lemmas 3.6 and 3.7. More specifically,
we show that the variable w is constant in every element query Qe(w) of Q(w) if and
only if ψ is not satisfiable. To see this, we need to inspect element queries ofQ(w). First,
observe that for the sub-query R01(0) ∧R01(1) ∧

∧
16i6m

R01(xi) to satisfy R01(∅ → A, 2),

every element query Qe of Q must set each xi either to 0 or 1. That is, every element
query Qe encodes a truth assignment µX of X. Similarly, by the access constraints
on R∨, R∧ and R¬ and the presence of Qc, in every element query Qe, Qψ correctly
evaluates ψ for the truth assignment µX encoded in Qe. Moreover, Ro(I → X, 2) cannot
be used to put w in cov(Qe,A), since the variable k cannot be in cov(Qe,A) given the
access constraints. However, in Qe either Ro(k, 1) and Ro(k,w) co-occur (when w1 =
1) or Ro(k, 1) and Ro(k, 0) co-occur (when w1 = 0). In the latter case, w has become
a constant variable; thus Lemma 3.6 applies and Qe(w) has bounded output. In the
former case, w remains a non-constant variable that is not in cov(Qe,A). Hence, when
w1 = 1 is in Qe, Qe is not bounded. Thus Qe(w) has bounded output if and only if the
truth assignment µX encoded in Qe makes ψ false. As a consequence, Q has bounded
output if and only if ψ is not satisfiable.

Note that in the reduction above, R and A are fixed, i.e., they do not depend on ψ.

Upper bound. We give an NP algorithm to check the complement of BOP for ∃FO+. From
Lemma 3.7, we know that given a query Q(x̄) in ∃FO+, to check whether Q(x̄) does not
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have bounded output, we only need to guess an element query Qe(x̄
′) of Q in which

there is a variable x in x̄′ that does not belong to cov(Qe,A). Note that Q is equivalent
to a UCQ Q∨, and an element query Qe(x̄

′) of Q is an element query of a disjunct of
Q∨. The NP algorithm thus (i) guesses disjunctions in Q(x̄) to obtain a CQ query Q′(x̄);
and (ii) guesses a valuation ν of Q′ to get a candidate element query ν(Q′). It then
checks whether ν(Q′) |= A and whether there exists a variable x such that x ∈ ν(x̄)
but x 6∈ cov(ν(Q′),A). It is easy to show that all element queries can be obtained in this
way and that computing cov(ν(Q′),A) is in PTIME. If the guesses pass this test then
we have found a counterexample for Q to be of bounded output. Otherwise, we reject
the guess. Hence, this algorithm decides whether Q has no bounded output and it is in
NP. We can thus conclude that deciding BOP is in coNP for ∃FO+.

(2) FO. We show that BOP is undecidable for FO queries by reduction from the com-
plement of the satisfiability problem for FO queries, which is undecidable (cf. [Di Paola
1969]). The satisfiability problem for FO is to decide, given an FO query Q, whether
there exists a database D such that Q(D) 6= ∅.

Given an FO query Q1, we construct a relational schema R, an access schema A,
and an FO query Q such that Q1 is not satisfiable if and only if Q has bounded output.
More specifically, (1) the relational schema R contains all relation names used by Q1,
and one new unary relation schema R(X); (2) A = ∅; and (3) query Q is defined as
Q(x) = R(x) ∧ Q1(). Then Q1 is not satisfiable if and only if there exists a constant N
such that over instances D of R, |Q(D)| 6 N . Indeed, since R(x) is not bounded, Q(x)
is bounded only when Q1() returns empty, i.e., when Q1 is not satisfiable.

The undecidability remains intact when R and A are fixed. Indeed, the satisfiability
problem for FO queries over a fixed relational schema is still undecidable. It is verified
by reduction from the Post Correspondence Problem, and the reduction uses a database
schema consisting of two fixed relation schemas (Proof of Theorem 6.3.1 in [Abiteboul
et al. 1995]). Hence the proof for BOP(FO) remains valid under fixed R and A = ∅. 2

Using Lemma 3.2 and Theorem 3.4, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. We first study VBRP for CQ, UCQ and ∃FO+, and then for FO.

(1) When L is CQ, UCQ, or ∃FO+. It suffices to show that VBRP is Σp
3-hard for CQ, and

that VBRP is in Σp
3 for ∃FO+.

Lower bound. We show that VBRP(CQ) is Σp
3-hard by reduction from the ∃∗∀∗∃∗3CNF

problem, which is Σp
3-complete [Stockmeyer 1976]. The latter problem is to decide,

given a sentence φ = ∃X∀Y ∃Z ψ(X,Y, Z), whether φ is true, where X = {x1, . . . , xm},
Y = {y1, . . . , yn}, Z = {z1, . . . , zp}, and ψ is a 3SAT instance. Assume w.l.o.g. that m > 2.

Given an instance φ = ∃X∀Y ∃Z ψ(X,Y, Z), we define a relational schema R, an
access schema A, a CQ query Q, a set V of CQ views, and a natural number M , such
that Q has an M -bounded rewriting in CQ using V under A if and only if φ is true.

(1) The relational schema R consists of the following relation schemas: (a) R01(A),
R∨(B,A1, A2), R∧(B,A1, A2), and R¬(A, Ā) are to encode the Boolean domain and op-
erations, which we have seen in the proof of Theorem 3.4, with intended instances
shown in Figure 2; (b) RY (I1, I2, Y ) is to store one truth-assignment of Y ; (c) Ro(I, Y )
is to store a particular tuple, which the query plans can check only via fetch operations;
and (d) RI(I,K) is to store the keys for the relation Ro.

(2) The access schema A consists of (a) four access constraints, similar to those used
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in the proof of Theorem 3.4, to ensure that R01, R∨, R∧ and R¬ encode Boolean do-
main and relations: R01(∅ → A, 2), R∨(A1 → (A2, B), 2), R∧((A1, A2) → B, 1), and
R¬(A → Ā, 1); (b) an access constraint RY ((I1, I2) → Y, 1) to ensure that we only han-
dle one truth-assignment of Y at a time; and (c) two access constraints Ro(I → Y, 1)
and RI(I → K, 1) for Ro and RI , respectively, stating that I is a key for Ro and RI .

It should be noted that the access constraints for R∨ and R∧ are different. In R∨, we
require that when the values corresponding to A1 are bounded, the values correspond-
ing to A2 andB are bounded. While in R∧, we require that only when both of the values
corresponding to A1 and A2 are bounded, the values corresponding to B are bounded.
As will be elaborated shortly, this subtle difference is important for our construction.

(3) The query Q in CQ is defined as follows:

Q() = ∃ȳ, k
(
Qc() ∧QY (ȳ) ∧ (

∧
16j6n

RY (j, 1, yj)) ∧RI(y1, k) ∧Ro(k, 1)

)
.

Here Qc is the same CQ as its counterpart given in the proof of Theorem 3.4, to ensure
that the instances of R01, R∨, R∧ and R¬ contain all the tuples shown in Figure 2.
Query QY (ȳ) is defined as

∧
16i6n

R01(yi). It is easy to see that for all D |= A, if Q(D) 6= ∅,

then the tuples in D corresponding to RY encode a valid truth-assignment of Y .

(4) The set V of CQ views consists of a single view V :

V (x̄, k) = ∃w, x̄′, ȳ, z̄
(
Qc()∧Q2(w, x̄, x̄′)∧Q3(w, ȳ, z̄)∧Q4(ȳ, w, k)∧Q5(x̄, w)∧Qψ(x̄′, ȳ, z̄, 1)

)
.

Intuitively, the view is defined in such a way that if a query plan ξ that uses V does not
“fix” the values of x̄, then ξ will not conform to A, since the values that k can take will
not be bounded. Here by fixing values we mean that V appears in the query plan in
the form of σX=c̄(V ), where X are the attributes corresponding to x̄ and c̄ is a constant
tuple. Furthermore, we will see that c̄ must consist of Boolean values for σX=c̄(V ) to
be of use for answering Q. In other words, c̄ encodes a truth-assignment of X.

To construct V in this way, we separate the values of x̄ from k by using a new copy
x̄′ of x̄, which are used in the component queries of V . Moreover, we link the possible
values for k to those of a variable y1, and connect the possible values of y1 to the values
that variable w can take. The latter is shown to be unbounded when x̄ is not fixed.
Hence, when x̄ is not fixed, k will be unbounded.

We next show how this is achieved by detailing each of the sub-queries in V .

(a) Query Qc() is the same as the one in Q (see the proof of Theorem 3.4 for details).

(b) We define Q2(w, x̄, x̄′) =
∧

16i6m
R∧(x′i, w, xi). It is to ensure that if the values of x̄ are

Boolean, then x̄′ and x̄ take the same values. By inspecting instance I∧ of R∧ (shown
in Figure 2), this only holds when w = 1. Indeed, if w = 1, by the access constraint
on R∧ and the presence of Qc() in V , we have that for any D |= A, if Qc(D) 6= ∅
then σA=1(Q2(D)) consists of tuples of the form (1, x̄, x̄), provided that x̄ takes Boolean
values. Here A denotes the first attribute in the result schema of Q2. When either
w = 0 or w and x̄ do not take Boolean values, the access constraint on R∧ only imposes
a cardinality restriction, and the values in x̄′ and x̄ are not necessarily the same.

(c) We define Q3(w, ȳ, z̄) = ∃ȳ′, z̄′
( ∧

16k6n
R∨(y′k, w, yk) ∧

∧
16k6p

R∨(z′k, w, zk)

)
.
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This query is to ensure that if w = 0 or w = 1 then the values of ȳ and z̄ must be
Boolean values as well. As before this is due to the presence of R∨(A1 → (A2, B), 2)
and Qc(). In other words, for any D |= A such that Qc(D) 6= ∅, σA=0/1(Q3(D)) consists
of tuples of the form (0/1, ȳ, z̄), ȳ and z̄ are tuples of Boolean values, and A denotes the
first attribute in the result schema of Q3. If w can take arbitrary values, however, then
the values for ȳ and z̄ are not constrained.

(d) We define Q4(ȳ, w, k) =

( ∧
16j6n

RY (j, w, yj)

)
∧RI(y1, k).

This is to fetch the truth-assignment of Y and the value of k. Since the ȳ values have
to agree with their counterparts in Q3, as argued before for Q3, these values will be
Boolean only when w = 0 or w = 1.Thus only in these cases Q4(D) 6= ∅ implies that a
truth assignment of Y is embedded in D.

(e) Query Qψ(x̄′, ȳ, z̄, 1) is to check whether ψ is true given the values x̄′, ȳ, and z̄. It
makes use ofR01,R∨,R∧ andR¬, and is expressed in CQ (see the proof of Theorem 3.4).
It is only when x̄′, ȳ and z̄ take Boolean values that this query correctly encodes ψ.

(f) The last query Q5(x̄, w) is to ensure that if V (x̄, k) is used in a query plan for Q
and conforms to A, then it can only be used when all variables in x̄ are assigned
a constant Boolean value. Furthermore, when this is the case, w must be 1. As de-
scribed above, this implies that x̄′ = x̄, ȳ and z̄ take Boolean values, and Qψ cor-
rectly evaluates ψ. It is to encode this that we make use of the difference of the
access constraints on R∨ and R∧. Intuitively, the constraint on R∨ is used to check
whether each variable in x̄ takes a constant value, since it only takes the attribute
A1 as input. In contrast, since the access constraint on R∧ takes both A1 and A2

as input, we use it to encode the conjunction of the results of checking each vari-
able in x̄. Query Q5 encodes the tautology

∧
16k6m

(xk ∨ x′′k ∨ ¬x′′k). That is, Q5(x̄, w) =

∃x̄′′, v̄, v̄′, v̄′′, v̄′′′
( ∧

16k6m
(R∨(vk, xk, x

′′
k) ∧R∨(v′′k , vk, v

′
k) ∧R¬(x′′k , v

′
k))

∧R∧(v′′′2 , v
′′
1 , v
′′
2 ) ∧ (

∧
26k6m−2

R∧(v′′′k+1, v
′′′
k , v

′′
k+1)) ∧R∧(w, v′′′m−1, v

′′
m)

)
.

In particular, it encodes the truth value of the tautology in w. Hence, when all vari-
ables involved are Boolean, we necessarily have that w = 1. We argue next that when
considering query plans for Q that involve V (x̄, k), we must call Q5(x̄, w) with Boolean
values for the variables in x̄.

Indeed, first considerD |= A such thatQc(D) 6= ∅ and consider σX=µX (Q5(D)), where
X consists of attributes corresponding to x̄, and µX is a truth-assignment of X. In this
case, the access constraint R∨(A1 → (A2, B), 2) ensures that all the values of x̄′′, v̄, v̄′,
v̄′′, are Boolean. Similarly, R∧((A1, A2) → B, 1) ensures that all values of var(v)′′′ are
Boolean. Moreover, by Qc(D) 6= ∅, the Boolean operations are correctly encoded in D.
Hence, Q5 correctly evaluates the tautology

∧
16k6m

(xk ∨ x′′k ∨ ¬x′′k) and assigns w = 1.

In other words, when all x̄ values are fixed Boolean values in Q5, all previous queries
in V work as desired as these required Boolean values for x̄ and w = 1.

Suppose next that we still fix all x̄ values, but not all of them take Boolean values.
In this case, Q5 requires the existence of certain tuples in the instances of R∨, R∧
or R¬ that are not required by Q. That is, there exists D |= A for which Q(D) 6= ∅ but
Q5(D) = ∅ (and thus V (D) = ∅). Clearly, using V in this way does not help us answerQ.
Hence when all variables in x̄ are fixed, we may assume that these values are Boolean.
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A:18 Bounded Query Rewriting Using Views

It remains to rule out the case when some variables in x̄ are not fixed. Suppose that
we set all variables in x̄ to a Boolean value, except for x1. LetX ′ = X\{x1} and consider
an instance D |= A and σX′=µX′ (Q5)(D) for some truth-assignment µX′ of X ′. Clearly,
the query result contains tuples of the form (a, µX′ , w) for constants a and w. Since a
can be arbitrary, access constraint R∨(A1 → (A2, B), 2) only implies that at most two
tuples s and t in D exist and are associated to R∨ such that s[A1] = t[A1] = a. However,
it does not impose any restrictions on the other values in these two tuples. These values
can thus be non-Boolean. Similarly, R¬(A → Ā, 1) does not impose value restrictions
(except for a cardinality constraint) when R¬(x′′1 , v

′
1) can bind x′′1 and v′1 with arbitrary

values. The same holds for R∧((A1, A2) → B, 1) and R∧(v′′′2 , v
′′
1 , v
′′
2 ). Although v′′2 takes

only Boolean values (recall that we fixed x2 to a Boolean value), v′′1 can be arbitrary
and so can be v′′′2 . A similar argument shows that all v′′′i can be arbitrary and so can be
w. It should be noted that w can take an arbitrary value for any possible binding of x1

to the underlying database. Hence, σX′=µX′ (Q5) does not have bounded output.
For example, for x̄ = (x1, x2), Q5(x̄, w) = ∃x′′1 , x′′2 , v1, v2, v

′
1, v
′
2, v
′′
1 , v
′′
2 R∨(v1, x1, x

′′
1) ∧

R∨(v′′1 , v1, v
′
1) ∧R¬(x′′1 , v

′
1) ∧R∨(v2, x2, x

′′
2) ∧R∨(v′′2 , v2, v

′
2) ∧R¬(x′′2 , v

′
2) ∧R∧(v′′′2 , v

′′
1 , v
′′
2 ) ∧

R∧(w, v′′′1 , v
′′
2 ). When x1 = 1 and x2 is not fixed, we can verify that w is unbounded

as follows. We insert the following tuples into the instance D of R: we add tuples
(a1, a1, a1), . . . , (an, an, an) to I∨, (a1, a1), . . . , (an, an) to I¬, and (a1, 1, a1), . . . , (an, 1, an)
to I∧. Note that we still have that D |= A and moreover, {(1, a1, a1), . . . , (1, an, an)} ⊆
Q5(D). Hence the possible values of w are unbounded. Along the same lines, one can
see that σX′=µX′ (V ) does not have bounded output either and hence, cannot be used in
a query plan that conforms to A. Indeed, this readily follows from Q4, which now can
bind y1 with arbitrary values since RY (1, w, y1) can be mapped to various tuples with
distinct w-values; and similarly RI(y1, k) can be mapped to various tuples, resulting in
an unbounded number of k values.

In summary, Q5 ensures that whenever V appears in a query plan that conforms to
A, it must have all of its x̄ values fixed to some Boolean values.

(5) We set M = 6, i.e., we only allow query plan trees with at most six nodes.

To show the correctness of the reduction, we first argue that if Q has an M -bounded
rewriting using V under A, then this rewriting can only be of a very specific form.
Indeed, since Q(D) depends on the instance D (i.e., for some D, Q(D) = ∅, while for
others Q(D) 6= ∅), the query plan ξ cannot be one of the two trivial plans that always
return ∅ or (). Suppose that the query plan does not use V , then the query plan can only
access the database via fetch operations. However, since Q uses all 7 relation atoms in
R, the query plan must contain at least 7 fetch operations, which exceed the bound
M . Therefore, the query plan has to use V . Furthermore, since V does not contain Ro,
whereas Q(D) depends on the tuples in D corresponding to Ro, the plan ξ needs to
fetch data from Ro. Consider such a fetch operation fetch(I ∈ Sj , Ro, Y ). We distinguish
between the following two cases: (i) Sj is equal to a constant c; or (ii) Sj is the result
of some more complex query plan. Note that case (i) is not helpful for answering Q
as the value k used in the atom Ro(k, 1) in Q is arbitrary and may thus be distinct
from the constant c. We can thus assume that we are in case (ii). Moreover, the atom
Ro(k, 1) in Q asks for a tuple with its second attribute to be set to 1. This requirement
needs to be encoded in plan ξ as well, e.g., by means of a constant selection condition
σY=1. This selection must occur after the fetch operation. Observe also that since Q
is Boolean, whereas the fetch operation, the constant selection, and V are not, ξ must
contain a projection of the form π∅. This projection clearly must come after the selection
operation in ξ. From this we know that fetch(I ∈ Sj , Ro, Y ) has at least one selection
and projection as ancestor in the query plan tree.
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We next analyze the query plan ξj for Sj . Consider two options: (a) Sj takes V as a
descendant in the query plan tree; and (b) Sj does not have V as a descendant.

In case (a) the plan ξj for Sj must contain a projection πA so that Sj is unary. Indeed,
recall that Ro is binary and the access constraint takes the first attribute of Ro as
input, while V is not unary. Moreover, as argued above, the only way that V can be
used in ξj that conforms to A is when it occurs as σX=µ0

X
(V ), i.e., all its x̄-values are

fixed Boolean values by means of a truth-assignment µ0
X of X. This selection condition

needs to be accounted for in ξj . Note also that this constant selection should not be
expanded to include the last attribute in V . Indeed, this would make Si equal to a
constant (case (i) above), which is not helpful in answering Q. From this we know that
fetch(I ∈ Sj , Ro, Y ) has at least V , a selection and a projection as descendants. Put
together with our earlier observation, these account for the six possible nodes in ξj . In
fact, this completely fixes possible query plans. Indeed, the plan ξj must be of the form
S1 = π∅(S2); S2 = σY=1(S3); S3 = fetch(I ∈ S4, Ro, Y ); S4 = πA(S5); S5 = σX=µ0

X
(S6)

and S6 = V , for some truth-assignment µ0
X of X. Furthermore, as argued above, S4

should not just be a constant value, and the projection πA should be imposed on the
last attribute of V (the other ones are fixed by means of the selection condition in S5).

In case (b), observe that the overall query plan must use V . Here this implies that V
must occur in a subtree of the query plan different from the subtree rooted at fetch(I ∈
Sj , Ro, Y ). At least one node is required to glue these subtrees together. For the query
plan ξj for Sj , since Sj is not equal to a constant, we still need to distinguish the
following two cases: (b1) Sj is fetch(∅, R01, A), i.e., the only possible query plan of size
1 that does not use V ; (b2) the size of the query plan ξj for Sj is at least 2. For case
(b1), similar to case (i) above, we can show that it is not helpful for answering Q. Then
we only need to consider case (b2). However, we have at least two nodes in the query
plan tree for Sj , one for V , and at least one to glue the subtrees together (as argued
above), accounting for four nodes. Combined with the (minimal) three nodes needed
for fetch(I ∈ Sj , Ro, Y ) and its ancestors, this results in a query plan of at least seven
nodes, exceeding the bound M = 6. Hence, case (b2) cannot occur.

As a consequence, the only possible query plans are of the form as given in case (a).
We can thus conclude that if Q has a 6-bounded query plan ξ in CQ using V under

A, then ξ is A-equivalent to Q′
µ0
X

= π∅

(
σx̄=µ0

X
(V (x̄, k)) ./ Ro(k, 1)

)
for some truth-

assignment µ0
X of X. We next show that Q ≡A Q′µ0

X
for some µ0

X if and only if φ is true.
For convenience, we express Q′

µ0
X

as CQ Q′
µ0
X

= ∃k (V (µ0
X , k) ∧Ro(k, 1)).

(⇐) Suppose that φ is true and let µ0
X be a truth-assignment of X such that

∀Y ∃Zψ(µ0
X , Y, Z) = true. Consider Q′

µ0
X

= ∃k (V (µ0
X , k) ∧Ro(k, 1)) and its unfolding

∃k
(
∃w, x̄′, ȳ, z̄

(
Qc() ∧

∧
16k6m

R∧(x′i, w, µ
0
X(xi)) ∧ ∃ȳ′, z̄′

( ∧
16k6n

R∨(y′k, w, yk) ∧
∧

16k6p
R∨(z′k, w, zk)

)
∧
( ∧

16j6n
RY (j, w, yj)

)
∧RI(y1, k) ∧Q5(µ0

X , w) ∧Qψ(x̄′, ȳ, z̄, 1)

)
∧Ro(k, 1)

)
.

Since µ0
X is a truth-assignment of X, Q5(µ0

X , w) will assign w = 1. As a consequence
x̄′ = µ0

X , ȳ and z̄ take Boolean values, and the unfolding of Q′
µ0
X

is A-equivalent to

∃k
(
ȳ, z̄

(
Qc()∧QY (ȳ)∧QZ(z̄)∧

( ∧
16j6n

RY (j, 1, yj)

)
∧RI(y1, k)∧Qψ(µ0

X , ȳ, z̄, 1)

)
∧Ro(k, 1)

)
, (†)
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where QY (ȳ) and QZ(z̄) encode that ȳ and z̄ take Boolean values, just as in Q.
Consider an instance D |= A such that Q(D) 6= ∅. As remarked earlier, this implies

that the tuples in D corresponding to RY encode a truth assignment µY of Y . Moreover,
tuples (µY (y1), k) and (k, 1) are present in D (for relations RI and Ro, respectively).
Hence, if Q(D) 6= ∅ then Q′

µ0
X

(D) 6= ∅ if and only if ∃z̄ Qψ(µ0
X , µY , z̄, 1) evaluates to true.

Since ∀Y ∃Zψ(µ0
X , Y, Z) is true, we know that ∃Zψ(µ0

X , µY , Z) is true. Hence, Q(D) 6= ∅
implies that Q′

µ0
X

(D) 6= ∅. In other words, Q vA Qµ0
X

. For the converse, Qµ0
X
vA Q, note

that if Q(D) = ∅, then so is Q′
µ0
X

(D). Indeed, the query shown in (†) is just like Q but
with some additional restrictions (QZ(z̄) and Qψ(µ0

X , ȳ, z̄, 1)). Hence, we can conclude
that Q ≡A Q′µ0

X
, and thus Q has a 6-bounded query rewriting using V under A.

(⇒) Suppose that φ is false, but by contradiction Q has a 6-bounded rewriting ξ using
V under A. As argued above, ξ ≡A Q′µ0

X
for some truth-assignment µ0

X of X. Since φ is
false, there must exist a truth-assignment µ0

Y of Y such that ∃Zψ(µ0
X , µ

0
Y , Z) = false. Let

D be an instance ofR such that D |= A, Q(D) 6= ∅, and the tuples in D corresponding to
RY encode µ0

Y . By ∃Zψ(µ0
X , µ

0
Y , Z) = false, Qψ(µ0

X , µ
0
Y , z̄, 1)(D) = ∅. Then Q′

µ0
X

(D) = ∅,
and hence, Q 6≡A Q′

µ0
X

. Since this argument works for any truth-assignment µX of X,
Q is not A-equivalent to any Q′µX for µX of X. As these are the only possible 6-bounded
rewritings, Q does not have a 6-bounded rewriting using V under A.

Upper bound. We next provide an Σp3 algorithm for VBRP(∃FO+), as follows:
(1) guess a query plan ξ such that |ξ| 6M ;
(2) check whether ξ conforms to A; if not, then reject the guess; otherwise continue;
(3) rewrite ξ into a query Q′ in ∃FO+by substituting the view definition for each view

used in ξ;
(4) check whether Q′ ≡A Q. If so, then return true; otherwise, return reject the guess.
It is easy to see the correctness of the algorithm. For its complexity, we will show that
step (2) can be done in PNP. Moreover, step (3) can be done in PTIME since ξ is a tree,
and |Q′| is bounded by O(|ξ| · |V|). Step (4) requires checking whether Q′ ≡A Q. This
was shown to be in Πp

2 (Lemma 3.2). Putting these together, the algorithm is in Σp3.
It should be remarked that the non-deterministic algorithm given above just aims to

prove the upper bound of VBRP(∃FO+). More practical algorithms for bounded rewrit-
ing using views can be developed along the same lines as the bounded plan generation
algorithm of [Cao and Fan 2016], possibly collaborating with a DBMS optimizer.

We next show that step (2) can be done in PNP.

LEMMA 3.8. Given a query plan ξ, it is in PNP to decide whether ξ conforms to A. 2

Proof: To check whether ξ conforms to A, it suffices to verify that for each fetch(X ∈
Sj , R, Y ) operation in ξ, the following conditions hold: (a) there exists an access con-
straint R(X → Y ′, N) in A such that Y ⊆ X ∪ Y ′; and (b) there exists a constant N1

such that for all instances D of R that satisfy A, |Sj | 6 N1 in the computation of ξ(D).
For each fetch(X ∈ Sj , R, Y ) operation, it is in PTIME to check condition (a). We use

the following algorithm to check condition (b). Let ξ′ be the sub-tree of ξ rooted at Sj ,
(1) express ξ′ as an equivalent query Qj in ∃FO+;
(2) unfold Qj by replacing each view with its definition, yielding Q′j in ∃FO+;
(3) check whether Q′j has bounded output; if so, return true; otherwise, return false.
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Bounded Query Rewriting Using Views A:21

The correctness of the algorithm is immediate. For its complexity, observe that steps (1)
and (2) are in PTIME, and step (3) is in coNP by Theorem 3.4. Since there are at most
O(|ξ|) fetch operations in ξ, the algorithm is in PNP. 2

(2) When L is FO. We show that VBRP is undecidable for FO queries by reduction from
the complement of the satisfiability problem for FO queries, just like BOP for FO (see
the proof of Theorem 3.4 for the satisfiability problem).

Given an FO query Q1, we construct a relational schema R, an access schema A,
an FO query Q, a set V of FO views, and a natural number M , such that Q has an
M -bounded rewriting in FO using V under A if and only if there exists no database D
such that Q1(D) 6= ∅. More specifically, (1) R contains all relation names used by Q1,
and one new unary relation schema R(X); (2) A = ∅; (3) Q(x) = R(x) ∧Q1(); these are
the same as their counterparts in the proof of Theorem 3.4; (4) V = ∅; and (5) M = 1.

Since V = ∅, A = ∅, and M = 1, the only possible 1-bounded rewritings of Q are the
constant query Q∅, which returns ∅ on all databases, or Qc for some constant c, which
returns {(c)} on all databases. If the query plan is Qc, then for all instances D of R, we
have that Qc(D) = {(c)}. Then we can construct a database D1 such that the instance
of relation schema R does not contain the constant c. However, by the definition of Q
we know that (c) 6∈ Q(D1), which is a contradiction. Hence the only possible 1-bounded
rewriting of Q is Q∅. It is easy to verify that Q(x) ≡A Q∅ if and only if Q(x) ≡ Q∅ if and
only if for any instance D of R, Q1(D) = ∅, i.e., when Q1 is not satisfiable. 2

3.2. The Impact of Various Parameters

One might think that fixing some parameters of VBRP would simplify the analysis.
As will be seen in Section 4, in practice we often have predefined database schema R,
access schema A, bound M and views V, while queries and instances of R vary.

Unfortunately, fixing R, A, M and V does not simplify the analysis of VBRP for FO.

COROLLARY 3.9. There exist fixed R, A, M and V such that it is undecidable to
decide, whether an FO query Q has an M -bounded rewriting in FO using V under A. 2

Proof: Recall that VBRP(FO) is shown undecidable by reduction from the complement
of the satisfiability problem for FO (see the proof of Theorem 3.1), using fixed V = ∅,
A = ∅ and M = 1. As argued in the proof of Theorem 3.4, the reduction remains valid
when R is also fixed. From this Corollary 3.9 follows. 2

We now study the impact of parameters on VBRP for CQ, UCQ and ∃FO+. Our main
conclusion is that fixing R, A and M does not simplify the analysis of VBRP. When the
set V of views is also fixed, VBRP is simpler for these positive queries, to an extent.

Fixing R, A and M . Fixing database schema, access schema and plan size does not
help us. Indeed, the Σp3 lower bound for CQ is verified by using fixed R, A and M
(Theorem 3.1). From this the corollary below follows.

COROLLARY 3.10. There exist fixed R, A and M such that it is Σp3-complete to de-
cide, given a query Q in L and a set V of L-definable views over R, whether Q has an
M -bounded rewriting in L using V under A when L is one of CQ, UCQ and ∃FO+. 2
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A:22 Bounded Query Rewriting Using Views

Fixing R, A, M and V. Suppose that besides R, A and M , the set V of views is also
fixed. This puts VBRP in Cp2k+1 for CQ, UCQ and ∃FO+, where Cp2k+1 is the complexity
class defined as coNP∨

∨k
i=1(NP∧coNP) [Wagner 1987]. Here NP∧coNP is also known as

Dp, where a languages L′ is in Dp if and only if there exist two languages L′1 ∈ NP and
L′2 ∈ coNP such that L′ = L′1 ∩ L′2. A language L′ is in C1 ∨ C2 for complexity classes C1

and C2 if there exist two languages L′1 ∈ C1 and L′2 ∈ C2 such that L′ = L′1 ∪L′2. Hence,
Cp2k+1 consists of languages that can be written as the union of k DP languages and a
coNP language. It resides in the Boolean NP-hierarchy and is contained in ∆p

2 = PNP.

Note that the membership of VBRP in Cp2k+1, whenR, A, M and V are fixed, provides
an interesting insight. It reveals how NP and coNP oracles can be combined to decide
VBRP. By contrast, if only a ∆p

2 upper bound had been provided, one could only get
that polynomially many calls to NP oracles suffice to decide VBRP.

THEOREM 3.11. For each natural number k, there exist fixedR,A,M , V such that it
is Cp2k+1-complete to decide, given a query Q in L over R, whether Q has an M -bounded
rewriting in L using V under A, when L is CQ, UCQ or ∃FO+. 2

To show Theorem 3.11 we need some notations, which will also be used in Section 4.

(a) For a query Q, denote by QPQ the set of all candidate query plans using V that are
no larger than M (see Section 2).

(b) For ξ ∈ QPQ, we write ξ vA Q if Qξ vA Q, where Qξ denotes the query expressed
by ξ (see Section 2); similarly we write Q vA ξ if Q vA Qξ, and ξ vA ξ′ for ξ′ ∈ QPQ if
Qξ vA Qξ′ . We write ξ ≡A ξ′ if ξ vA ξ′ and ξ′ vA ξ, and ξ @A ξ′ if ξ vA ξ′ but ξ 6≡A ξ′.

Proof: We show that VBRP is Cp2k+1-hard for CQ and in Cp2k+1 for ∃FO+in this setting.

Lower bound. The lower bound proof is based on a characterization of Cp2k+1 given
in [Wagner 1987], stated as follows: a language L is in Cp2k+1 if and only if there exist
2k+ 1 languages L0, L1, . . . , L2k, each of which is in NP, such that L0 ⊇ L1 ⊇ L2 ⊇ · · · ⊇
L2k and L = L̄0 ∪

⋃k
i=1(L2i−1 ∩ L̄2i). We show that every such language can be reduced

to an instance of VBRP(CQ), establishing hereby its Cp2k+1-hardness.

To start the reduction, take any L in Cp2k+1 and write it as L̄0 ∪
⋃k
i=1(L2i−1 ∩ L̄2i).

Since for each i ∈ [0, 2k], Li is in NP, we have reductions fi from Li to 3SAT. In other
words, for each string σ̄ ∈ Σ∗, σ̄ ∈ Li if and only if fi(σ̄) is a satisfiable 3SAT instance.
Note that Li ⊇ Li+1 implies that whenever fi+1(σ̄) is satisfiable, then so is fi(σ̄). We
use this in the proof below to ensure that only k + 1 possible query plans need to be
considered. Following [Wagner 1987], it can be verified that σ̄ ∈ L if and only if

|{i | fi(σ̄) is satisfiable, i ∈ [0, 2k]}| is even.
By L0 ⊇ L1 ⊇ · · · ⊇ L2k, |{i | fi(σ̄) is satisfiable, i ∈ [0, 2k]}| is an even number only
either when f0(σ̄) is unsatisfiable, or when the largest index that corresponds to a
satisfiable 3SAT instance is of the form f2`−1(σ̄) for some `. In the latter case, all 3SAT
instances corresponding to fi(σ̄), for 0 6 i 6 2` − 1, are satisfiable, yielding an even
number (2`) of satisfiable instances. Conversely, if f2`(σ̄) is satisfiable then so are all
fi(σ̄) for 0 6 i 6 2`, yielding an odd number (2` + 1) of satisfiable instances. One can
see that σ̄ 6∈ L0 iff |{i | fi(σ̄) is satisfiable, i ∈ [0, 2k]}| is zero; and σ̄ ∈ L2`−1 ∩ L̄2` iff
|{i | fi(σ̄) is satisfiable, i ∈ [0, 2k]}| is equal to 2`. Thus deciding whether σ̄ ∈ L reduces
to checking whether |{i | fi(σ̄) is satisfiable, i ∈ [0, 2k]}| is even, and vice versa.
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We next show that deciding whether “|{i | fi(σ̄) is satisfiable, i ∈ [0, 2k]}| is even” can
be reduced to checking whether a CQ query Q has an 1-bounded rewriting using V
under A. Given 2k+ 1 3SAT instances Θ = {fi(σ̄) | i ∈ [0, 2k]}, we define a CQ query QΘ

that depends on the 3SAT instances, a fixed database schema R, M = 1, k views V =
{V1, . . . , Vk}, each of which is fixed, and a fixed access schema A such that QΘ has an
1-bounded rewriting using V under A if and only if |{i | fi(σ̄) is satisfiable, i ∈ [0, 2k]}|
is even. We assume w.l.o.g. that the 3SAT instances have the same number of variables,
n, and that each instance has a disjoint set of variables. Let Xi = {xi1, . . . , xin} be the
set of variables used by the 3SAT instance fi(σ̄), for i ∈ [0, 2k].

(1) The database schema R consists of R01(B), R∨(B,A1, A2) R∧(B,A1, A2), R¬(A, Ā),
and Rs(V0, . . . , V2k, U). The first four relations are to encode Boolean operations and do-
main with intended instances shown in Figure 2. The last relation is to hold instances
indicating which 3SAT instances are satisfiable, as will become clear shortly.

(2) We next define the CQ query QΘ. We first encode all 3SAT instances in Θ:

Q3SAT
Θ (v̄) = ∃x̄0, x̄1 . . . , x̄2k

( 2k∧
i=0

Qfi(σ̄)(x̄i, vi)
)
,

where x̄i = (xi1, . . . , x
i
n), v̄ = (v0, v1, . . . , v2k) and Qfi(σ̄) encodes fi(σ̄) by leveraging

conjunction, disjunction, negation and Boolean domain encoded by instances of R∧,
R∨, R¬ and R01, respectively. Given a truth-assignment µXi of Xi, Qfi(µXi , vi) sets
vi = 0 if µXi is not a witness of the satisfiability of fi(σ̄), and sets vi = 1 otherwise.

To ensure that the Boolean operations and domain are properly encoded by instances
of R∧, R∨, R¬ and R01, we consider Qc, the same CQ as its counterpart given in the
proof of Theorem 3.4. In addition, we define a Boolean query Qs which demands the
existence of the following (2k+1)(2k+2)

2 atoms:
Rs(1, 0, 0, . . . , 0, i) for i = 0 (f0(σ̄) is satisfiable)
Rs(1, 1, 0, . . . , 0, i) for i = 0, 1 (f1(σ̄) and f0(σ̄) are satisfiable)
Rs(1, 1, 1, . . . , 0, i) for i = 0, 1, 2 (f2(σ̄), f1(σ̄) and f0(σ̄) are satisfiable)

...
...

...
Rs(1, 1, 1, . . . , 1, i) for i = 0, 1, . . . , 2k (all instances in Θ are satisfiable)

The semantics of these atoms is as follows. A constant 1 (resp. 0) in attribute Vi of
Rs, for i ∈ [0, 2k], indicates that fi(σ̄) is satisfiable (resp. unsatisfiable), and the last
attribute indicates the corresponding indices of instances in Θ that are satisfiable.
Finally, we define

QΘ(u) = ∃v̄
(
Q3SAT

Θ (v̄) ∧Rs(v̄, u) ∧Qc ∧Qs
)
.

(3) The access schema A consists of one constraint on each relation such that the in-
stances of R∧, R∨, R¬, R01 and Rs contain the number of tuples required by Qc and Qs,
respectively (see, e.g., the counterpart for R01 in the proof of Theorem 3.4).

As a consequence, for any instanceD |= Awe can distinguish the following three cases:
(i) QΘ(D) = ∅ because D 6|= Qc ∧Qs; (ii) QΘ(D) = ∅ but D |= Qc ∧Qs; or (iii) QΘ(D) 6= ∅
and D |= Qc ∧Qs. Note that in cases (ii) and (iii), D = (I∧, I∨, I¬, I01, Is), where I∧, I∨,
I¬, I01 are as shown in Figure 2, and Is consists of the (2k+1)(2k+2)

2 tuples enumerated
in Qs. Moreover, in case (ii) we have that QΘ(D) = ∅ if and only if none of the 3SAT
instances in Θ is satisfiable. In case (iii), QΘ(D) = {0, 1, . . . , `}, where ` denotes the
largest index taken from [0, 2k] corresponding to a satisfiable instance f`(σ̄) in Θ.

(4) Finally, V consists of the following k views. For i ∈ [1, k] we define
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Vi(u) = Rs(1, . . . , 1︸ ︷︷ ︸
2i times

, 0, . . . , 0, u) ∧Qc ∧Qs.

In other words, for D |= A, either Vi(D) is empty or Vi(D) = {0, 1, . . . , 2i − 1}. As a
consequence, whenever Vi(D) is non-empty, QΘ(D) ≡A Vi(D) if and only if ` = 2i − 1
is the largest index for which f`(σ̄) is satisfiable. Note that apart from Q∅, no other 1-
bounded rewriting forQΘ exists that does not use views. Indeed, the only other possible
such 1-bounded rewriting is of the form Qc for some constant c, which returns {(c)} on
all databases. However, when D 6|= Qc∧Qs, QΘ(D) is empty and hence QΘ(D) 6= Qc(D).
Therefore, the only possible 1-bounded rewriting for QΘ is Q∅, V1, . . . , or Vk.

For the correctness of the reduction, observe that σ̄ ∈ L if and only if QΘ has an
1-bounded rewriting using V under A, where Θ = {fi(σ̄) | i ∈ [0, 2k]}. Indeed, σ̄ ∈ L
if and only if |{i | fi(σ̄) is satisfiable, i ∈ [0, 2k]}| is even if and only if for any instance
D of R, if D |= A then either (a) QΘ(D) = ∅ or (b) QΘ(D) = {0, 1, . . . , 2i − 1} for some
i ∈ [1, k] if and only if either (a) QΘ ≡A Q∅ (empty query) or (b) QΘ ≡A Vi.

Upper bound. Let Q be an ∃FO+query and consider fixed R, V, A and M . Observe that
there are only a constant number of possible query plans forQwith size bounded byM .
Furthermore, for each constant-size plan ξ, it is in PTIME to check whether ξ conforms
to A. Indeed, from the proof of Lemma 3.8 we know that this is in PTIME as long as
ξ has bounded output. By Lemma 3.7, when ξ has a constant size, checking bounded
output of ξ is in PTIME since there are a constant number of element queries of ξ and
checking the condition on covered variables (as stated in Lemma 3.7) is in PTIME.

Denote by QPQ the set of candidate query plans of length at most M . Remove from
QPQ all plans that do not conform to A, and denote the set of remaining plans also as
QPQ; as argued above, this can be done in PTIME. Note that the empty query plan ξ∅
is in QPQ. Hence, Q has an M -bounded rewriting using V under A if and only if either
(a) Q is not satisfiable, in which case Q ≡A ξ∅, or (b) Q is satisfiable and Q ≡A ξ for
some non-empty ξ ∈ QPQ. We next show that case (a) can be decided in coNP and (b)
deciding Q ≡A ξ is in Dp = NP ∧ coNP for a given ξ. Hence, we can decide whether
Q has an M -bounded rewriting using V under A in coNP ∨

∨k
i=1(NP ∧ coNP) = Cp2k+1,

where k denotes the number of non-empty query plans in QPQ that conform to A.
We first verify that deciding whether Q is not satisfiable is in coNP. Indeed, the com-

plement problem that decides whether Q is satisfiable is in NP: simply guess disjuncts
in Q, resulting in a CQ query Q′ and guess a valuation ν of the tableau representation
(TQ′ , ū) of Q′. If ν(TQ′) |= A then Q is satisfiable. Otherwise, reject the guess.

To show that ξ vA Q is in NP, for each element query Qξe of Qξ, guess disjuncts in
Q, resulting in a CQ query Qe, and guess a candidate homomorphism from Qe to Qξe .
There are only a constant number of such element queries; so we can guess candidate
homomorphism from Q to all Qξe in one guess. It remains to verify whether the candi-
date mappings are homomorphism from Qe to each element query Qξe . If so, Qξe v Qe
and hence ξ vA Q. If not, we reject the guess. This is clearly an NP process.

Furthermore,Q vA ξ can be decided in coNP, since its complement problem to decide
Q 6vA ξ is in NP. Indeed, guess disjuncts in Q, resulting in a CQ query Q′, and a
valuation ν of the tableau representation (TQ′ , ū) of Q′. Next, verify whether ν(TQ′) |=
A but ν(ū) 6∈ ξ(ν(TQ′)). The latter step can be done in PTIME because ξ is of constant
size. If successful, we have guessed a counterexample for Q vA ξ. Hence, Q vA ξ can
be decided in coNP and deciding whether Q ≡A ξ is in NP ∧ coNP, as desired. 2

A simple characterization. We next give a sufficient and necessary condition for
query Q to have a bounded rewriting. This condition is generic: Q is not necessarily
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a CQ, and R,M,A and V do not have to be fixed. We use the following notations. For
candidate plan ξ ∈ QPQ, we say that ξ is a maximum plan with (A,V) if (a) ξ vA Q,
and (b) there exists no ξ′ ∈ QPQ such that ξ′ vA Q and ξ @A ξ′. We say that ξ is unique
in QPQ if there exists no another maximum plan ξ′ ∈ QPQ such that ξ 6≡A ξ′.

LEMMA 3.12. A query Q has an M -bounded rewriting under A using V if and only
if there exists a unique maximum plan ξ ∈ QPQ up toA-equivalence such that Q vA ξ.2

Proof: First assume that there exists a maximum candidate plan ξ ∈ QPQ with (A,V),
and Q vA ξ. Then ξ ≡A Q. Hence Q has an M -bounded rewriting under A using V
by the definition of maximum plans. Conversely, assume that Q has an M -bounded
rewriting under A using V. Then there exists a query plan ξ ∈ QPQ such that ξ ≡A
Q. We show that ξ is maximum and unique. Suppose by contradiction that ξ is not
maximum. Then there exists another plan ξ′ ∈ QPQ such that ξ′ vA Q and ξ @A ξ′.
Then ξ @A ξ′ vA Q, contradicting the assumption that ξ ≡A Q. Similarly, if ξ is not
unique, then there exists another maximum plan ξ1 such that ξ 6≡A ξ1, Then by the
definition of maximum plans, ξ1 vA Q. Since ξ ≡A Q, ξ1 vA ξ; hence ξ1 @A ξ since
ξ 6≡A ξ1; this contradicts to the assumption that ξ1 is maximum. 2

4. BOUNDED REWRITING FOR ACQ

To further understand the inherent complexity of VBRP, in this section we study VBRP
under the following two practical conditions.

(1) Acyclic conjunctive queries, denoted by ACQ. A CQ Q is acyclic if its hypergraph has
hypertree-width 1 [Gottlob et al. 1999]. The hypergraph of Q is a hypergraph (Vh, Eh)
in which Vh consists of variables in Q and Eh has an edge for each set of variables that
occur together in a relation atom in Q. Acyclic conjunctive queries are commonly used
in practice since query evaluation and containment for ACQ are in PTIME (see [Abite-
boul et al. 1995] about ACQ). As an example, query Q0 of Example 1.1 is an ACQ.

(2) Fixed R,A,M and V. We consider predefined database schemaR, access schemaA,
boundM and views V. After all, for an application,R is designed first,M is determined
by our resources (e.g., available processors and time constraints), access constraints are
discovered from sample instances of R, and views are selected based on the applica-
tion [Armbrust et al. 2013]. These are determined before we start answering queries.
Thus it is practical to assume fixed R, A, M , and V.

In this setting, we study bounded rewriting of ACQ. Given an ACQ Q, we want to find
an M -bounded query plan ξ(Q,V,R) under A in CQ (see Section 2) such that the query
Qξ expressed by ξ is an ACQ. Our main conclusion is that the intractability of VBRP is
rather robust, even for ACQ under fixed R,A,M and V. Nonetheless, we characterize
when VBRP(ACQ) is tractable and identify tractable special cases.

Intractability. One might think that VBRP would become simpler for ACQ, since
query evaluation and containment for ACQ are in PTIME, not to mention fixed R, A,M
and V. Unfortunately, VBRP remains intractable for ACQ under fixed R, A,M and V,
even under quite restrictive access constraints in a fixed A.

THEOREM 4.1. Given fixed R, A, M and V, VBRP(ACQ) is coNP-hard when A has
one of the following forms:

(1) A consists of a single access constraint of the form R(A→ B,N) and N > 2; or
(2) A consists of two constraints R(A→ B, 1) and R′(∅ → (E,F ), N), and N > 6; or
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(3) A consists of two constraints R((A,B)→ C, 1) and R′(∅ → E,N), and N > 2. 2

Proof: We defer the proofs for the three cases to the electronic appendix due to the
lack of space. The idea is to show that Q ≡A ∅ if and only if Q has an M -bounded
rewriting under A using V. That is, the only M -bounded query plan for Q using V
under A is the empty query plan. As a consequence, the query plan does not use V,
and hence the proofs work for any fixed set V of views. The only information needed
in the reduction is the size |V|. Therefore, we do not specify which views are used in
the reduction as any set of views will do. In addition, the proofs use fixed R, A and M ,
and we construct an ACQ query Q by only using relations involved in A.

(1) When A consists of a single R(A→ B,N) and N > 2. We show that VBRP(ACQ)
is coNP-hard in this setting by reduction from the complement of the precoloring ex-
tension problem, which is NP-complete [Kratochvı́l 1993]. Given an undirected graph
G = (VG, E), a precoloring µ0 is a coloring of a subset W of the nodes of VG with colors
in {r, g, b}. The precoloring extension problem is to decide whether µ0 can be extended
to a coloring µ of the entire set of nodes in VG with colors in {r, g, b}. That is, whether
there exists a coloring µ of all nodes in VG such that µ(v) = µ0(v) for each v ∈ W and
µ(v) 6= µ(w) whenever (v, w) ∈ E. The reduction is given in the electronic appendix.

(2) WhenA consists of two access constraints R(A→ B, 1) and R′(∅ → (E,F ), N),
and N > 6. We show the lower bound in this setting by reduction from the complement
of the 3-Colorability problem, which is NP-complete (cf. [Garey and Johnson 1979]).

(3) When A consists of R((A,B)→ C, 1) and R′(∅ → E,N), and N > 2. We show the
lower bound by reduction from the complement of the 3SAT problem (see the proof of
Theorem 3.4 for the definition of 3SAT). 2

Characterization. In light of Theorem 4.1, we next characterize when VBRP(C) is
tractable for sub-classes C of ACQ, and give an upper bound for VBRP(ACQ).

THEOREM 4.2. When R, A, M and V are fixed, (1) for any sub-class C of ACQ,
VBRP(C) is in PTIME if and only if for each query Q ∈ C, it is in PTIME to check whether
Q ≡A ξ, where ξ is a query plan of size at most M , and (2) VBRP(ACQ) is in coNP. 2

The result tells us that ACQ and fixed parameters together simplify the analysis of
VBRP (unless P = NP), to an extent, as opposed to the Σp3-completeness of Theorem 3.1
and Cp2k+1-completeness of Theorem 3.11. Putting Theorems 4.1 and 4.2 together, we
can see that the cases of VBRP(ACQ) stated in Theorem 4.1 are coNP-complete.

The proof of Theorem 4.2 is based on Lemma 3.12 and the lemma below, which gives
the complexity of basic operations for computing maximum query plans.

LEMMA 4.3. For fixed R,A,M,V, given a CQ Q and query plans ξ, ξ′ ∈ QPQ, it is in

(a) PTIME to check whether ξ conforms to A,
(b) PTIME to check whether ξ vA Q if Q is an ACQ,
(c) NP to check whether Q 6vA ξ, and
(d) PTIME to check whether ξ′ vA ξ for ξ′ ∈ QPQ. 2

Proof: When M is a constant, the set QPQ of all candidate query plans for Q using V
that are no larger than M consists of a constant number of query plans ξ. Moreover,
observe the following. For each plan ξ ∈ QPQ, let Qξ be the CQ expressing ξ, after
unfolding the views in ξ, i.e., substituting the view definition for each view used in
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ξ. Then |Qξ| is bounded by O(M · |V|), and the number of variables in Qξ is at most
O(M · |V| · |R|). Recall that each element query of Qξ can be represented as Qξ ∧ φ,
where φ is a conjunction of equality atoms between variables used in Qξ (see the proof
of Theorem 3.4). Hence Qξ has 2O((M ·|V|·|R|)2) many element queries. When R, A, M
and V are fixed, O(M · |V| · |R|) and 2O((M ·|V|·|R|)2) are bounded by constants. Hence the
size of Qξ is a constant, and Qξ has a constant number of element queries. Similarly,
we can show that Q has 2O(|Q|2) many element queries, i.e., exponentially many.

We next verify the claims of Lemma 4.3 one by one.

(a) We use the algorithm given in the proof of Lemma 3.8 to check whether ξ conforms
to A. We show that the algorithm is in PTIME for CQ in this setting. It suffices to show
that its step (3) is in PTIME here instead of coNP. For each fetch(X ∈ Sj , R, Y ) operation
in ξ, let ξ1 be the sub-tree of ξ rooted at Sj , and rewrite ξ1 into a CQ Q1 by unfolding
views in ξ1. As shown above,Q1 has a constant number of element queries, and the size
of each element query is bounded by a constant. Then by Lemma 3.7, step (3) of the
algorithm can be done in PTIME. Thus checking whether ξ conforms to A is in PTIME.

(b) It is easy to show that ξ vA Q if and only if for each element query Qe of Qξ, Qe v Q
(see the proof of Theorem 3.4). Since Q is an ACQ, one can check whether Qe v Q in
O(|Q| · |Qe|2) time, by using the Acyclic Containment algorithm from [Chekuri and
Rajaraman 2000]. As Qξ has a constant number of element queries, checking whether
ξ vA Q is in PTIME. Note that if Q is a CQ instead of an ACQ, this is not in PTIME.

(c) In contrast, Q has 2O(|Q|2) element queries, and checking whether Q 6vA ξ is in NP,
rather than in PTIME as in (b). This can be done as follows: guess an element query Qe
of Q, and check whether Qe 6v ξ. As remarked earlier, ξ can be expressed by a CQ Qξ
of size bounded by a constant. Thus the number of candidate homomorphic mappings
from Qξ to Qe is at most O(|Qe||Qξ|), which is a polynomial. Thus we can check Qe 6v Qξ
in PTIME by enumerating all candidate mappings and verifying whether one of them
is indeed a homomorphism from Qξ to Qe. Hence it is in NP to check whether Q 6vA ξ.

(d) For any ξ′ ∈ QPQ, we first rewrite ξ′ into a query Qξ′ in CQ by unfolding views in
ξ′. Then ξ′ vA ξ if and only if Qξ′ vA Qξ. As argued above, Qξ′ has a constant number
of element queries, and Qξ and all element queries of Qξ′ have a constant size. Hence
checking Qξ′ vA Qξ is in PTIME, and so is checking ξ′ vA ξ. 2

Proof of Theorem 4.2. Based on the lemmas, we prove Theorem 4.2. We first present
an algorithm, denoted by AlgACQ, to check whether an ACQQ has anM -bounded rewrit-
ing. For fixed R, A, M and V, we show that the algorithm is in coNP for general ACQ
queries. However, when we focus on specific sub-classes C of ACQ, the algorithm runs
in PTIME. More specifically, classes C have the following property: for each queryQ ∈ C,
it is in PTIME to check whether Q ≡A ξ. Here, ξ is a query plan of size at most M .

From Lemma 3.12, we know that a query Q has an M -bounded rewriting under A
using V if and only if there exists a unique maximum query plan ξ ∈ QPQ (up to A-
equivalence) such that Q vA ξ. To develop AlgACQ, we first show that given any ACQ
Q, its unique maximum plan ξ (up to A-equivalence) can be computed in PTIME, if it
exists. It is computed by the algorithm given below, denoted by AlgMP:

(1) generate the set QPQ of all candidate query plans for Q of length at most M , using
relation atoms in R and views in V;

(2) remove from QPQ all plans ξ ∈ QPQ such that its CQ query Qξ is not acyclic;
(3) remove from QPQ all ξ ∈ QPQ such that ξ 6vA Q or ξ does not conform to A;
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(4) remove from QPQ all query plans ξ ∈ QPQ such that there exists another query
plan ξ1 satisfying ξ1 vA Q and ξ @A ξ1;

(5) if QPQ is nonempty and all remaining plans in QPQ are A-equivalent to each other,
return a plan ξ in QPQ; otherwise return “no”.

The correctness of algorithm is obvious. For its complexity, step (1) is in PTIME since
there exist a constant number of plans in QPQ, and each of them has size bounded by
a constant. Step (2) is in PTIME since checking whether a CQ query is acyclic can be
done in PTIME by using, e.g., GYO algorithm [Graham 1979; Yu and Özsoyoğlu 1979]).
Step (3) consists of (i) checking whether ξ conforms to A; and (ii) checking whether
ξ 6vA Q. These are in PTIME by Lemma 4.3(a) and (b). Step (4) checks A-containment
between query plans and A-containment of queries plans in Q. These are in PTIME
by Lemma 4.3(b) and (d). In contrast, when Q is CQ, steps (3) and (4) have to call
an NP oracle for a constant number of times. This explains why VBRP(ACQ) differs
from VBRP(CQ) (Theorem 3.11) unless P = NP. Step (5) checks A-containment of query
plans, in PTIME by Lemma 4.3(d). Putting these together, algorithm AlgMP is in PTIME.

Capitalizing on AlgMP, algorithm AlgACQ works as follows. Given an ACQ Q, it first
checks whether Q has a unique maximum plan ξ in QPQ, by invoking AlgMP. If such
a query plan does not exist, then Q does not have an M -bounded query rewriting by
Lemma 3.12, and hence AlgACQ returns false. Otherwise, it checks whether Q ≡A ξ; it
returns true if so, and false otherwise.

We now prove the two statements of Theorem 4.2 by analyzing AlgACQ.

(1) Sub-classes C. Consider a sub-class C of ACQ such that for each Q ∈ C, checking
whether Q ≡A ξ is in PTIME. As argued above, AlgMP is in PTIME. Then AlgACQ is in
PTIME, and hence so is VBRP(C). Conversely, given Q ∈ C and ξ, we can check whether
Q ≡A ξ as follows: (1) compute a unique maximum plan ξQ ∈ QPQ; (2) check whether
ξQ ≡A ξ and Q has an M -bounded rewriting; return true if so, and false otherwise.
The correctness and time complexity follow from Lemmas 3.12, 4.3(c), (d), and the as-
sumption that VBRP(C) is in PTIME. In fact, to ensure that VBRP(C) is in PTIME, we
only need to show that deciding Q vA ξ is in PTIME. Indeed, by Lemma 4.3, checking
ξ vA Q is in PTIME, and hence we also have that deciding Q ≡A ξ is in PTIME. How-
ever, the converse does not hold. That is, when VBRP(C) is in PTIME, it is not necessary
that deciding Q vA ξ is in PTIME. In particular, if ξ 6vA Q and if Q has no M -bounded
rewriting, then we cannot further infer that Q vA ξ.

(2) ACQ. For a general query Q in ACQ, checking whether Q vA ξ is in coNP by
Lemma 4.3(c). Since AlgMP is in PTIME, AlgACQ is in coNP, and so is VBRP(ACQ). 2

Theorem 4.2 helps us identify sub-classes of ACQ for which VBRP is tractable, such as
ACQ under “FDs”, i.e., when all the access constraints in A are of the form R(X → Y, 1).
As remarked earlier, FDs with associated indices are common access constraints, and
can be discovered by using existing tools for mining FDs (e.g., [Huhtala et al. 1999]).

COROLLARY 4.4. When R,A,M and V are fixed, VBRP is in PTIME for ACQ if A
consists of FDs only. 2

Proof: By Theorem 4.2, it suffices to show that checking whether Q vA ξ is in PTIME,
where ξ denotes the unique maximum query plan, if it exists.

Given a set A of access constraints of the FD form and an ACQ Q, we chase the
tableau T of Q by A as follows [Aho et al. 1979]: for each R(X → Y, 1) ∈ A, if there
exist tuples R(x̄, ȳ1, z̄1) and R(x̄, ȳ2, z̄2) in T such that (a) x̄ corresponds to X, and (b) ȳ1

and ȳ2 correspond to Y , and ȳ1 6= ȳ2, then we unify ȳ1 = ȳ2 in T . These yield a tableau
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TA satisfying A. Let QA be the query expressed by TA. One can see that QA is unique
up to homomorphism [Maier et al. 1979], QA ≡A Q and QA satisfies A.

Observe the following: (a) Q vA ξ is equivalent to QA v ξ; the latter is in terms of
conventional query containment v; and (b) QA v ξ can be checked in PTIME since ξ is
of constant size. Indeed, at most O(|QA||ξ|) homomorphic mappings need to be checked.
From these it follows that whether Q vA ξ can be checked in PTIME. 2

In contrast to Corollary 4.4, VBRP remains intractable for CQ under FDs, although
the analysis is simpler compared with Theorem 3.11 (unless P = NP).

PROPOSITION 4.5. For fixedR,A,M and V, VBRP(CQ) is NP-complete ifA consists
of FDs only. It remains NP-complete when none of R,A,M and V is fixed. 2

Proof: We first show the lower bound, followed by the upper bound.

Lower bound. We show that in this setting, VBRP(CQ) is NP-hard by reduction from the
3SAT problem (see the proof of Theorem 3.4 for 3SAT). Given an instance ψ of 3SAT,
we define a CQ Q, an access schema A of the FD form, a bound M , and a set V of CQ
views, such that Q has an M -bounded rewriting in CQ using V under A if and only if
ψ is satisfiable. We ensure that M,A, R and V do not depend on ψ, i.e., they are fixed.

(1) The database schema R consists of R∨(B,A1, A2), R∧(B,A1, A2) and R¬(A, Ā) to
encode the Boolean operations, as in the proof of Theorem 3.4 (see Figure 2). Observe
that we do not include R01 in R. The reason is that we cannot enforce instances of R01

to coincide with I01 (see Figure 2) using access constraints of the FD form.

(2) The access schemaA contains the following three constraints to ensure thatR∨,R∧,
R¬ can be used to encode the Boolean operations: R∨((A1, A2) → B, 1), R∧((A1, A2) →
B, 1), R¬(A→ Ā, 1). All these constraints have the form of R(X → Y, 1).

(3) The query Q is defined as Q() = Qc() ∧ Qψ(x̄, 1), where (a) Qc() is the same as its
counterpart given in the proof of Theorem 3.4, except for the sub-query in Qc related to
R01. It is to ensure that the instances of R∨, R∧, and R¬ contain all the tuples shown in
Figure 2, and (b)Qψ(x̄, 1) is similar to its counterpart given in the proof of Theorem 3.4,
to encode all truth assignments µ of x̄ such that ψ(µ(x̄)) = true, expressed in terms of
R∨, R∧ and R¬. In contrast to the query used in the proof of Theorem 3.4, Qψ extracts
the Boolean domain from R¬ rather than R01. Note that if an instance D of R is equal
to the instances shown in Figure 2 (excluding I01), then Q(D) is nonempty if and only
if ψ is satisfiable. Of course, when D is an instance of R that satisfies A but it contains
more tuples than those shown in Figure 2, Qc(D) 6= ∅ and Q(D) = ∅ still ensure that ψ
is unsatisfiable, but Qc(D) 6= ∅ and Q(D) 6= ∅ do not imply that ψ is satisfiable. Indeed,
x̄ may be non-Boolean, and Qψ does not correctly evaluate ψ in this case.

(4) The set V consists of a single CQ view: V () = Qc(), which is the same as the one
given in Q. Finally, we let M = 1.

Since all access constraints in A are FDs and M = 1, the only possible query plans
are ∅ and V . One can verify that Q has an 1-bounded rewriting in CQ using V under A
if and only if V ≡A Q if and only if ψ is true. Note that M,A, R and V are fixed.

Upper bound. We give the following NP algorithm to check VBRP(CQ) when none of
R,A,V and M is fixed, and when A consists of FD-like access constraints only:
(1) chase the tableau TQ of Q byA as described in the proof of Corollary 4.4; this yields

tableau TQ1
that satisfies A; let Q1 be the CQ represented by TQ1

;
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(2) guess a query plan ξ such that |ξ| 6 M , a CQ query Q2 such that the tableau of
Q2 satisfies A and |Q2| 6 M · |V | · |R|, a homomorphism h1 from Q1 to Q2, and a
homomorphism h2 from Q2 to Q1;

(3) check whether ξ conforms to A; if not, then reject the guess; otherwise, continue;
(4) rewrite ξ into a CQ query Q′ by unfolding views in ξ;
(5) chase the tableau TQ′ of Q′ by A, which yields TQ′

1
that satisfies A;

(6) syntactically check whether the tableau TQ2 of Q2 is the same as TQ′
1
, i.e., a tuple

template t is in TQ2
if and only if t is in TQ′

1
; if not, then reject the guess; otherwise,

continue;
(7) check whether h1 and h2 are homomorphic mappings, and whether h1 witnesses

Q2 v Q1 and h2 witnesses Q1 v Q2; if so, return true; otherwise reject the guess.
The algorithm is obviously correct. For its complexity, we need the following Lemma.

LEMMA 4.6. If A consists of FDs only, it is in PTIME to decide whether a plan ξ ∈
QPQ conforms to A. 2

Using the lemma, we show that the algorithm for VBRP(CQ) is in NP. Since the chase
can be done in PTIME, steps (1) and (5) are in PTIME. By Lemma 4.6, step (3) can be
done in PTIME. Step (4) is in PTIME. Step (6) does syntactic checking and is in PTIME.
Because homomorphic mappings can be verified in PTIME, step (7) is also in PTIME.

This concludes the proof of Proposition 4.5, modulo the proof of Lemma 4.6. 2

We next verify Lemma 4.6.

Proof of Lemma 4.6. To check whether ξ conforms to A, we check whether for each
fetch(X ∈ Sj , R, Y ) operation in ξ, the following conditions hold: (a) there is an access
constraint R(X → Y ′, 1) in A such that Y ⊆ X ∪ Y ′; and (b) there exists a constant N
such that for all instances D of R that satisfy A, |Sj | 6 N in the computation of ξ(D).

For each fetch(X ∈ Sj , R, Y ) operation, it is in PTIME to check condition (a). We use
the following algorithm to check condition (b). Let ξj be the sub-tree of ξ rooted at Sj ,
and Qj be the query expressed by ξj . The algorithm works as follows:
(1) unfold Qj by replacing each view with its definition, yielding Q′j in CQ;
(2) chase the tableau TQ′

j
of Q′j by A as described in the proof of Corollary 4.4; this

yields tableau TQ′′
j

that satisfies A; let Q′′j be the CQ represented by TQ′′
j
;

(3) check whether Q′′j has bounded output; if so, return true; otherwise, return false.
From the proof of Corollary 4.4, we can see that Q′′j ≡A Qj . Then the correctness of the
algorithm follows. For its complexity, observe that step (1) is in PTIME. Since the chase
can be done in PTIME, step (2) is in PTIME. Because the tableau TQ′′

j
satisfies A, and

computing cov(Q′′j ,A) is in PTIME, step (3) is in PTIME by Lemma 3.6. Since there are
at most O(|ξ|) fetch operations in ξ, the algorithm is in PTIME. 2

Along the same lines as Corollary 4.4, one can verify that for fixed R,A,M and V,
VBRP is in PTIME for the sub-class of ACQ queries such that their tableau representa-
tions satisfy the cardinality constraints in A. A special case of this is when A = ∅, e.g.,
the setting of [Armbrust et al. 2013], when access constraints are not employed at all.

Theorem 4.2 remains intact on any class C of queries as long as it is in PTIME to
compute a maximum plan in QPQ for all queries in C. Examples include

(1) self-join-free CQ, i.e., the class of CQ queries that contain no repeated relation
names, and
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(2) CQ with a fixed number of variables, i.e., for each constant k, the class of CQ queries
that have at most k free variables.

By Theorem 4.2 and Lemma 4.3, VBRP is also in PTIME in these two cases.

The results of the section tell us that the intractability of VBRP(ACQ) is robust. The
proof of Theorem 4.1 shows that A is the crucial parameter here, while V and M could
be empty and 0, respectively. Not all is lost. There are practical cases when VBRP(ACQ)
and even VBRP(CQ) are tractable. Moreover, we can cope with the hardness by means
of effective syntax (Section 5) and approximate query answering (Section 8).

5. AN EFFECTIVE SYNTAX

We have seen that the undecidability of VBRP for FO and the intractability for CQ are
rather robust. Can we still make practical use of bounded rewriting analysis when
querying big data? We next show that the answer is affirmative.

We develop effective syntax for FO queries that have a bounded rewriting, to syntac-
tically check the existence of bounded rewriting in PTIME without sacrificing the ex-
pressive power. More specifically, for any database schema R, views V, access schema
A and bound M , we identify two classes of FO queries, (a) a class of queries topped by
(R,V,A,M), which “covers” all FO queries over R that have an M -bounded rewriting
using V under A, up to A-equivalence, and (b) a class of size-bounded queries, which
“covers” all the views of V in FO that have bounded output for all instances D |= A of
R. The second class is to effectively check bounded output (see Section 3.1). We show
that it is in PTIME to syntactically check whether a query is topped or size-bounded.

Below we first present the main results of the section in Section 5.1. We then define
topped queries and size-bounded queries in Sections 5.2 and 5.3, respectively.

5.1. Practical Use of Bounded Rewriting

The main results of the section are as follows.

THEOREM 5.1. For any R, V and M , and under any A,
(a) each FO query Q with an M -bounded rewriting using V is A-equivalent to a query

topped by (R,V,A,M);
(b) every FO query topped by (R,V,A,M) has an M -bounded rewriting in FO using V

under A, which can be identified in PTIME in M , |Q|, |V| and |A|; and
(c) it takes PTIME inM, |R|, |Q|, |V| and |A| to check whether an FO queryQ is topped by

(R,V,A,M), which uses an oracle that checks whether FO views in V have bounded
output in PTIME in |Q|.

Here A, Q and V are all defined over the same R. 2

That is, topped queries are a key sub-class of FO queries with a bounded rewriting,
and can be efficiently checked. Moreover, the bounded rewriting can also be efficiently
generated. For the existence of the oracle, we show the following.

THEOREM 5.2. For any R and under any A,
(a) each FO query Q over R that has bounded output is A-equivalent to a size-bounded

query under A;
(b) each size-bounded query has bounded output under A; and
(c) it takes PTIME in |Q| to check whether an FO query Q is a size-bounded query.
Here A and Q are defined over the same R. 2
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Before we define topped and size-bounded queries, we remark the following. (1) The-
orems 5.1 and 5.2 just aim to demonstrate the existence of effective syntax for FO
queries with bounded rewriting. There are other forms of effective syntax for such FO
queries. (2) Theorem 5.1 does not contradict to Corollary 3.9 due to the requirement of
A-equivalence in its condition (a), which is undecidable for FO.

Practical use of bounded query rewriting. Capitalizing on the effective syntax,
we can develop algorithms (a) to check whether a given FO query Q is topped by
(R,V,A,M) in PTIME; and if so, (b) to generate a bounded query plan ξ for Q using V.
The existence of these algorithms is warranted by Theorems 5.1 and 5.2.

We can then support bounded rewriting on top of commercial DBMS as follows.
Given an application, a database schema R and a resource bound M are first deter-
mined, based on the application and available resources, respectively. Then, a set V of
views can be selected following [Armbrust et al. 2013], and a setA of access constraints
can be discovered. After these are in place, given an FO queryQ posed on an instanceD
ofR that satisfiesA, we check whether Q is topped by (R,V,A,M). If so, we generate a
bounded query plan ξ for Q using V, by using the algorithms described above. Then we
can compute Q(D) by executing ξ with the existing DBMS. Since a commercial DBMS
may not execute ξ directly, this can be carried out by translating ξ into an equivalent
SQL query Qξ, which is passed to the underlying DBMS, as suggested in [Cao and Fan
2016]. By “implementing” fetch operations in terms of index joins and using join hints
or virtual views to enforce the join orders, we can enforce DBMS to evaluate Qξ by ex-
actly following ξ. Moreover, incremental methods for maintaining the views [Armbrust
et al. 2013] and the indices of A [Cao and Fan 2016] have already been developed, in
response to updates to D. Putting these together, we can expect to efficiently answer a
number of FO queries in (possibly big) D by leveraging bounded rewriting.

5.2. Topped Queries for Bounded Rewriting

We next define topped queries and outline a proof of Theorem 5.1.
It is nontrivial to define an effective syntax, as shown below.

Example 5.3. Consider a database schema R1 with two relations R(A,B) and T (C,
E), an access schema A2 consisting of R(A → B,N) and T (C → E,N), and V3 with
a single view V3(x, y) = R(y, y) ∧ T (x, y). Given a value for x, V3 returns a bounded
number of y values due to the access constraint on T . Consider FO query: q3(z) = q4(z)∧
¬∃wR(z, w), where q4(z) = ∃x∃y ((R(y, y) ∧ T (x, y)) ∧ (x = 1)) ∧ R(y, z). Then q3 has a
13-bounded rewriting as in Fig. 3, which is for an A-equivalent query:

q′3(z) = q4(z) ∧ ¬(q4(z) ∧ ∃wR(z, w)).

Observe the following. (1) Query q′3 becomes bounded because it propagates z-values
from q4 to “¬∃wR(z, w)”. (2) Such propagated values allow us to fetch bounded data for
relation atoms, i.e., R(z, w). (3) The part of the plan for a sub-query of q3 may have to
embed the part of the plan for another sub-query. For instance, (i) q4 has a 5-bounded
rewriting in q3 (the left part of Fig. 3); (ii) ∃wR(z, w) has a 7-bounded rewriting in q3

(the right part of Fig. 3), which embeds the 5-bounded plan for q4; and (iii) the size of
the plan for q3 is the sum of the sizes of plans for q4 and ∃wR(z, w), i.e., 5 + 7 + 1 = 13.

This shows that to cover queries such as q3, topped queries have to support value
propagation among sub-queries, and keep track of the sizes of plans for sub-queries. 2

Topped queries. This observation motivates us to define topped queries by char-
acterizing value propagation among their sub-queries. To do this, we define topped
queries with two binary functions covq(Qs(x̄), Q(z̄)) and size((Qs(x̄), Q(z̄)) that take two
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Fig. 3. A bounded plan for q3 of Example 5.3

queries Qs(x̄) and Q(z̄) as input parameters. Below we first provide intuition behind
covq(Qs(x̄), Q(z̄)) and size((Qs(x̄), Q(z̄)). Using the functions, we then define topped
queries, and complete the definition by giving the syntactic form of the two functions.

(1) Boolean function covq(Qs(x̄), Q(z̄)) returns true if the following condition is satisfied:
if covq(Qs(x̄), Q(z̄)) = true and Qs(x̄) has a bounded rewriting, then Qs(x̄) ∧ Q(z̄) also
has a bounded rewriting. Intuitively, Q(z̄) is a (sub-)query we are inspecting, and Qs(x̄)
keeps track of sub-queries from which values are propagated to Q(z̄).

We use covq(Qs(x̄), Q(z̄)) to check whether we can propagate values from Qs to Q,
and get a bounded rewriting of Q in Qs ∧ Q. For instance, by covq(q4(z),∃wR(z, w)) =
true for q3(z) in Example 5.3, in which q4(z) is Qs and ∃wR(z, w) is Q, it indicates that
if q4 has a bounded rewriting, then by propagating values to free variable z of q4, we
can have a bounded rewriting for sub-query ∃wR(z, w) in q4(z) ∧ ∃wR(z, w).

Note that only values of the free variables of Qs(x̄) can be propagated to Q(z̄), and
Q(z̄) can only take values for its free variables as input from Qs(x̄). In other words,
Q(z̄) only takes values of the variables in x̄ ∩ z̄ from Qs(x̄).

In particular, Qs may include views from V. As will be shown shortly, function
covq(Qs, Q) distinguishes views that need to have bounded output from those that do
not have to, to ensure that a bounded number of values are propagated from Qs to Q
over any instance D |= A, i.e., Q does have a bounded rewriting sub-plan in Qs ∧Q.

(2) Function size((Qs(x̄), Q(z̄)) is a natural number that maintains an upper bound
of the size of minimum sub-plans for sub-query Q(z̄) in Qs(x̄) ∧ Q(z̄). We will use
size(Qs, Q) to ensure that our query plans do not exceed a given bound M .

For instance, in Example 5.3, size(q4,∃wR(z, w)) = 7, which is the size of the sub-plan
for evaluating ∃wR(z, w) in q4 ∧ ∃wR(z, w) by using values propagated from q4.

We now define topped queries using the two functions. An FO query Q over R is
topped by (R,V,A,M) if (1) covq(Qε, Q) = true; and (2) size(Qε, Q) 6 M . Here Qε is a
“tautology query” such that for any Q, Qε ∧Q = Q and Qε has a 0-bounded plan. It is
an extension of functions covq(Qs, Q) and size(Qs, Q) for function parameter Qs.

Intuitively, we compute covq(Qs, Q) and size(Qs, Q) starting with Qs = Qε, and con-
clude that Q is topped by (R,V,A,M) if the two conditions above are satisfied.

Functions covq(·, ·) and size(·, ·). We next define the functions inductively based on
the structure of FO query Q. In the process, we also give a bounded query plan. We will
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ensure that if covq(Qs(x̄), Q(z̄)) = covq(Qε, Qs(x̄)) = true and Qs(x̄) has a size(Qε, Qs(x̄))-
bounded rewriting, then Qs(x̄) ∧Q(z̄) has a size(Qε, Qs(x̄) ∧Q(z̄))-bounded rewriting.

The definition of covq(Qs(x̄), Q(z̄)) and size(Qs(x̄), Q(z̄)) is separated into 7 cases
below. In particular, we define covq(Qs(x̄), Qε) = true, size(Qs(x̄), Qε) = 0.

(1) Q(z̄) is z = c. We define covq(Qs(x̄), Q(z̄)) = true and size(Qs(x̄), Q(z̄)) = 1.

(2) Q(z̄) is V (z̄). We can access cached views; thus, we define covq(Qs(x̄), Q(z̄)) = true

and size(Qs(x̄), Q(z̄)) = 1. That is, constant queries and views have 1-bounded rewriting
and therefore, are taken as topped queries.

(3) Q(z̄) is Q′(z̄) ∧ C, where C is one of (x = y), (x 6= y), (x = c) and(x 6= c). We define
covq(Qs(x̄), Q(z̄)) = covq(Qs(x̄), Q′(z̄)); and size(Qs(x̄), Q(z̄)) = size(Qs(x̄), Q′(z̄))+1 when
covq(Qs(x̄), Q′(z̄)) = true, and as size(Qs(x̄), Q(z̄)) = +∞ otherwise. Given a bounded
plan ξ′ for Q′, a bounded plan for Q is (T = ξ′, σC(ξ′)), increasing the size of ξ′ by 1.

(4) Q(z̄) is Q1(z̄1) ∧Q2(z̄2), where Q2 is not an (in)equality. Let µi = covq(Qs(x̄),

Qi(z̄i)), si = size(Qs(x̄), Qi(z̄i)), s = size(Qε, Qs(x̄)), µ′ = covq(Qs(x̄) ∧ Q1(z̄1), Q2(z̄2)),
s′ = size(Qs(x̄) ∧Q1(z̄2), Q2(z̄2)) (i ∈ {1, 2}). We distinguish the following cases:
(a) if µ1 = true,Q2(z̄2) is of the form ∃w̄ R(z̄1, z̄

′
2, w̄), there exists access constraintR(Z1 →

Z ′2, N) is in A with Z1 ∪ Z ′2 = Z2 and if Qs(x̄) ∧Q1(z̄1) has bounded output under A,
then we define covq(Qs(x̄), Q(z̄)) = true and size(Qs(x̄), Q(z̄)) = s1 + 1; otherwise

(b) if µ1 = µ2 = true, then covq(Qs(x̄), Q(z̄)) = true, size(Qs(x̄), Q(z̄)) = 2s+s1+s2+λ(z̄1,z̄2),
where λ(z̄1,z̄2) is 1 (resp. 4) if z̄1 ∩ z̄2 is empty (resp. not empty); otherwise

(c) if µ1 = µ′ = true and |Q2| 6 K for some predefined constant K (here |Q2| is the size
of Q2), then covq(Qs(x̄), Q(z̄)) = true and size(Qs(x̄), Q(z̄)) = s1 + s′.

(d) otherwise we define covq(Qs(x̄), Q(z̄)) = false and size(Qs(x̄), Q(z̄)) = +∞.
In case (4) we characterize value propagation via conjunction in the queries. More

specifically, when covq(Qs(x̄), Q(z̄)) = true, we have three cases below.
(a) If Q1 has a bounded plan ξ1 with Qs, and if Q2 is (a projection of) a relation atom
covered by an access constraint R(Z1 → Z ′2, N) inA, then Q(z̄) also has a bounded plan
with Qs(x̄) and Q1(z̄1), as long as Qs(x̄) ∧ Q1(z̄1) has bounded output. Indeed, a plan
for Q2 is (T = ξ1, fetch(X ∈ T,R,Z ′2)) of size |ξ1| + 1. We instantiate the Z1 attributes
of R with the output of Q1(z̄1), and ensure that the input T of fetch, i.e., the output of
Qs(x̄) ∧Q1(z̄1), has bounded size. This case requires bounded output analysis.

For instance, consider q2 = ∃x ((R(y, y) ∧ T (x, y)) ∧ (x = 1)) and R(y, z) in sub-query
q4 of q3 of Example 5.3. The y-values from q2 are propagated to R(y, z) in this case.

By cases (2), (3) and (7c) (will be seen shortly), one can verify that covq(Qε, q2) = true
and size(Qε, q2) = 2 under A2 and V3 of Example 5.3. Now consider query q′2 = q2 ∧
R(y, z). By case (4a), we have that covq(Qε, q

′
2) = covq(Qε, q2) = true and size(Qε, q

′
2)

= size(Qε, q2) + 1 = 3. Thus q′2 is topped by (R1,V3,A2, 3) (recall R1, V3 and A2 from
Example 5.3).

(b) If both Q1 and Q2 have bounded sub-plans with Qs, e.g., ξ1 and ξ2, respectively,
then Q also has a bounded plan with Qs, whose size depends on the forms of Q1(z̄1)
and Q2(z̄2), as reflected in different values of λ(z̄1,z̄2). More specifically, if z̄1 and z̄2 are
disjoint, then Q is a production of Q1 and Q2 and thus has a query plan (T1 = ξ1,
T2 = ξ2, T3 = T1 × T2), of size |ξ1| + |ξ2| + 1. Otherwise, i.e., if z̄1 ∩ z̄2 6= ∅, then Q is
a join of Q1 and Q2 and thus has a plan (T1 = ξ1, T2 = ξ2, T3 = ρ(T2), T4 = T1 × T2,
T5 = σZ1∩Z2=ρ(Z1∩Z2)(T4)), of size |ξ1| + |ξ2| + 4. Here ρ renames attributes in Z1 ∩ Z2.
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Note that ξ1 and ξ2 are sub-plans of Q1 and Q2 with Qs, respectively, which use the
output of Qs to compute Q1 and Q2. Hence, |ξ1| and |ξ2| are characterized by s+ s1 and
s+ s2, respectively, including the size of the plan for Qs.

For example, consider Qs = S(x), Q1 = R(x, y) and Q2 = R(x, z) over relation
schemas S(C) and R(A,B) with access constraints S(∅ → C,N) and R(A → B,N).
Then covq(Qs, Q1 ∧ Q2) = true since covq(Qs, Q1) = covq(Qs, Q2) = true (by cases (7a)
and (7b), which will be discussed shortly); size(Qs, Q1 ∧Q2) = B1 +B2 + 4, where Bi =
size(Qε, Qs) + size(Qs, Qi) (for i = 1, 2) is an upper bound of the size of the sub-plan for
Qi with Qs that will be used by the plan for Q with Qs; and 4 is the number of steps to
join sub-plans for Q1 and Q2 with Qs together. Note that size(Qε, Qs) is counted twice
as it will be used by the sub-plans for both Q1 and Q2 with Qs.

(c) If Q1 has a bounded plan with Qs while Q2 has a bounded plan with Qs∧Q1 instead
of Qs alone, e.g., plans ξ1 and ξ′2, respectively, then Q has a bounded query plan of size
|ξ1|+ |ξ′2|, where |ξ1| = size(Qs(x̄), Q1(z̄1)) and |ξ′2| = size(Qs ∧Q1(x̄), Q2(z̄2)). Note that
we extend Qs(x̄) with Q1(z̄1) only if Q1(z̄1) has a bounded plan using V with Qs (i.e.,
covq(Qs, Q1) = true). One can verify that this expansion policy assures that Qs always
has a bounded plan since we start with a tautology query Qs = Qε.

Observe the following. (1) Qs is expanded in case (c) above to propagate z̄1 from
Q1∧Qs to Q2 there. More specifically, if sub-query Q2(z̄2) of Q does not have a bounded
rewriting with Qs(x̄) (i.e., when µ2 = false), we may extend Qs(x̄) with Q1(z̄1) to make
Q2(z̄2) bounded when µ′ = true. (2) We also restrict the size |Q2| for case (c) to ensure
both functions covq(·, ·) and size(·, ·) are in PTIME. Indeed, to compute covq(Qs, Q), we
need to expand Qs with various conjuncts of Q2 if Q2 is also a conjunction, by applying
case (4b) or (4c) alternatively. For example, whenQ2 isQ21∧Q22, to compute covq(Qs, Q)
via cases (4b) and (4c), we may need to compute covq(Qs, Q22), covq(Qs ∧ Q1, Q22),
covq(Qs ∧ Q21, Q22) and covq(Qs ∧ Q1 ∧ Q21, Q22). In the worst case, we may test 2|Q2|

many difference cases. Hence we restrict the size of Q2 by a predefined constant K, to
bound the number of expansions of Qs when computing covq(Qε, Q) and ensure that it
is in PTIME. We remark that this restriction has no impact on the expressive power of
topped queries up to equivalence, even when K = 1 (see the proof of Theorem 5.1 in
the electronic appendix for more details).

(5) Q(z̄) is Q1(z̄1) ∨Q2(z̄2). If z̄1 6= z̄ or z̄2 6= z̄, we let covq(Qs(x̄), Q(z̄)) = false

and size(Qs(x̄), Q(z̄)) = +∞. Otherwise, let µi = covq(Qs(x̄), Qi(z̄)) and si =
size(Qs(x̄), Qi(z̄)) for i ∈ {1, 2}. Define covq(Qs(x̄), Q(z̄)) = µ1 ∧ µ2, and size(Qs(x̄), Q(z̄))
= s1 + s2 + 1 if covq(Qs(x̄), Q(z̄)) = true and size(Qs(x̄), Q(z̄)) = +∞ otherwise.

Intuitively, if Q1 and Q2 have bounded plans ξ1 and ξ2, respectively, then Q(z̄) has a
bounded plan (T1 = ξ1, T2 = ξ2, T1 ∪ T2), of size |ξ1|+ |ξ2|+ 1.

Note that when Q1 and Q2 do not share the same free variables z̄, Q1 ∨ Q2 can
never be topped queries since covq(Qs, Q1 ∨ Q2) = false. This is to ensure that topped
queries are safe-range and hence are “safe”, i.e., domain-independent (only domain-
independent calculus queries are well-defined queries, i.e., queries have determined
query answers on every database instance, and have equivalent algebra forms and
query plans [Gelder and Topor 1991]). For example, this will exclude “unsafe” queries
like Q(x, y) = ∃w1, w2R(w1, x) ∨R(w2, y) from the class of topped queries.

(6) Q(z̄) is Q1(z̄1) ∧ ¬Q2(z̄2). If z̄1 6= z̄ or z̄2 6= z̄, we define covq(Qs(x̄), Q(z̄)) = false and
size(Qs(x̄), Q(z̄)) = +∞. Otherwise, let µi = covq(Qs(x̄), Qi(z̄)), si = size(Qs(x̄), Qi(z̄)),
µ12 = covq(Qs(x̄), Q1(z̄) ∧Q2(z̄)), and s12 = size(Qs(x̄), Q1(z̄) ∧Q2(z̄)). Then we define

(a) if µ1∧ µ2 = true, covq(Qs(x̄), Q(z̄)) = true and size(Qs(x̄), Q(z̄))=s1+s2+1; otherwise

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:36 Bounded Query Rewriting Using Views

(b) if µ1∧ µ12 = true and |Q2| 6 K for some predefined constant K, covq(Qs(x̄), Q(z̄)) =
true and size(Qs(x̄), Q(z̄)) = s1 + s12 + 1; otherwise

(c) we define covq(Qs(x̄), Q(z̄) = false and size(Qs(x̄), Q(z̄)) = +∞.
It is case (6) that captures how sub-query Q4 of Q3 is propagated to ∃wR(z, w) in

Example 5.3. When covq(Qs(x̄), Q(z̄)) = true, we have one of the following three cases.
(a) When µ1 = µ2 = true, it is similar to case (5) above.
(b) If µ1 = µ12 = true, let ξ1 and ξ12 be the plans forQ1(z̄) andQ1(z̄)∧Q2(z̄), respectively,
with Qs(x̄). Since Q1(z̄) ∧ ¬Q2(z̄) = Q1(z̄) ∧ ¬(Q1(z̄) ∧ Q2(z̄)), Q(z̄) has bounded plan
(T1 = ξ1, T2 = ξ12, T3 = T1 − T2), of size |ξ1| + |ξ12| + 1. For the same reason as the one
given in case 4(c) above, we also require |Q2| 6 K here.
(c) Otherwise, covq(Qs(x̄), Q(z̄)) = false, and thus size(Qs(x̄), Q(z̄)) = +∞, i.e., Q has no
bounded rewriting.

For the same reason as (5), we only allow cases when Q1 and Q2 have the same free
variables to be topped queries, to ensure that every topped query is safe-range.

(7) Q(z̄) is ∃w̄ Q′(w̄, z̄) (w̄ is possibly empty). Let µ′ = covq(Qs(x̄), Q′(w̄, z̄)) and s′ =
size(Qs(x̄), Q′(w̄, z̄)). Then we consider the following three cases:

(a) if Q′ is R(w̄, z̄) and there exists access constraint R(∅ → Z,N) ∈ A, then we define
covq(Qs(x̄), Q(z̄)) = true and size(Qs(x̄), Q(z̄)) = 1;

(b) if Q′ is R(w̄, z̄), R(X → Z ′, N) ∈ A, X ∪ Z ′ = Z and if Qs(x̄) has bounded output
under A, then covq(Qs(x̄), Q(z̄))=true, size(Qs(x̄), Q(z̄)) = s′ + 1;

(c) otherwise, covq(Qs(x̄), Q(z̄)) = covq(Qs(x̄), Q′(w̄, z̄)) and size(Qs(x̄), Q(z̄)) = size(Qs(x̄),
Q′(w̄, z̄)) + 1 if covq(Qs(x̄), Q(z̄)) = true, and size(Qs(x̄), Q(z̄)) = +∞ otherwise.
Observe thatQs(x̄) may not have bounded output even when it has a bounded rewrit-

ing. Therefore, in case (b) above we have to ensure that Qs(x̄) has bounded output in
order to propagate x̄-value from Qs(x̄) to R(z̄), for a fetch operation to use the x̄-value.

Moreover, observe the following about case (7).
(a) When Q(z̄) is a projection of a relation atom ∃w̄ R(w̄, z̄), if it is covered by R(∅ →
Z,N) in A, then fetch(∅, R, Z) is an 1-bounded plan for Q(z̄).
(b) IfQ(z̄) is ∃w̄ R(w̄, z̄) and is covered byR(X → Z ′, N), andQs(x̄) has bounded output,
then Qs ∧Q has a plan (T1 = ξs, T2 = fetch(X ∈ T1, R, Z

′)), where ξs is the plan for Qs.
And this is also a plan for Q with Qs.

(c) Otherwise, Q(z̄) has a bounded plan if Q′(w̄, z̄) has one. Let ξ′ be the plan for Q′
with Qs. Then (T1 = ξ′, T2 = πZ(T1)) of size |ξ′| + 1 is a plan for Q(z̄) with Qs(x̄).

Example 5.4. We next show that q3 of Example 5.3 is topped by (R1,A2,V3, 13).
Denote the sub-queries of q3 as follows:
q1 = V3(x, y) ∧ (x = 1), q2 = ∃x q1, q′2 = q2 ∧R(y, z) (thus q4 = ∃y q′2), q′4 = ∃wR(z, w).

Then one can easily verify the following:
(a) covq(Qε, q3) = (covq(Qε, q4) ∧ covq(Qε, q

′
4)) ∨(covq(Qε, q4) ∧ covq(Qε, q4 ∧ q′4)),

(b) covq(Qε, q4)=covq(Qε, q
′
2)= (covq(Qε, q2) ∧ covq(Qε, R(y, z)) ∨ (covq(Qε, q2)∧

covq(q2, R(y, z)),
(c) covq(Qε, q2) = covq(Qε, q1) = true,
(d) covq(q2, R(y, z)) = true (since q2 has bounded output: |q2(D)| 6 N for any D |= A),
(e) from these it follows that covq(Qε, q4) = true,
(f) covq(q4, q

′
4) = true (since q4 has bounded output: |q4(D)| 6 N2 for any D |= A),

(g) covq(Qε, q4 ∧ q′4) = (covq(Qε, q4) ∧ covq(Qε, q
′
4)) ∨ (covq(Qε, q4) ∧ covq(q4, q

′
4)) = true.
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Thus covq(Qε, q3) = true. Along the same lines, one can verify that size(Qε, q3) = 13.
Thus q3 is topped by (R1,A2,V3, 13). 2

Proof sketch of Theorem 5.1. Having defined topped queries, we now outline a proof
of Theorem 5.1 (we defer the details to the electronic appendix for the lack of space).

(a) Suppose that Q is an FO query with an M -bounded rewriting, i.e., Q has an M -
bounded query plan ξ(Q,V,R) under A. We show that there exists a query Qξ topped
by (R,V,A,M) such that ξ ≡A Qξ, by induction on M , verifying each step (case) of ξ.

(b) We show that every query Q topped by (R,V,A,M) has a size(Qε, Q)-bounded
rewriting using V under A. The proof needs the following lemma: if covq(Qs, Q) =
covq(Qε, Qs) = true, and if Qs has a size(Qε, Qs)-bounded plan, then Qs ∧ Q has a
size(Qε, Qs ∧Q)-bounded plan. This is verified by induction on the structure of Q.

For instance, when Q(z̄) is Q1(z̄1) ∧ Q2(z̄2), covq(Qs, Q(z̄)) and covq(Qε, Qs) are true
and Qs has a size(Qε, Qs)-bounded plan, we know that covq(Qs, Q1(z̄1)) is also true. By
the induction hypothesis we have that Qs ∧Q1(z̄1) has a size(Qε, Qs ∧Q1(z̄1))-bounded
plan. Moreover, either covq(Qs, Q2(z̄2)) or covq(Qs∧Q1(z̄1), Q2(z̄2)) is true. In both cases,
by the induction hypothesis, Qs ∧Q1 ∧Q2 has a size(Qε, Qs ∧Q1 ∧Q2)-bounded plan.

(c) It takes PTIME in |R|, |Q|, |V|, |A| and M to check whether an FO query is topped
by (R,V,A,M). Indeed, we show that both covq(Qε, Q) and size(Qε, Q) are PTIME func-
tions, which invoke a PTIME oracle to check bounded output for cases (4a) and (7b)
of topped queries given above. Moreover, we show that it takes PTIME to generate an
M -bounded rewriting using V for each query topped by (R,V,A,M). 2

Remark. (a) To prove Theorem 5.1(1), it suffices to use Qs = Qε, which yields a simpler
form of effective syntax for bounded rewriting. We allow value propagation in cases
(4c) and (6b) in order to cover queries that are commonly used in practice, which,
nonetheless, leads to an effective syntax that is a little complicated. (b) The class of
topped queries is quite different from the rules for x̄-controllability ( [Fan et al. 2014];
see Section 7) and the syntactic rules for bounded evaluability of CQ [Fan et al. 2015]
and for FO [Cao and Fan 2016], particularly in the use of Qs to check bounded output
of views and the function size(Qs(x̄), Q(z̄)) to ensure the bounded size of query plans.

5.3. Size Bounded Queries

We next define size-bounded queries and prove Theorem 5.2. We remark that there
are other forms of effective syntax for FO queries with bounded output. To simplify the
discussion, below we present a straightforward one.

Size-bounded queries. An FO query Q(x̄) is size-bounded under an access schema A
if it is of the following form:
Q(x̄) = Q′(x̄) ∧ ∀x̄1, . . . , x̄K+1

(
Q′(x̄1) ∧ · · · ∧Q′(x̄K+1)→

∨
i,j∈[1,K+1],i6=j x̄i = x̄j

)
,

where K is a natural number, and Q′ is an FO query.
Intuitively, for any FO queryQ′, ifQ′ has output size bounded byK, then the Boolean

conjunct ∀x̄1, . . . , x̄K+1

(
Q′(x̄1) ∧ · · · ∧ Q′(x̄K+1) →

∨
i,j∈[1,K+1],i6=j x̄i = x̄j

)
of Q is true.

Hence, Q = Q′ and Q also has output bounded by K. When Q′ does not have output
size bounded byK, the Boolean conjunct is false. HenceQ = false, andQ also has output
size bounded by K in this case. The class of size-bounded queries includes all queries
of such form, which obviously have bounded output size. Indeed, this is an effective
syntax of queries with bounded output, verifying Theorem 5.2, as proved below. Note
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that we do not fix the number K, i.e., queries with arbitrary natural number K are
included in the class of size-bounded queries, as long as K is a natural number.

Proof of Theorem 5.2. This class of size-bounded queries suffices for Theorem 5.2.

(a) Consider an FO query Q(x̄) having bounded output under A. By the definition of
queries with bounded-output (Section 3.1), there exists a natural number K such that
for any instance D of R, if D |= A, then |Q(D)| 6 K. Construct Q′(x̄) from Q(x̄) as
Q′(x̄) = Q(x̄) ∧ ∀x̄1, . . . , x̄K+1

(
Q(x̄1) ∧ · · · ∧Q(x̄K+1)→

∨
i,j∈[1,K+1],i6=j(x̄i = x̄j)

)
.

Obviously, Q′(x̄) is a size-bounded query. Moreover, Q′(x̄) ≡A Q(x̄), since Q(x̄) has
output bounded by K, and hence, for any D |= A, it is easy to see that Q(D) = Q′(D).

(b) Consider a size-bounded query Q(x̄) of the form above. For any D, if Q′(D) con-
tains more than K answer tuples, then Q(D) = ∅. Otherwise, Q(D) = Q′(D) and Q(D)
includes at most K tuples. Hence |Q(D)| 6 K. That is, Q has bounded output.

(c) By the definition of size-bounded queries, it is immediate to syntactically check
whether an FO query Q is size-bounded. It takes PTIME in the size |Q| of Q. 2

6. BOUNDED L1-TO-L2 QUERY REWRITING USING VIEWS

One might be tempted to think that it would be simpler to find a bounded rewriting of
a query Q of L1 in another language L2 that is more expressive than L1. In this section,
we formalize and study L1-to-L2 bounded rewriting using views.

More specifically, consider query languages L1 and L2, where L1 ⊆ L2, i.e., for all
queries Q ∈ L1, Q ∈ L2. We study the problem of L1-to-L2 bounded rewriting using
views, denoted by VBRP+(L1,L2) and stated as follows.

— INPUT: A database schema R, a natural number M (in unary), an access schema
A, a query Q ∈ L1, and a set V of L1-definable views, all defined on R.

— QUESTION: Under A, does Q have an M -bounded rewriting in L2 using V?
That is, VBRP+(L1,L2) is to decide whether Q has a query plan ξ such that (a) ξ

is in L2, i.e., Qξ ∈ L2 for the query Qξ expressed by ξ, (b) ξ conforms to A, and (c)
the size of ξ is at most M (see Section 2). Observe that VBRP(L1) is a special case of
VBRP+(L1,L2), i.e., VBRP+(L1,L1), when L1 and L2 are required to be the same query
language. We thus only need to consider cases when L1 ( L2, since we have already
covered the cases when L1 = L2 in the previous sections. We show that VBRP+(L1,L2)

makes our lives no easier than VBRP(L1). Indeed, its lower bound gets no better than
its counterpart given in Theorem 3.1.

THEOREM 6.1. VBRP+(L1,L2) is Σp3-hard
— when L1 is CQ and L2 is one of UCQ, ∃FO+or FO;
— when L1 is UCQ and L2 is ∃FO+or FO; and
— when L1 is ∃FO+and L2 is FO. 2

Proof: (1) Observe that VBRP+(CQ,L2) is a special case of VBRP+(UCQ,L2) and
VBRP+(∃FO+, L2) since CQ ⊆ UCQ and CQ ⊆ ∃FO+. Thus it suffices to show that
VBRP+(CQ,L2) is Σp3-hard when L2 is UCQ, ∃FO+or FO, from which it follows that
VBRP+(UCQ, ∃FO+), VBRP+(UCQ,FO) and VBRP+(∃FO+, FO) are also Σp3-hard.

We show that VBRP+(CQ,L2) is Σp3-hard by reduction from the ∃∗∀∗∃∗3CNF prob-
lem, which is Σp3-complete [Stockmeyer 1976] (see the proof of Theorem 3.1 for
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∃∗∀∗∃∗3CNF). We adopt the reduction given for VBRP(CQ) in the proof of Theorem 3.1.
That is, given a sentence φ = ∃X∀Y ∃Z ψ(X,Y, Z), we define the same database schema
R, access schema A, CQ Q, and views V for VBRP+(CQ,L2). We also set M = 6.

To verify that this makes a reduction for CQ-to-L2 rewriting, we show the following.

LEMMA 6.2. For R,A,V, Q and M given in the proof of Theorem 3.1, Q has an M -
bounded rewriting in L2 using V under A if and only if Q has an M -bounded rewriting
in CQ using V under A, where L2 ranges over UCQ, ∃FO+and FO. 2

This suffices. For if it holds, the problem for deciding whether the query Q has an
M -bounded rewriting in L2 is equivalent to deciding whether Q has an M -bounded
rewriting in CQ. Then the construction given in the proof of Theorem 3.1 is a reduction
from the ∃∗∀∗∃∗3CNF problem to the latter problem. Hence VBRP+(CQ,L2) is Σp3-hard.

Proof: We now prove Lemma 6.2. Obviously, if Q has an M -bounded rewriting in CQ,
then Q has an M -bounded rewriting in L2. Conversely, assume by contradiction that Q
has an M -bounded rewriting ξ (i.e., query plan) in L2 but does not have an M -bounded
rewriting in CQ, when L2 is UCQ, ∃FO+or FO. We show that it is impossible that ξ
includes either union ∪ or set difference \ operations, contradicting the assumption.

We start with the following observation. Since ξ is a query plan for Q, we have that
ξ ≡A Q (see Section 2). Then ξ must contain the following operations:
• either a set union operation ∪ or a set difference \ operation as assumed;
• the view V ; by the definition of Q and V , for ξ to cover all relations needed to answer
Q, ξ has to use V given the constraint imposed by bound M = 6;
• a fetch operation for Ro, because V does not contain relation Ro needed by Q;
• a constant selection σY=1 on the relation atom Ro(k, 1) in Q; and
• a projection of the form π∅(S) for a relation S; this is because Q is a Boolean query,

while the view V , the constant selection, and the fetch operation are not.
These five operations must appear in ξ. Given M = 6, an M -bounded plan ξ can

contain at most one additional operation. We next show that this is impossible for ξ.
Consider the fetch operation in ξ: fetch(I ∈ Sj , Ro, Y ), where Sj is the result of a

previous operation in ξ, computed by a “query plan” ξSj (see Section 2). To retrieve
data from Ro, Sj cannot be empty. We show that ξSj needs at least two more operations
that are not among the five operations described above. That is, ξ needs at least 7
operations, exceeding the bound M = 6 and hence leading to a contradiction.

More specifically, consider the following cases of ξSj (see Section 2 for query plans).
(a) If ξSj is a constant c, it does not help us answer Q because the value k used in the

atom Ro(k, 1) in Q is arbitrary, and may not match the constant c.
(b) Now suppose that ξSj is defined in terms of other five operations allowed in a query

plan (see Section 2). We distinguish the following two cases:
•Assume that ξSj does not have V as a descendant. Then as only one additional

operation is allowed, fetch(∅, R01, A) is the only possible plan of size 1 that does
not use V . Similar to case (a), one can verify that it does not help us answer Q.
• If ξSj takes V as a descendant, then ξSj also needs a projection πA so that Sj is

unary. Recall that the access constraint on Ro takes the first attribute of Ro as
input, while V is not unary. Meanwhile, as argued in the proof of Theorem 3.1,
the only way that V can be used in a query plan that conforms to A is when
it occurs as σX=µ0

X
(V ), i.e., when all its x̄-values are fixed Boolean values by

means of a truth-assignment µ0
X . Hence ξSj also needs an additional selection

operation on V . Therefore, when ξSj has V as a descendant, ξSj needs at least
two more operations: one projection πA and one selection on V .
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Putting these together, we can conclude that if ξ is a 6-bounded query plan for Q,
then ξSj includes at least two operations, a contradiction to the size of ξ. Hence if ξ is
a 6-bounded query plan for Q using V under A, then ξ must be in CQ. 2

One may wonder whether UCQ is “complete” for CQ-to-FO bounded rewriting using
views. That is, for any natural number M , any set V of CQ views, and any CQ Q, if Q
has an M -bounded rewriting in FO using V, then Q has an M -bounded rewriting in
UCQ using V. Below we show that this is not the case, by giving a counterexample.

Example 6.3. Consider a database schemaR consisting of six relations: R(X,Y, Z),
T (X,Y ), K1(X,Y ), K2(X,Y ), K3(X,Y ),K4(X,Y ); an access schemaA consisting of five
constraints: T (X → Y, 3), K1(X → Y, 1), K2(X → Y, 1), K3(X → Y, 1), K4(X → Y, 1);
and a Boolean CQ Q defined as follows:
Q() = ∃x, y, z1, z2

(
R(x, y, z1) ∧R(x, y, z2) ∧Q′(y, z1, y, z2)

)
, where

Q′(x1, x2, x3, x4) = ∃y′
(
T (y′, x1) ∧ T (y′, x2) ∧ T (y′, x3) ∧ T (y′, x4) ∧K1(x1, 1) ∧K1(x2, 2)∧

K2(x3, 1) ∧K2(x4, 2) ∧K3(x1, 1) ∧K3(x4, 2) ∧K4(x2, 1) ∧K4(x3, 2)
)
.

We use a set V of three Boolean CQ views defined as follows:
V1() = ∃x, y, z1, z2

(
R(x, z1, y) ∧R(x, z2, y) ∧Q′(z1, y, z2, y)

)
;

V2() = ∃x, y1, z1, z2, x1, y2, z3, z4

(
R(x, y1, z1) ∧R(x, y1, z2) ∧Q′(y1, z1, y1, z2)

)
∧(

R(x1, z3, y2) ∧R(x1, z4, y2) ∧Q′(z3, y2, z4, y2)
)
;

V3() = ∃x, y1, y2, z1, z2

(
R(x, y1, z1) ∧R(x, y2, z2) ∧Q′(y1, z1, y2, z2)

)
.

One can verify that Q 6vA V1, V1 6vA Q, V2 ≡A (V1 ∧Q) and V3 ≡A (V1 ∪Q). These can
be verified by observing the following properties: A and Q ensure that for any instance
D of R, if D |= A, Q′(D) 6= ∅, and suppose that ν is a valuation of the variables of
Q′ to values in D, then we have that either ν(x1) = ν(x3) or ν(x2) = ν(x4). Indeed,
by T (X → Y, 3) ∈ A, one can verify that one of the following holds: ν(x1) = ν(x2),
ν(x1) = ν(x3), ν(x1) = ν(x4), ν(x2) = ν(x3), ν(x2) = ν(x4), or ν(x3) = ν(x4). However, by
K1(X → Y, 1) ∈ A, we have that ν(x1) 6= ν(x2). Similarly, from K2(X → Y, 1), K3(X →
Y, 1) and K4(X → Y, 1) in A, one can conclude that ν(x3) 6= ν(x4), ν(x1) 6= ν(x4) and
ν(x2) 6= ν(x3). From these it follows that either ν(x1) = ν(x3) or ν(x2) = ν(x4). By this
property, we can verify V3 ≡A (V1 ∪ Q) as follows. From the definition of V1, Q and
V3, it is easy to see that (V1 ∪ Q) vA V3. It remains to show V3 vA (V1 ∪ Q). For any
instance D ofR, if D |= A, V3(D) 6= ∅, and suppose that ν is a valuation of the variables
of V3 to values in D, then by the property above we have that either ν(y1) = ν(y2)
or ν(z1) = ν(z2). If ν(y1) = ν(y2), we can construct the following valuation ν1 of the
variables of Q to values in D: ν1(x) = ν(x), ν1(y) = ν(y1), ν1(z1) = ν(z1), ν1(z2) = ν(z2),
ν1(y′) = ν(y′), and ν1(xi) = ν(xi) (i ∈ [1, 4]). Thus Q(D) 6= ∅. If ν(z1) = ν(z2), we can
similarly show that V1(D) 6= ∅. Putting all these together, we have that V3 vA (V1 ∪Q),
and then V3 ≡A (V1 ∪Q). The other relations can be verified in a similar manner.

We show the following: using V under A, query Q (a) has a 5-bounded rewriting in
FO, but (b) it does not have a 5-bounded rewriting in UCQ. Here we set M = 5.

Rewriting in FO. We show thatQ has a rewritingQFO() = (V3\V1)∪V2 in FO. Obviously,
QFO() has a 5-bounded query plan. It thus suffices to show that QFO ≡A Q.

We first show that Q vA QFO. Let TQ be the tableau representation of Q. It is easy
to verify that TQ |= A and Q(TQ) = true. Moreover, by Q 6vA V1, we have that V1(TQ) =
false. By Q(TQ) = true, V2 ≡A (V1 ∧Q) and V3 ≡A (V1 ∪Q), we have that V2(TQ) = false
and V3(TQ) = true. Thus QFO(TQ) = true. This actually shows that for any instance D
of R, if D |= A and Q(D) = true 6= ∅, then QFO(D) = true. Thus Q vA QFO.

We next show that QFO vA Q. For any instance D |= A of R such that QFO(D) = true,
we need to show that Q(D) = true, by considering the following two cases:
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• If V2(D) = true, then Q(D) = true since V2 ≡A (V1 ∧Q).
• If V2(D) = false, then (V3 \ V1)(D) = true since QFO(D) = true, i.e., V3(D) = true and
V1(D) = false. Moreover, from V3 ≡A (V1 ∪ Q), V3(D) = true and V1(D) = false, we
can deduce that Q(D) = true.

Rewriting in UCQ. In contrast, Q has no 5-bounded rewriting in UCQ using V under A.
We show that all possible 5-bounded rewritings ofQ in UCQ cannot use fetch operations.

Indeed, since V1, V2, and V3 are Boolean queries, we cannot use the output of these
views or constants to fetch data of T , K1, K2, K3 and K4. In addition, observe that any
rewriting of Q cannot impose selection and projection operations on the Boolean views.
Moreover, for atoms in Q, values in the first attributes are not fixed. If any rewriting
Qξ uses a constant c1 to fetch values, by the definition of A, we know that there exists
an atom in Qξ such that c1 appears in its first attribute. Then we can construct an
instance D such that Q(D) 6= ∅, and the first attributes of all instances do not contain
the constant c1. However, we have that Qξ(D) = ∅, which is a contradiction. These
leave us a small number of possible 5-bounded rewritings of Q in UCQ. Examining
these possible rewritings will reveal that none of them makes a 5-bounded rewriting
of Q using V under A. As an example, consider a possible rewriting Q1 = (V1∪V2)×V1.
One can easily verify that Q 6≡A Q1. To see this, it suffices to consider the tableau
representation of V1, denoted by T1. It is easy to verify that T1 |= A and V1(T1) = true.
Then by Q1 = (V1 ∪ V2) × V1 and V1(T1) = true, we have that Q1(T1) = true. However,
from V1 6vA Q it follows that Q(T1) = false. Hence Q1 6≡A Q. 2

7. RELATED WORK

This paper extends its conference version [Anonymous b ] by including the detailed
proofs of all results, which were not given in [Anonymous b ]. Some of the proofs
are nontrivial and are interesting in their own right. In addition, we study L1-to-L2

bounded rewriting (Section 6), a topic not considered in [Anonymous b ].
We classify the other related work as follows.

Scale independence. The idea of scale independence originated from [Armbrust et al.
2009], which is to execute the workload in an application by doing a bounded amount
of work, regardless of the size of datasets used. The idea was incorporated into
PIQL [Armbrust et al. 2011], an extension of SQL by allowing users to specify bounds
on the amount of data accessed. As pointed out by [Armbrust et al. 2013], to make com-
plex PIQL queries scale independent, precomputed views and query rewriting using
views should be employed. Techniques for view selection, indexing and incremental
maintenance were also developed there.

The idea of scale independence was formalized in [Fan et al. 2014]. A query Q is
defined to be scale independent in a dataset D w.r.t. a bound Θ if there exists a frac-
tion DQ ⊆ D such that Q(D) = Q(DQ) and |DQ| 6 Θ. Access constraints, a notion
of x̄-controllability (the bounded evaluability of a query Q(x̄, ȳ) when provided with a
value of x̄), and a set of rules were also introduced in [Fan et al. 2014], to deduce de-
pendencies on attributes needed for computing Q(D); these yield a sufficient condition
to determine the scale independence of FO queries when variables x̄ are instantiated.
In addition, [Fan et al. 2014] considered the problem of deciding whether for all in-
stances D of a relational schema, we can compute Q(D) by accessing cached views and
at most Θ tuples, in the absence of access constraints. It was shown there that the
problem is NP-complete for CQ, and undecidable for FO. The notion of x̄-controllability
was extended to views, giving two simple sufficient conditions to decide the scale inde-
pendence of query rewriting under access constraints.
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This work differs from the prior work in the following. (a) We formalize bounded
rewriting using views in terms of query plans subject to a bound M determined
by available resources. This formulation is quite different from the notion of x̄-
controllability [Fan et al. 2014]. (b) We incorporate access constraints to make the
notion more practical; without such constraints, few queries have a bounded rewriting.
Under the constraints, however, the analysis of bounded rewriting is more intriguing.
For instance, VBRP(CQ) is Σp3-complete, in contrast to NP-complete [Fan et al. 2014].
(c) We provide an effective syntax for FO queries with a bounded rewriting using views
under access constraints, a sufficient and necessary condition. In contrast, the condi-
tions of [Fan et al. 2014] via x̄-controllability are sufficient but not necessary. Moreover,
the rules of [Fan et al. 2014] do not distinguish whether views are used to just validate
data or to fetch data from underlying datasets; this is critical for VBRP, and demands
the bounded output analysis of views. Effective syntax, VBRP and VBRP+ were not
studied in [Armbrust et al. 2009; Armbrust et al. 2011; Armbrust et al. 2013].
Bounded evaluability. The notion of bounded evaluability was proposed in [Fan et al.
2015], based on a form of query plans that conform to access constraints. The problem
for deciding whether a query is boundedly evaluable under access constraints is
decidable but EXPSPACE-hard for CQ, and is undecidable for FO [Fan et al. 2015].
A notion of effective boundedness was studied for CQ [Cao et al. 2014], based on a
restricted form of query plans that conduct all data fetching before any relational
operations start. It was shown [Cao et al. 2014] that effective boundedness is in PTIME
for CQ. It was also studied for graph pattern queries via simulation and subgraph
isomorphism [Cao et al. 2015], which are quite different from relational queries.

Bounded rewriting is more challenging than bounded evaluability. (a) With views
comes the need for reasoning about their output size |V(D)| (Section 3). (b) We adopt
query plans in a form of query trees as commonly used in database systems, and allow
users to specify a bound on the size of the plans based on their available resources
(Section 2). In contrast, [Fan et al. 2015] considers query plans that are a sequence
of relational and data fetching operations, of length possibly exponential in the sizes
of queries and constraints. After experimenting with real-life data, we find that the
plans of [Fan et al. 2015] are not very realistic, and worse yet, their CQ plans may
actually encode non-recursive datalog queries without union, which yield exponential-
size queries when expressed in CQ. It is because of the different notions of query plans
adopted in this work and [Fan et al. 2015] that VBRP is Σp3-complete for CQ, while
bounded evaluability is EXPSPACE-hard [Fan et al. 2015].
Effective syntax. There has been a host of work on effective syntax (e.g., [Gelder and
Topor 1991; Stolboushkin and Taitslin 1995; Ullman 1982]), which started decades
ago to characterize safe relational queries up to equivalence. For bounded query eval-
uation, an effective syntax was proposed for CQ [Fan et al. 2015], and another one for
FO [Cao and Fan 2016]. In contrast, this work develops an effective syntax for bounded
rewriting of FO queries using views under access constraints (Section 5). Such a syntax
has not been studied before, and is quite different from their counterparts for bounded
evaluability. (a) It is in PTIME to check whether an FO query is topped for rewrit-
ing, while for bounded evaluability, the syntactic condition of [Fan et al. 2015] is in
PTIME to check for CQ, but Πp

2-complete for UCQ, and is not defined for FO. (b) Effec-
tive syntax for query rewriting is more intriguing than its counterpart for bounded
evaluability [Cao and Fan 2016]. As remarked earlier, we have to reason about the
size |V(D)| of cached views. It is further complicated by user-imposed bound on the
size of query plans, which was not considered in [Cao and Fan 2016]. (c) The class of
effectively bounded queries of [Cao et al. 2014] does not make an effective syntax: not
every boundedly evaluable CQ is necessarily equivalent to an effectively bounded CQ.
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Query rewriting using views. Query rewriting using views has been extensively stud-
ied (e.g., [Levy et al. 1995; Afrati 2011; Afrati et al. 2007; Rajaraman et al. 1995; Co-
hen et al. 1999; Nash et al. 2010]; see [Lenzerini 2002; Halevy 2001] for surveys). In
contrast to conventional query rewriting using views, bounded rewriting requires con-
trolled access to the underlying dataset D under access schema, in addition to cached
V(D) (Section 2). This makes the analysis more challenging. For instance, it is Σp3-
complete to decide whether there exists a bounded rewriting for CQ with CQ views, as
opposed to NP-complete in the conventional setting [Levy et al. 1995].

Related to L1-to-L2 bounded rewriting (Section 6) is the study of view determi-
nacy (e.g., [Nash et al. 2010; Gogacz and Marcinkowski 2016]), which studies com-
plete rewriting languages. A language L is complete for L1-to-L2 rewritings if L can be
used to rewrite a query Q ∈ L1 using views V in L2 whenever V determines Q [Nash
et al. 2010]. As remarked above, we adopt a different semantics of query rewriting us-
ing views, by allowing controlled access to the underlying data under access schema,
Moreover, we focus on VBRP+ instead of complete languages. The results of view de-
terminacy do not carry over to L1-to-L2 bounded rewriting and vice versa.

Access patterns. Related to the work is also query answering under access patterns,
which require a relation to be only accessed by providing certain combinations of
attributes [Rajaraman et al. 1995; Li 2003; Deutsch et al. 2007; Nash and Ludäscher
2004; Benedikt et al. 2016b; Calı̀ and Martinenghi 2008] (see [Benedikt et al. 2016a]
for a survey). Query rewriting using views under access patterns has been studied for
CQ [Rajaraman et al. 1995], and for UCQ and UCQ¬ (with negated relation atoms) un-
der fixed views and integrity constraints [Deutsch et al. 2007]. This work differs from
the prior work in the following. (a) Unlike access patterns, access constraints impose
cardinality constraints and controlled data accesses via indices. (b) Moreover, in an
access constraint R(X → Y,N), X ∪ Y may account for a small set of the attributes of
R, while an access pattern has to cover all the attributes of R. As a result, we can fetch
partial tuples from the underlying dataset via an access constraint, as opposed to
access patterns that are to fetch entire tuples. This complicates the proofs of bounded
rewriting. (c) Bounded rewriting allows access to the underlying data with controlled
I/O, which is prohibited in [Rajaraman et al. 1995; Deutsch et al. 2007]. As an evidence
of the difference, bounded CQ rewriting using fixed views is Cp2k+1-complete under
fixed access constraints (Section 3), as opposed to NP-complete for rewriting using
fixed views under access patterns [Deutsch et al. 2007; Li 2003]. (d) To the best of our
knowledge, no prior work has studied effective syntax for bounded FO rewriting.

8. CONCLUSION

We have formalized bounded query rewriting using views under access constraints,
studied the bounded rewriting problem VBRP(L) when L is ACQ, CQ, UCQ, ∃FO+or FO,
and established their upper and lower bounds, all matching, when M,R,A and V are
fixed or not. The main complexity results are summarized in Table I, annotated with
their corresponding theorems. We have also provided an effective syntax for FO queries
with a bounded rewriting, along with an effective syntax for FO queries with bounded
output. Moreover, we have shown that bounded query rewriting does not get simpler
when we allow a query in L to be rewritten into a query in another language L′.

One topic for future work is to study bounded rewriting when we allow the amount
of data accessed from the underlying dataset D to be an α-fraction of D, for a small
“resource ratio” α in the range of [0, 1], rather than to be bounded by a constant. In-
tuitively, α indicates the amount of data we can afford to access under our resource
budget. Similarly, we may allow M to be a function of resources and workload, instead
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Table I. Complexity of VBRP(L)

Queries Complexity Condition
FO undecidable (Th 3.1)

CQ, UCQ, ∃FO+ Σp3-complete (Th 3.1)
CQ, UCQ, ∃FO+ Σp3-complete (Cor 3.10) fixedR,A,M

CQ NP-complete (Prop 4.5) only FDs in A
Fixed R,A,M and V for the following

FO undecidable (Cor 3.9)
CQ, UCQ, ∃FO+ Cp2k+1-complete (Th 3.11)

CQ NP-complete (Prop 4.5) only FDs in A
ACQ coNP (Th 4.2)
ACQ coNP-complete (Th 4.1) restricted A
ACQ PTIME (Cor 4.4) only FDs in A

of a constant. Another topic is to study bounded view maintenance, to incrementally
maintain V(D) by accessing a bounded amount of data in D, in response to changes to
D. The third topic is to study top-k (diversified) query rewriting using views, which is
to find top-k answers that differ sufficiently from each other [Deng and Fan 2014], by
accessing cached views and a bounded amount of underlying data.

A fourth topic is to study approximate query answering. Given a possibly big dataset
D, a query Q and a resource ratio α ∈ [0, 1], it is to compute approximate answers
Q(DQ) to Q in D by (a) accessing a bounded DQ such that |DQ| 6 α|D|, and (b) with
accuracy above a deterministic bound η, i.e., for any approximate answer s ∈ Q(DQ),
there exists an exact answer t ∈ Q(D) such that the distance between s and t is at most
η, and conversely, for any t ∈ Q(D), there exists s ∈ Q(DQ) such that s “covers” t with
distance at most η. Preliminary work in this direction has been reported in [Cao and
Fan 2017]. We aim to extend the approximation framework by incorporating bounded
query rewriting.
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Overview of used notations

Table II. Notations

symbols notations
R, R database schema R and relation schema R ∈ R
A access schema

D |= A an instance D of R satisfies access schema A
Q ∈ L query Q in a query language L
V, V a set V of views and a view V ∈ V

ξ(Q,V,R) a query plan ξ for Q using V over instances of R
Tξ query plan ξ represented as a query tree
ξ(D) the result of applying ξ to D

VBRP(L) the bounded rewriting problem for queries in L
VBRP+(L1,L2) the problem of L1-to-L2 bounded rewriting using views

Q ≡A Q′ A-equivalence
Q vA Q′ A-containment
QPQ the set of all possible query plans of a bounded size
ξ vA Q Qξ vA Q, query Qξ expressed by ξ

Appendix: Proofs

Proof of Theorem 4.1

We prove that VBRP(ACQ) is coNP-hard under fixed R, A, M and V, and when A has
the forms specified cases (1), (2) and (3).

(1) When A consists of a single R(A → B,N) and N > 2. Consider a database
schema R with a single binary relation R(A,B). We assume M to be any predefined
constant, and V to be any fixed set of ACQ queries. We start with N = 2, and will show
that VBRP remains coNP hard when N > 2. We show that VBRP(ACQ) is coNP-hard in
this setting by reduction from the complement of the precoloring extension problem,
which is NP-complete [Kratochvı́l 1993]. Given an undirected graph G = (VG, E), a
precoloring µ0 is a coloring of a subset W of the nodes of VG with colors in {r, g, b}. The
precoloring extension problem is to decide whether µ0 can be extended to a coloring
µ of the entire set of nodes in VG with colors in {r, g, b}. That is, whether there exists
a coloring µ of all nodes in VG such that µ(v) = µ0(v) for each v ∈ W and µ(v) 6=
µ(w) whenever (v, w) ∈ E. From the proof in [Kratochvı́l 1993], we know that the
problem remains NP-complete when each connected component in G has at least one
leaf (degree-one node) and the precoloring µ0 only assigns colors to the leaves of G.

Given a graph G = (VG, E) and a 3-coloring µ0 of the leaves V1 of G, where VG =
{v1, . . . , vn}, V1 ⊆ VG, and E = {e1, . . . , em}, we define an ACQ Q, such that Q has an
M -bounded rewriting in ACQ using V under A if and only if the precoloring µ0 cannot
be extended to a valid coloring of G. The query Q is constructed as follows:

Q() = ∃x̄1, x̄2, v̄
(
QE(x̄1, x̄2) ∧

∧
vi∈VG

Q1
V (vi, x̄1) ∧

∧
vi∈VG

Q2
V (vi, x̄2) ∧

∧
vi∈V1

QL(vi) ∧Q1() ∧Qf ()

)
.

Here x̄1 and x̄2 consist of variables x1
(vi,vj)

and x2
(vi,vj)

, respectively, for vi, vj ∈ VG.
Intuitively, QE , Q1

V and Q2
V encode graph G, QL(vi) enforces the precoloring, Q1

checks whether G is 3-colored, and Qf controls M , as will be elaborated shortly. The
challenge arises from encoding a cyclic graph G in ACQ. We approach this as follows.
We first replace two vertices of any edge in G with two distinct new variables, and
then use the fixed access constraint to recover the original G. For example, a cy-
cle (v1, v2), (v2, v3), (v3, v1) in G is represented by the following set of atoms in QE :
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R(x1
(v1,v2), x

2
(v1,v2)), R(x1

(v2,v3), x
2
(v2,v3)) and R(x1

(v3,v1), x
2
(v3,v1)), where x1

(v1,v2) ∈ x̄1 and
x2

(v1,v2) ∈ x̄2; similarly for the other variables. Although these seem like disconnected
edges, we will ensure that v1 = x1

(v1,v2) = x2
(v3,v1), v2 = x2

(v1,v2) = x1
(v2,v3) and v3 =

x2
(v2,v3) = x1

(v3,v1) by means of the access constraint and queries Q1
V and Q2

V . This al-
lows us to recover the cycle in G, and encode cyclic graphs in an acyclic CQ query.

We will use relation R to encode edges in E as well as coloring of vertices in VG.

Queries QE , Q1
V , Q

2
V , QL, Q1 and Qf are in ACQ, and are given as follows.

− QE(x̄1, x̄2) =
∧

(vi,vj)∈E

(
R(x1

(vi,vj)
, x2

(vi,vj)
) ∧ R(x2

(vi,vj)
, x1

(vi,vj)
)

)
. This sub-query re-

names the nodes of each edge in G. We use two directed edges to encode one edge
in G so that the access constraint R(A → B, 2) can be used to recover variables
x1

(vi,vj)
and x2

(vi,vj)
.

− Q1
V (vi, x̄1) =

∧
ej=(vi,vj)∈E

(
(R(i, 1) ∧R(i, vi) ∧R(i, x1

ej )︸ ︷︷ ︸
Q
e1
j

)

∧ (R(i+ n, 2) ∧R(i+ n, vi) ∧R(i+ n, x1
ej )︸ ︷︷ ︸

Q
e2
j

∧ (R(i+ 2 ∗ n, 3) ∧R(i+ 2 ∗ n, vi) ∧R(i+ 2 ∗ n, x1
ej )︸ ︷︷ ︸

Q
e3
j

)

)
.

It ensures that each variable x1
ej = x1

(vi,vj)
in x̄1 denotes node vi by enforcing that

x1
ej = vi. Suppose that x1

ej 6= vi. Then by the access constraint R(A → B, 2) ∈ A,
from Qe1j (marked underlying Q1

V ) we know that vi = 1 ∨ x1
ej = 1. Similarly, vi =

2 ∨ x1
ej = 2 or vi = 3 ∨ x1

ej = 3 by Qe2j and Qe3j . That is, {vi, x1
ej} = {1, 2, 3}, a

contradiction. Hence x1
ej = vi.

− Q2
V (vi, x̄2) =

∧
ej=(vj ,vi)∈E

(
(R(i, 1) ∧R(i, vi) ∧R(i, x2

ej )︸ ︷︷ ︸
Q
e1
j

)

∧ (R(i+ n, 2) ∧R(i+ n, vi) ∧R(i+ n, x2
ej )︸ ︷︷ ︸

Q
e2
j

)

∧ (R(i+ 2 ∗ n, 3) ∧R(i+ 2 ∗ n, vi) ∧R(i+ 2 ∗ n, x2
ej )︸ ︷︷ ︸

Q
e3
j

)

)
.

This ensures that each variable x2
ej in x̄2 corresponding to vi satisfies x2

ej = vi.
− QL(vi) = (R(i, 1) ∧R(i, vi) ∧R(i, µ0(vi))︸ ︷︷ ︸

Q1
vi

)∧(R(i+ n, 2) ∧R(i+ n, vi) ∧R(i+ n, µ0(vi))︸ ︷︷ ︸
Q2
vi

)

∧ (R(i+ 2 ∗ n, 3) ∧R(i+ 2 ∗ n, vi) ∧R(i+ 2 ∗ n, µ0(vi))︸ ︷︷ ︸
Q3
vi

).

This is to ensure that for each vertex v ∈ V1, v = µ0(v), i.e., the coloring preserves
the precoloring µ0 of the leaves, making use of R to encode coloring.
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− Q1() = R(r, g) ∧ R(r, b) ∧ R(g, r) ∧ R(g, b) ∧ R(b, r) ∧ R(b, g). It is to ensure that
graph G is colored with {r, g, b}. More specifically, consider any instance D |= A
of R such that Q(D) 6= ∅. Suppose that ν is a valuation of the variables of Q to
vertices in D. We next show that for each vertex v ∈ VG, ν(v) ∈ {r, g, b}, i.e., G
is colored with {r, g, b}, and for any edge (v, v′) ∈ E, µ(v) 6= µ(v′). Let v be any
vertex in VG. Since we assume that each connected component of G has at least
one leaf and each edge of G is represented by two directed edges in GE , there
exist a leaf v1 ∈ V1 and a path v1, v

′
1, v
′
2, . . . , v

′
t, v from v1 to v. Hence, there exist

tuples R(ν(v1), ν(v′1)), R(ν(v′1), ν(v′2)), . . . , R(ν(v′t), ν(v)) in D. Since v1 is a leaf, we
know that v1 = µ0(v1) and ν(v1) ∈ {r, g, b}. Suppose w.l.o.g. that ν(v1) = r. Since
Q1(D) 6= ∅, there exist two tuples R(r, g) and R(r, b) in D. By the access constraint
R(A→ B, 2), we have that ν(v′1) ∈ {g, b}. Similarly, we can show that ν(v) ∈ {r, g, b}
and hence the coloring is valid (see details below).

− Qf () = ∃Y
( ∧
i6(M×|V|×|R|)

R(yi, i)

)
. It is to fill Q with M × |V|× |R| constants. Since

there are already another three constants r, g, and b in Q, if Q is satisfiable, then
each element query of Q contains at least M × |V| × |R| + 3 constants. However,
each M -bounded rewriting can only have at most M × |V| × |R| constants. Indeed,
such an M -bounded rewriting can have at most M × |V| atoms, and thus has at
most M × |V|× |R| distinct constants. Therefore, Q has an M -bounded rewriting in
ACQ using V under A if and only if Q ≡A ∅.

Obviously, Q is an ACQ. By the definition of Qf , we can see that Q has an M -bounded
rewriting in ACQ using V under A if and only if Q ≡A ∅. Thus it suffices to show that
Q ≡A ∅ if and only if the precoloring µ0 cannot be extended to a valid coloring of G.

(⇐) Suppose that µ0 cannot be extended to a valid coloring of G. We show that Q ≡A ∅
by contradiction. Suppose that Q 6≡A ∅. Then there exists D |= A such that Q(D) 6= ∅.
Let ν be a valuation of variables in Q. Clearly, QE(D) 6= ∅, QL(D) 6= ∅, and Q1(D) 6= ∅.
From QL(D) 6= ∅, we know that for each leaf v ∈ V1, ν(v) = µ0(v). Since Q1(D) 6= ∅,
there are tuples R(r, g), R(r, b), R(g, r), R(g, b), R(b, r), R(b, g) in D. Putting these to-
gether, by the argument about Q1 we can conclude that G is colored with {r, g, b}. Since
QE(D) 6= ∅ and R(A→ B, 2), for every edge (vi, vj) ∈ E, ν(vi) 6= ν(vj). Indeed, suppose
otherwise that ν(vi) = ν(vj) = r, then there will be a tuple R(r, r) in D. Now there are
three tuples R(r, g), R(r, b) and R(r, r) in D, contradicting that D |= A. Therefore, there
exists a valid 3-coloring of G extending µ0, a contradiction. Hence Q ≡A ∅.

(⇒) Suppose that Q ≡A ∅. We show that µ0 cannot be extended to a valid coloring of G.
Suppose by contradiction that µ is a valid 3-coloring of G that extends the precoloring
µ0. We construct below an instance D of R such that D |= A and Q(D) 6= ∅, which will
contradict to that Q ≡A ∅. The database D consists of the following tuples.
(1) The 6 tuples demanded by Q1: R(r, g), R(r, b), R(g, r), R(g, b), R(b, r), R(b, g).
(2) For each vertex vi ∈ VG, 6 tuples corresponding to the queries Q1

V and Q2
V :

R(i, 1), R(i+ n, 2), R(i+ 2n, 3), R(i, µ(vi)), R(i+ n, µ(vi)), R(i+ 2n, µ(vi)).
(3) For each natural number i 6 (M × |V| × |R|), one tuple R(ci, i), where ci’s are

distinct new constants.
It is easy to verify that D |= A. We next show that Q(D) 6= ∅. Since Q1

V and Q2
V

ensure that each variable in x̄1 or x̄2 equals the corresponding variable in VG, we know
that Q can be simplified to the following query:

Q2() = ∃v̄
(
Q′E(v̄) ∧

∧
vi∈VG

Q′V (vi) ∧
∧

vi∈VG

Q′′V (vi) ∧
∧
vi∈V1

QL(vi) ∧Q1() ∧Qf ()

)
.
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Here QL, Q1() and Qf are sub-queries Q, and Q′E , Q′V , and Q′′V are defined as follows:

− Q′E(v̄) =
∧

(vi,vj)∈E

(
R(vi, vj) ∧R(vj , vi)

)
;

− Q′V (vi) =
∧

ej=(vi,vj)∈E

(
(R(i, 1) ∧R(i, vi)︸ ︷︷ ︸

Q
e1
j

) ∧ (R(i+ n, 2) ∧R(i+ n, vi)︸ ︷︷ ︸
Q
e2
j

)

∧ (R(i+ 2 ∗ n, 3) ∧R(i+ 2 ∗ n, vi)︸ ︷︷ ︸
Q
e3
j

)

)
;

− Q′′V (vi) =
∧

ej=(vj ,vi)∈E

(
(R(i, 1) ∧R(i, vi)︸ ︷︷ ︸

Q
e1
j

) ∧ (R(i+ n, 2) ∧R(i+ n, vi)︸ ︷︷ ︸
Q
e2
j

)

∧ (R(i+ 2 ∗ n, 3) ∧R(i+ 2 ∗ n, vi)︸ ︷︷ ︸
Q
e3
j

)

)
.

Since Q2 is obtained from Q by simply replacing equivalent variables in Q, Q2 ≡A Q.
Since the variables in Q2 occur in either v̄ or Y (Y is used in Qf ), we can construct a
valuation ν of variables of Q2 as follows: for each i 6 (M × |V|× |R|), ν(yi) = ci; and for
each vertex v ∈ VG, ν(v) = µ(v). One can verify that ν satisfies ν(Q2) ⊆ D and hence
Q 6≡A ∅, contradicting Q ≡A ∅. Thus µ0 cannot be extended to a valid coloring of G.

When N > 2, we only need to fill the relation R with some constants and use the
same reduction. For example, when N = 3, let c1, c2 and c3 be distinct new con-
stants. Then Q1 can be rewritten as Q1() = R(r, g)∧R(r, b)∧R(g, r)∧R(g, b)∧R(b, r)∧
R(b, g) ∧ R(r, c1) ∧ R(g, c2) ∧ R(b, c3). This revised Q1 also ensures that G is colored by
{r, g, b}. Indeed, consider any D |= A such that Q(D) 6= ∅. Suppose that ν is a val-
uation of variables of Q. We show that for each vertex v ∈ VG, ν(v) ∈ {r, g, b}. Let
v be any vertex in VG. Similar to the argument above, we can show that there exist
a leaf v1 ∈ V1 and a path v1, v

′
1, v
′
2, . . . , v

′
t, v from v1 to v. Hence, there exist tuples

R(ν(v1), ν(v′1)), R(ν(v′1), ν(v′2)), . . . , R(ν(v′t), ν(v)) in D. Because v1 is a leaf, we know
that v1 = µ0(v1) and ν(v1) ∈ {r, g, b}. Suppose that ν(v1) = r. Since Q1(D) 6= ∅, there
are three tuples R(r, g), R(r, b), and R(r, c1) in D. By constraint R(A → B, 3), we have
that ν(v′1) ∈ {g, b, c1}. However, by the construction of QE , tuple R(ν(v′1), ν(v1)) is also
in D. Hence, ν(v′1) also appears in the first column of R. But c1 only appears in the
second column of R. Hence ν(v′1) 6= c1 and ν(v′1) ∈ {g, b}. Using the same argument,
we can show that ν(v) ∈ {r, g, b}. The other queries can be revised similarly. For other
values of N , we can verify the coNP hardness along the same lines.

(2) WhenA consists of two access constraints R(A→ B, 1) and R′(∅ → (E,F ), N),
and N > 6. We will only use the binary relations R(A,B) and R′(E,F ) in our proof.
We take any predefined constant as M , and V to be any fixed set of ACQ queries.

We start withN = 6 and then extend the proof toN > 6. We show that VBRP(ACQ) is
coNP-hard in this setting by reduction from the complement of the 3-Colorability prob-
lem, which is NP-complete (cf. [Garey and Johnson 1979]). The 3-Colorability problem
is to decide, given an undirected graph G = (VG, E), whether there exists a 3-coloring
µ : VG → {r, g, b} such that for every edge (vi, vj) ∈ E, µ(vi) 6= µ(vj).

Given G = (VG, E) with VG = {v1, . . . , vn}, we define an ACQ Q such that Q has an
M -bounded rewriting in ACQ using V under A if and only if G is not 3-colorable:

Q() = ∃v̄, x̄1, x̄2

(
QE(x̄1, x̄2) ∧QV (v̄, x̄1, x̄2) ∧Q1() ∧Qf ()

)
.
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Here QE , QV , Q1, and Qf are similar to their counterparts in case (1), as follows:

− QE(x̄1, x̄2) =
∧

(vi,vj)∈E

(
R′(x1

(vi,vj)
, x2

(vi,vj)
) ∧ R′(x2

(vi,vj)
, x1

(vi,vj)
)

)
, where x1

(vi,vj)
∈ x̄1

and x2
(vi,vj)

∈ x̄2. It renames the nodes of each edge in G as in case (1).

− QV (v̄, x̄1, x̄2) =
∧

vi∈VG

(
R(i, vi)∧

∧
(vi,v2)∈E

R(i, x1
(vi,v2))∧

∧
(v1,vi)∈E

R(i, x2
(v1,vi)

)

)
. It is to

recover the original G. Indeed, constraint R(A → B, 1) ensures that the variables
vi, x1

(vi,v2) and x2
(v2,vi)

are “equivalent”, i.e., they always take the same value.

− We define Q1() = R′(r, g) ∧ R′(r, b) ∧ R′(g, r) ∧ R′(g, b) ∧ R′(b, r) ∧ R′(b, g). Since
R′(∅ → (E,F ), 6) ∈ A, Q1 ensures that if Q() is satisfiable, then there exists a
valid 3-coloring of G. Consider any D |= A such that Q(D) 6= ∅, and let ν be a
valuation of variables of Q in D. Then QE(D) 6= ∅, QV (D) 6= ∅, and Q1(D) 6= ∅.
From QE(D) 6= ∅, we know that for each edge (vi, vj) ∈ E, there exists a tu-
ple R′(ν(x1

(vi,vj)
), ν(x2

(vi,vj)
) in D. By QV (D) 6= ∅ and constraint R(A → B, 1), we

have that ν(vi) = ν(x1
(vi,vj)

) and ν(vj) = ν(x2
(vi,vj)

). Hence, there exists a tuple
R′(ν(vi), ν(vj)) in D. On the other hand, since Q1(D) 6= ∅, there are six tuples
R′(r, g), R′(r, b), R′(g, r), R′(g, b), R′(b, r), R′(b, g) in D. By R′(∅ → (E,F ), 6) ∈ A, for
each vertex v ∈ VG, ν(v) ∈ {r, g, b}, and for each edge (vi, vj) ∈ E, ν(vi) 6= ν(vj).
Indeed, the relation R′ must otherwise have more than six tuples and D |= A does
not hold. Therefore, if Q() is satisfiable, then there exists a correct 3-coloring of G.

− Qf () = ∃Y
∧

i6(M×|V|×|R|)
R(yi, i). It fills Q with sufficiently many constants such

that if Q is satisfiable, then Q does not have an M -bounded rewriting in ACQ.

It can be verified that Q is in ACQ along the same lines as in case (1).

From the definition of Qf , we can conclude that Q has an M -bounded rewriting in
ACQ using V under A if and only if Q ≡A ∅. Indeed, from the argument above, we can
see that if Q 6≡A ∅, then G is 3-colorable. Hence we only need to show that if Q ≡A ∅,
then G is not 3-colorable. We show this by contradiction. Let µ be a valid 3-coloring of
G. We construct a database D such that D |= A and Q(D) 6= ∅, which contradict to the
assumption that Q ≡A ∅. The database D consists of the following tuples:

(1) the 6 tuples in Q1: R′(r, g), R′(r, b), R′(g, r), R′(g, b), R′(b, r), R′(b, g);
(2) for each vertex vi ∈ VG, one tuple encoding the 3-coloring of G: R(i, µ(vi)); and
(3) for each natural number i 6 (M×|V|×|R|), one tuple R(ci, i), where ci’s are distinct

new constants.

It is easy to verify that D |= A. We next show that Q(D) 6= ∅. Since QV ensures that
each variable in X1 or X2 is equal to the corresponding variable in VG, we know that
Q can be simplified to the following query:

Q2() = ∃v̄
(
Q′E(v̄) ∧Q′V (v̄) ∧Q1() ∧Qc()

)
.

Here Q1() and Qc are the queries already defined in Q, and Q′E , and Q′V are defined as:

− Q′E(v̄) =
∧

(vi,vj)∈E

(
R′(vi, vj) ∧R′(vj , vi)

)
; and

− Q′V (v̄) =
∧

vi∈VG
R(i, vi).
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Since Q2 is obtained from Q by replacing equivalent variables in Q with those in
VG, we have that Q2 ≡A Q. Moreover, since the only variables in Q2 occur in v̄ or Y
(in Qc), we can construct a valuation ν of variables of Q2 in D as follows: for each
i 6 (M × |V| × |R|) (see the proof of case (1) of Theorem 4.1 for an explanation of
M × |V| × |R|), ν(yi) = ci; and for each vertex v ∈ VG, ν(v) = µ(v). We can verify that ν
satisfies ν(Q2) ⊆ D. That is Q 6≡A ∅, which contradicts to the assumption that Q ≡A ∅.
Hence G is not 3-colorable.

For N > 6, we only need to fill the relation R′ with some additional constants such
that the same reduction works. For example, suppose that N = 7, and let d1 and d2 be
two distinct new constants. Then we modify Q1 as Q1() = R′(d1, d2)∧R′(r, g)∧R′(r, b)∧
R′(g, r)∧R′(g, b)∧R′(b, r)∧R′(b, g). Similar to the proof of case (1) of Theorem 4.1, this re-
vised query can also ensure that ifQ() is satisfiable, then there exists a valid 3-coloring
of G. Indeed, consider any D |= A such that Q(D) 6= ∅, and let ν be a valuation of vari-
ables of Q in D. Then QE(D) 6= ∅, QV (D) 6= ∅, and Q1(D) 6= ∅. From QE(D) 6= ∅, we
know that for each edge (vi, vj) ∈ E, there exists a tuple R′(ν(x1

(vi,vj)
), ν(x2

(vi,vj)
)) in D.

By QV (D) 6= ∅ and R(A→ B, 1), we have that ν(vi) = ν(x1
(vi,vj)

) and ν(vj) = ν(x2
(vi,vj)

).
Thus there exists a tuple R′(ν(vi), ν(vj)) in D. On the other hand, since Q1(D) 6= ∅,
there are seven tuples R′(d1, d2), R′(r, g), R′(r, b), R′(g, r), R′(g, b), R′(b, r) and R′(b, g) in
D. By QE(D) 6= ∅ and access constraint R′(∅ → (E,F ), 7) ∈ A, for each edge (vi, vj) ∈ E,
there must exist a tuple R′(ν(vi), ν(vj)) in D, ν(vi) ∈ {r, g, b, d1}, and ν(vj) ∈ {r, g, b, d2}.
Since we encode each edge in G by two directed edges, there is also another tuple
R′(ν(vj), ν(vi)) in D. However, d1 can only appear in the first column of R′ and d2

can only appear in the second column of R′. Indeed, otherwise R′ would consist of
more than 7 tuples, contradicting to that D |= A. Therefore, ν(vi) ∈ {r, g, b} and
ν(vj) ∈ {r, g, b}. Suppose thatG is not 3-colorable. Then there exists an edge (vi, vj) ∈ E
such that ν(vi) = ν(vj). Let ν(vj) = r. Then there exists a tuple R′(r, r) in D, which
contradicts to the assumption that D |= A. Hence G is 3-colorable. Therefore, if Q() is
satisfiable, there exists a correct 3-coloring of G.

For other values of N , we can modify Q1 along the same lines.

(3) When A consists of R((A,B) → C, 1) and R′(∅ → E,N), and N > 2. We assume
that R consists of a ternary relation R(A,B,C) and a unary relation R′(E), M is any
constant, and V is any fixed set of ACQ queries.

We start withN = 2 and then extend the proof toN > 2. We show that VBRP(ACQ) is
coNP-hard in this setting by reduction from the complement of the 3SAT problem (see
the proof of Theorem 3.4 for 3SAT). Consider an instance ψ of 3SAT, where ψ contains
k clauses C1, C2, . . . , Ck defined over variables in X = {x1, . . . , xm}. We define an ACQ
query Q such that Q has an M -bounded rewriting in ACQ using V under A if and only
if ψ is false.

The query Q is defined in ACQ and is constructed as follows:

Q() = ∃x̄, x̄1, x̄2, x̄3

(
Q01() ∧Q∨() ∧Q∧() ∧Q¬() ∧QX(x̄) ∧

Qv(x̄, x̄1, x̄2, x̄3) ∧Qψ(x̄1, x̄2, x̄3) ∧Qf ()

)
.

Here x̄ = (x1, . . . , xm) and x̄i = (xi1, . . . , x
i
m) for i = 1, 2, 3. In order for Q to encode ψ

we need Boolean operations. However, in contrast to the proof of Theorem 3.4, here we
only have one ternary relation to store instances similar to those shown in Figure 2.
Hence, we store all tuples needed in R and use different constants in the A-attribute to
extract from R the right set of tuples that encode each of the Boolean operations. The
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definitions of Q∨, Q∧ and Q¬ are such defined that tuples with their A-attribute set to
0, 1, 4, or ∇ encode Boolean disjunction; tuples with their A-attribute set to ⊥ or >
encode Boolean conjunction; and tuples with their A-attribute set to ? encode Boolean
negation. More specifically, Q∧, Q∨, and Q¬ are defined as follows:

- Q∨() =
(
R(0, 0,4) ∧ R(0, 1,∇) ∧ R(1, 0,∇) ∧ R(1, 1,∇)

)
∧
(
R(4, 0,⊥) ∧ R(4, 1,>) ∧

R(∇, 0,>) ∧R(∇, 1,>)
)
;

- Q∧() = R(⊥,⊥,⊥) ∧R(⊥,>,⊥) ∧R(>,⊥,⊥) ∧R(>,>,>);
- Q¬() = R(?, 0, 1) ∧R(?, 1, 0); and

where ∇,4,⊥,> and ? are new constants. The constants4,⊥ and ∇,> represent false
and true, respectively. Sub-queries Q01 and QX are defined as follows:

- Q01() = R′(0) ∧ R′(1) ∧ R(I, 0, 0) ∧ R(I, 1, 1) is used to encode the Boolean values
false and true; here I is a new constant; and

- QX(x̄) =
∧

16i6m
(R′(xi) ∧ R(I, xi, xi)) ensures that x̄ is a truth assignment of X.

Indeed, constraint R′(∅ → E, 2) together with Q01 ensures that each xi is mapped
to {0, 1} when QX is evaluated on instances D such that D |= A and Q01(D) 6= ∅.

It should be remarked that even without using the relation R, Q01() and QX(x̄) can
also ensure that x̄ is a truth assignment of X. However, we will use these atoms to
handle the cases when N > 2, as will become clear shortly.

Furthermore, Qv, Qψ and Qf are defined as follows:

- Qv(x̄, x̄1, x̄2, x̄3) =

( ∧
16i6m

R(i + 2, •, xi)
)
∧
( ∧

16i6k
R(f1(Ci) + 2, •, x1

i ) ∧ R(f2(Ci) +

2, •, x2
i )∧R(f3(Ci)+2, •, x3

i )

)
, where • is a new constant and for j = 1, 2, 3, fj(Ci) = `

if x` is the jth variable in clause Ci.
This query is used to rename the variables in x̄ such that each clause has a new
copy of the variables in x̄, represented by x̄1, x̄2, and x̄3, one copy for each of the
three literals in a clause. Moreover, if fj(Ci) = ` then xji and x` are equivalent due
to access constraint R((A,B) → C, 1), i.e., these variables take the same values in
instances D |= A of R. This allows us to encode ψ by using distinct variables to
ensure acyclicity, as will be elaborated shortly.

- Query Qψ(x̄1, x̄2, x̄3) is to check whether ψ is true given a truth assignment µX
encoded in x̄ (and thus also in x̄1, x̄2, x̄3 since they carry the same values as x̄)
by query Qv. We first explain how clauses Cj in ψ are encoded. Consider, e.g.,
Cj = x1∨x2∨x3. We construct a query Qj(x̄1, x̄2, x̄3, yj) such that yj holds the truth
value of Cj given µX . More specifically, Qj(x̄2, x̄2, x̄3, yj) = ∃x′2, y′R(x1

j , x
′
2, y
′) ∧

R(y′, x3
j , yj) ∧ R(?, x2

j , x
′
2). Note that x1

j , x2
j and x3

j take Boolean values as speci-
fied by x1, x2 and x3, respectively, as argued earlier. Hence, by the definitions of
Q∨ and Q¬, Qj correctly encodes Cj . Moreover, observe that yj is either ⊥ (when
Cj is false under µX ) or > (when Cj is true under µX ). In the context of acyclicity,
it is also important to observe that the variables x1

j , x2
j and x3

j are only used in
Qj(x̄1, x̄2, x̄3, yj) and in Qv(x̄, x̄1, x̄2, x̄3), where they occur together with constants.
The construction of Qj is similar for clauses of another form. We now define

Qψ(x̄1, x̄2, x̄3) = ∃ȳ
( ∧

16j6k

Qj(x̄1, x̄2, x̄3, yj)

)
∧Q′(y1, y2, . . . , yk),
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whereQ′(y1, y2, . . . , yk) checks whether y1∧y2∧· · ·∧yk evaluates to true, i.e., whether
all clauses in ψ are satisfied. In particular, Q′(ȳ) = ∃v̄ R(y1, y2, v2) ∧ R(v2, y3, v3) ∧
· · · ∧ R(vk−1, yk,>). Since the yi’s take values from {⊥,>}, by the definition of Q∧,
Q′ encodes the required conjunction and enforces all yi’s to be > (due to the last
atom). The acyclicity of Qψ immediately follows from the use of distinct variables
for each clause and the fact that these only appear in Qv together with constants.

− Finally, we define Qf () =

(
∃Y 1, Y 2

∧
i6(M×|V|×|R|)

R(y1
i , y

2
i , i)

)
. It is used to fill Q

with sufficiently many constants such that if Q is satisfiable, then Q does not have
an M -bounded rewriting in ACQ using V under A.

From the definition of Qf , we can conclude that Q has an M -bounded rewriting in
ACQ using V under A if and only if Q ≡A ∅. Thus we only need to verify that Q ≡A ∅ if
and only if ψ is false.

(⇐) Suppose that ψ is false. We prove Q ≡A ∅, by contradiction. If Q 6≡A ∅, then there
exists D |= A such that Q(D) 6= ∅. Let ν be a valuation of variables of Q in D. Since
Q01(D) 6= ∅, QX(D) 6= ∅, and D |= R′(∅ → E, 2), for each variable x ∈ X, ν(x) ∈ {0, 1}.
We show that µ0 = (ν(x1), . . . , ν(xm)) forms a truth assignment of X that makes ψ
true. Indeed, since Q′(D) 6= ∅ we know that ν(yi) = > for 1 6 i 6 k. This implies that
Qj(µ0,>) evaluates to true over D for each j ∈ [1, k]. In other words, each clause Cj is
satisfied under µ0, contradicting the assumption that ψ is false. Hence Q ≡A ∅.

(⇒) Suppose that Q ≡A ∅. We show that ψ is false by contradiction. Let µ0 be a truth
assignment of X that makes ψ true. Based on µ0, we construct an instance D of R such
that D |= A and Q(D) 6= ∅. This contradicts to our assumption that Q ≡A ∅. Therefore,
ψ must be false. More specifically, database D consists of the following tuples:
(1) the 18 tuples in Q01, Q∧, Q∨, Q¬;
(2) for each variable xi ∈ X, one tuple corresponding to µ0(xi): R(i+ 2, •, µ0(xi)); and
(3) for each natural number i 6 (M × |V| × |R|), one tuple R(c1i , c

2
i , i), where c1i and c2i

are two distinct new constants.
It is easy to verify thatD |= A. We next show thatQ(D) 6= ∅. Indeed, we can construct

a valuation ν from variables of Q to values of D as follows: for each number i 6 (M ×
|V| × |R|), ν(y1

i ) = c1i and ν(y2
i ) = c2i ; for each variable xi ∈ X, ν(xi) = µ0(xi). Because

µ0 is a truth assignment of X that makes ψ true, we can easily verify that ν satisfies
ν(Q) ⊆ D. Hence, Q(D) 6= ∅ and thus Q 6≡A ∅.

For N > 2, we only need to fill the relations R′ and R with more constants such that
the same reduction as forN = 2 works. For example, suppose thatN = 3, and let e1 and
e2 be two distinct new constants. Then we modify Q01 as Q01() = R′(0)∧R′(1)∧R′(e1)∧
R(I, 0, 0)∧R(I, 1, 1)∧R(I, e1, e2). This revised query can also ensure that x̄ is a truth
assignment of X. Indeed, consider any instance D |= A of R such that Q(D) 6= ∅, and
let ν be a valuation of variables in Q. Then Q01(D) 6= ∅ and QX(D) 6= ∅. By Q01(D) 6= ∅,
there exist tuples R′(0), R′(1), and R′(e1) in D. By QX(D) 6= ∅ and R′(∅ → E, 3), for
each variable xi we have that ν(xi) ∈ {0, 1, e1}. Suppose that ν(xi) = e1. Because
QX(D) 6= ∅, there exists a tuple R(I, e1, e1) in D. However, since Q01(D) 6= ∅, there
exists also a tuple R(I, e1, e2) in D. From the access constraint R((A,B) → C, 1), we
can conclude that e1 = e2, which contradicts to our assumption that e1 and e2 are two
distinct constants. Hence ν(xi) 6= e1 and thus ν(xi) ∈ {0, 1}. Therefore, x̄ is a truth
assignment of X. Using the same argument for the case N = 2, we can show that Q
has an M -bounded rewriting in ACQ using V under A if and only if ψ is false.

For other values of N > 2, we can modify Q01 along the same lines. 2
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Proof of Theorem 5.1

We verify the three conditions of effective syntax one by one as follows.

(1) Each FO query Q with an M -bounded rewriting is A-equivalent to a query
topped by (R,V,A,M). By definition, an FO query Q with an M -bounded rewriting
is A-equivalent to an M -bounded query plan ξ(Q,V,R) under A. Hence, it suffices to
show that for each M -bounded query plan ξ using V under A, there exists a query
Qξ topped by (R,V,A,M) such that ξ ≡A Qξ. We show this by induction on M . More
specifically, we show that for any M -bounded query plan ξ using V under A, there
exists a query Qξ topped by (R,V,A,M) such that Qξ ≡A ξ.

Base case. We first show that the statement holds when M = 1. In this case, ξ can only
be one of the following three forms (see the definition of query plans in Section 2): (i) a
constant {c}; (ii) a view V (x̄) in V; or (iii) a fetch operator fetch(∅, R,X) with access con-
straint R(∅ → X,N) ∈ A. Define Qξ as x = c, V (x̄) or ∃ȳ R(ȳ, x̄), respectively. Clearly,
Qξ ≡A ξ; so it remains to verify whether Qξ is topped by (R,V,A,M), i.e., whether
covq(Qε, Qξ) is true and size(Qε, Qξ) = 1. This is an immediate consequence of the defi-
nition of these two functions. Indeed, case (i) corresponds to case (1) of topped queries
given in Section 5; case (ii) corresponds to case (2) with z̄ = x̄; and case (iii) corresponds
to case (7a) with z̄ = x̄ and w̄ = ȳ. Hence, Qξ is indeed topped by (R,V,A,M).

Induction step. Suppose that the statement holds for (M − 1)-bounded query plans ξ
using V under A. We next show that the statement also holds for M -bounded query
plans ξ. By analyzing the structure of ξ we can distinguish the following six cases: (i)
ξ = (ξ′, σX=c(ξ

′)) (resp. (ξ′, σX=Y (ξ′))); (ii) ξ = (ξ′, πY (ξ′)); (iii) ξ = (ξ1, ξ2, ξ1× ξ2); (iv) ξ =
(ξ1, ξ2, ξ1 ∪ ξ2); (v) ξ = (ξ1, ξ2, ξ1 − ξ2); and (vi) ξ = (T = ξ′, fetch(X ∈ T,R, Y )). We next
show that there exists an FO query Qξ topped by (R,V,A,M) such that Qξ ≡A ξ, for
each of these six cases.

Case (i). We prove the case when ξ = (ξ′, σX=c(ξ
′)); the case when ξ = (ξ′, σX=Y (ξ′)) is

similar. Clearly, ξ′ is an (M − 1)-bounded query plan under V using A. Hence, by the
induction hypothesis, there exists Qξ′ topped by (R,V,A,M − 1) such that Qξ′ ≡A ξ′.
Let Qξ be Qξ′ ∧ (x = c). Since Qξ′ ≡A ξ′, we also have that Qξ ≡A ξ.

We next show that Qξ is topped by (R,V,A,M). To see this, consider the conjunction
case (3) of topped queries given in Section 5. By the induction hypothesis, covq(Qε, Qξ′) =
true. Therefore, case (3) applies here. That is, covq(Qε, Qξ) = covq(Qε, Qξ′) = true and
size(Qε, Qξ) = size(Qε, Qξ′) + 1. We know by the induction hypothesis that the size is
bounded by (M − 1) + 1 = M . Hence, Qξ is indeed topped by (R,V,A,M).

Case (ii). When ξ = (ξ′, πY (ξ′)), ξ′ is an (M − 1)-bounded query plan under V using
A. Hence, by the induction hypothesis, there exists an FO query Qξ′(z̄) topped by
(R,V,A,M − 1) such that ξ′ ≡A Qξ′ . Let Qξ be ∃(z̄ \ ȳ)Qξ′(z̄). From Qξ′ ≡A ξ′ it
follows that Qξ ≡A ξ also holds.

We next verify that query Qξ is topped by (R,V,A,M). Observe that there are two
cases of covq(Qε, Qξ) and size(Qε, Qξ), corresponding to cases (7a) and (7c) given in
Section 5, respectively. Note that case (7b) does not apply here as the last operation
of ξ is πY (ξ′) instead of a fetch as for case (7b). We show that in both cases, Qξ is
topped by (R,V,A,M). (a) If Qξ′ is R(z̄) and R(∅ → Z,N) ∈ A, then case (7a) of Sec-
tion 5 applies here. Thus covq(Qε, Qξ) = true and size(Qε, Qξ) = 1 6 M . Hence Qξ is
topped by (R,V,A,M). (b) Otherwise, case (7c) applies here because ξ is anM -bounded
query plan. Hence by the induction hypothesis, covq(Qε, Qξ) = covq(Qε, Qξ′) = true and
size(Qε, Qξ) = size(Qε, Qξ′) + 1 6M . Thus Qξ is topped by (R,V,A,M).
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Case (iii). When ξ = (ξ1, ξ2, ξ1×ξ2), then ξ1 is anM1-bounded query plan and ξ2 is anM2-
bounded query plan such that M1 +M2 6M − 1. Let Qξ1(x̄1) ≡A ξ1 and Qξ2(x̄2) ≡A ξ2
be the corresponding queries topped by (R,V,A,M1) and (R,V,A,M2), respectively.
Note that x̄1 ∩ x̄2 = ∅. Consider Qξ = Qξ1(x̄1) ∧Qξ2(x̄2). Clearly, Qξ ≡A ξ.

We show that queryQξ is topped by (R,V,A,M). Since covq(Qε, Qξ1) and covq(Qε, Qξ2)
are both true, we know from the conjunction case (4b) of topped queries given in Sec-
tion 5 that covq(Qε, Qξ) = true as well. Furthermore, since x̄1 ∩ x̄2 = ∅, size(Qε, Qξ) is
defined in case (4b) as 2 · size(Qε, Qε)+ size(Qε, Qξ1)+ size(Qε, Qξ2)+1, which is bounded
by M1 +M2 + 1 6M . Therefore, query Qξ is topped by (R,V,A,M).

Case (iv). The case when ξ = (ξ1, ξ2, ξ1 ∪ ξ2) is verified in the same way as the previous
case, by using the disjunction case (5) of topped queries specified in Section 5.

Case (v). When ξ = (ξ1, ξ2, ξ1 \ ξ2), the case is handled in the same way as case (iii), by
using the negation case (6a) given in Section 5.

Case (vi). When ξ = (S = ξ′, fetch(X ∈ S,R,Z)), since ξ is an M -bounded query plan
using V under A, we know that there exists an access constraint R(X → Z ′, N) in
A such that Z ⊆ X ∪ Z ′ and as before, ξ′ is an (M − 1)-bounded query plan using V
under A. In addition, ξ′ must have bounded output. Hence, the induction hypothesis
applies here. Let Qξ′(x̄) be a query topped by (R,V,A,M − 1) such that Qξ′(x̄) ≡A ξ′

and consider Qξ(x̄, z̄) = Qξ′(x̄) ∧ ∃ū R(x̄, z̄, ū). Clearly, Qξ(x̄, z̄) ≡A ξ.
We next verify that query Qξ is topped by (R,V,A,M). This follows from the con-

junction case (4a) given in Section 5. Indeed, by the induction hypothesis we have that
covq(Qε, Qξ′) = true. Furthermore, Qξ′(x̄) has bounded output. Thus by the definition
of topped queries in case 4(a), we have that covq(Qε, Qξ) = true and size(Qε, Qξ) =
size(Qε, Qξ′) + 1 bounded by M . Hence Qξ is topped by (R,V,A,M).

(2) Every query topped by (R,V,A,M) has an M -bounded rewriting using V
under A. We show that every query Q topped by (R,V,A,M) indeed has a size(Qε, Q)-
bounded rewriting using V under A. The statement we will prove is as follows:

if covq(Qε, Qs) = covq(Qs, Q) = true and Qs has a size(Qε, Qs)-bounded plan,
then covq(Qε, Qs ∧Q) = true and Qs ∧Q has a size(Qε, Qs ∧Q)-bounded plan.

For if this holds, then Q has an M -bounded plan if it is topped by (R,V,A,M).
Indeed, when Q is topped by (R,V,A,M), covq(Qε, Q) = true and size(Qε, Q) 6 M .
Since covq(Qε, Qε) = true and Qε has a 0-bounded plan, by the statement, Qε ∧Q = Q
has a size(Qε, Qε ∧ Q) = size(Qε, Q)-bounded plan, i.e., an M -bounded plan. That is, Q
has an M -bounded rewriting using V under A if Q is topped by (R,V,A,M).

Below we prove the statement by induction on the structure of Q. In the sequel, for a
tuple x̄ of variable, we denote by X its corresponding set of attributes, and vice versa.

Base case. We first show that the statement holds when Q has one of the following
forms: (b1) z = c; (b2) a view V (z̄) in V; or (b3) a relation ∃wR(w̄, z̄).

Case (b1). For base case (b1), i.e., when Q is z = c, if covq(Qε, Qs) = covq(Qs, Q) = true
and Qs has a size(Qε, Qs)-bounded plan (say ξs), then consider plan ξ = (ξs, σz=c(ξs)).
Since Qs ≡A ξs, we have that Qs ∧Q ≡A ξ. Since covq(Qs, Q) = true, we know that case
(3) of topped queries specified in Section 5 can apply to Qs ∧ Q. Hence covq(Qε, Qs ∧
Q) = covq(Qε, Qs) = true and Qs ∧ Q has a (|ξs| + 1)-bounded plan, where |ξs| + 1 6
size(Qε, Qs) + 1 = size(Qε, Qs ∧ (z = c)). That is, the statement holds for case (b1).

Case (b2). For base case (b2), i.e., whenQ is a view V (z̄), if covq(Qε, Qs) = covq(Qs, Q) =
true and Qs has a size(Qε, Qs)-bounded plan (say ξs), then we have the following plans
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for Qs ∧ Q. For Qs(x̄) and V (z̄), (i) if x̄ ∩ z̄ = ∅, then let plan ξ be (T1 = ξs, T2 = V (z̄),
T3 = T1 × T2); and (ii) if x̄ ∩ z̄ = w̄ 6= ∅, then let plan ξ be (T1 = ξs, T2 = V (z̄),
T3 = ρ(T2), T4 = T1 × T3, T5 = σT1[W ]=T3[W ](T4), T6 = πT1[X],T3[Z\W ](T5)). In both cases,
ξ ≡A Qs ∧Q when ξs ≡A Qs. Moreover, note that by case (2) of Section 5 we have that
covq(Qε, V (z̄)) = true, since covq(Qε, Qs) = true following case (4b) of Section 5 we also
have that covq(Qε, Qs ∧ V (z̄)) = true and size(Qε, Qs ∧ V (z̄)) = size(Qε, Qε) + size(Qε,
Qs) + size(Qε, V (z̄)) + λ(x̄,z̄) > |ξ| in both cases (i) and (ii) (recall λ(x̄,z̄) from case (4b);
note that λ(x̄,z̄) = 1 for case (i) and λ(x̄,z̄) = 4 for case (ii)). Therefore, the statement
holds for case (b2).

Case (b3). For base case (b3), i.e., when Q is ∃w̄R(w̄, z̄), if covq(Qε, Qs) = covq(Qs,
Q) = true and Qs has a size(Qε, Qs)-bounded plan ξs, observe the following. Given that
covq(Qs, Q) = true, from cases (7a-7b) of Section 5, we know that either (i)R(∅ → Z,N) ∈
A or (ii) R(X → Z ′, N) ∈ A, X ∪ Z ′ = Z and Qs(x̄) has bounded output under A.

First consider case (i). We distinguish two cases: x̄ ∩ z̄ = ∅, and x̄ ∩ z̄ = w̄′ 6= ∅.
When x̄ ∩ z̄ = ∅, let ξ = (T1 = ξs, T2 = fetch(∅, R, Z), T3 = T1 × T2). Since ξs ≡A Qs,
we have that ξ ≡A Q. Observe that by case (7a) of Section 5, covq(Qε, Q) = true. In
addition, covq(Qε, Qs) = true by the condition of the statement. Therefore, case (4b)
specified in Section 5 applies to Qs∧Q. Hence covq(Qε, Qs∧Q) = true, size(Qε, Qs∧Q) =
size(Qε, Qs)+size(Qε, Q)+1 = size(Qε, Qs)+2 > |ξ|. That is, Qs∧Q has a size(Qε, Qs∧Q)-
bounded plan. For the case when x̄∩ z̄ = w̄′ 6= ∅, one can verify that Qs(x̄)∧Q(z̄) has a
size(Qε, Qs ∧Q)-bounded plan along the same lines as above.

Next consider case (ii). SinceQs has bounded output underA and covq(Qε, Qs) = true,
case (4a) given in Section 5 applies to covq(Qε, Qs ∧Q) here. Hence covq(Qε, Qs ∧Q) =
true. Consider a plan ξ = (T1 = ξs, T2 = fetch(X ∈ T1, R, Z

′)). Since ξs ≡A Qs, we have
that ξ ≡A Qs ∧Q. Hence |ξ| = |ξs|+ 1 6 size(Qε, Qs) + 1 = size(Qε, Qs ∧Q) by case (4a)
of Section 5. That is, Qs ∧Q has a size(Qε, Qs ∧Q)-bounded plan.

Induction step. Assume that the statement holds for sub-queries of a topped query Q.
Below we show that the statement also holds for Q itself, by analyzing the structure of
Q(z̄) as follows, corresponding to the different cases presented in Section 5. We number
the cases accordingly in the proof below.

(3) Q(z̄) is Q′(z̄) ∧ (x = c). Since covq(Qs, Q) = true, we know that covq(Qs, Q
′) =

true as well. Since covq(Qε, Qs) = true and Qs has a size(Qε, Qs)-bounded plan, by the
induction hypothesis, covq(Qε, Qs ∧ Q′) = true and Qs ∧ Q′ has a size(Qε, Qs ∧ Q′)-
bounded plan ξ′. Thus, by the definition of covq(·, ·) in case (3) in Section 5, we know
that covq(Qε, Qs ∧ (Q′ ∧ (x = c))) = true. Moreover, Qs ∧ Q has a bounded plan ξ =
(T1 = ξ′, T2 = σX=cT1) and |ξ| = |ξ′|+ 1 6 size(Qε, Qs ∧Q′) + 1 = size(Qε, Qs ∧Q). That
is, the statement holds for Q(z̄). The cases when Q is Q′ ∧ (x = y), Q′ ∧ (x 6= y) or
Q′ ∧ (x 6= c) can be verified in the same way.

(4) Q(z̄) is Q1(z̄1) ∧ Q2(z̄2). There are three cases (4a), (4b) and (4c) of topped queries
given in Section 5 when covq(Qs, Q(z̄)) = true. We verify these cases one by one below.

Case (4a). For case (4a) of topped queries specified in Section 5, when covq(Qs, Q) =
true, we have that covq(Qs, Q1(z̄1)) = true, Q2(z̄2) is a relation ∃wR(z̄1, z̄

′
2, w̄), R(Z1

→ Z ′2, N) ∈ A with Z1 ∪ Z ′2 = Z2, and Qs ∧ Q1 has bounded output under A. Now
consider Qs ∧Q = Qs ∧ (Q1 ∧Q2). Since covq(Qs, Q1) = covq(Qε, Qs) = true and Qs has a
size(Qε, Qs)-bounded plan, by the induction hypothesis we know that covq(Qε, Qs ∧Q1)
= true and Qs ∧ Q1 has a size(Qε, Qs ∧ Q1)-bounded plan ξs1. In addition, ξs1 has
bounded output. Now case (4c) in Section 5 applies to Qs∧ (Q1∧Q2) to handle multiple
conjuncts. Thus covq(Qε, Qs ∧ (Q1 ∧ Q2)) = covq(Qε, Qs) ∧ covq(Qs, Q1 ∧ Q2) = true.
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Consider plan ξ = (T1 = ξs1, T2 = fetch(T1, R, Z
′
2)). Note that ξ ≡A Qs ∧ Q because

ξs1 ≡A Qs ∧ Q1. Since Ts1 is of bounded size, ξ is a (|ξs1| + 1)-bounded plan, where
(|ξs1|+ 1) 6 size(Qε, Qs ∧Q1) + 1 = size(Qε, (Qs ∧Q1) ∧Q2) 6 size(Qε, Qs ∧Q). That is,
the statement holds for Q when Q falls in case (4a).

Case (4b). For case (4b) of topped queries of Section 5, when covq(Qs, Q) = true, we have
that covq(Qs, Q1) = covq(Qs, Q2) = true. To be more specific, we distinguish four cases:
(i) covq(Qε, Q1) = covq(Qε, Q2) = true, (ii) covq(Qε, Q1) = true and covq(Qε, Q2) = false, (iii)
covq(Qε, Q1) = false and covq(Qε, Q2) = true, and (iv) covq(Qε, Q1) = covq(Qε, Q2) = false.
Assume z̄1 ∧ z̄2 = ∅. For case (i), since covq(Qε, Qi) = true(i ∈ {1, 2}), by the induction
hypothesis, there are size(Qε, Qi)-bounded plans ξi for Qi. Let ξs be the size(Qε, Qs)-
bounded plan for Qs Now consider plan ξ = (T1 = ξ1, T2 = ξ2, T3 = T1 × T2, T4 =
ξs, T5 = T3 × T4). Then ξ ≡A ξ. Note that |ξ| = |ξ1| + |ξ2| + |ξs| + 2 6 size(Qε, Q1) +
size(Qε, Q2) + size(Qε, Qs) + 2. Hence size(Qε, Qs ∧ (Q1 ∧ Q2)) = size(Qε, Qs) + size(Qε,
Q1 ∧Q2) + 1 = size(Qε, Qs) + size(Qε, Q1) + size(Qε, Q2) + 1 + 1 > |ξ|. For case (ii), since
covq(Qε, Q1) = true and covq(Qs, Q2) = true, by the induction hypothesis, we know that
Q1 has a size(Qε, Q1)-bounded plan ξ1 and Qs ∧ Q2 has a size(Qε, Qs ∧ Q2)-bounded
plan ξs2 (note that covq(Qε, Qs ∧ Q2) = covq(Qε, Qs) ∧ covq(Qs, Q2) = true). Consider
plan ξ = (T1 = ξ1, T2 = ξs2, T3 = T1 × T2). Then ξ ≡A Q1 ∧ (Qs ∧ Q2) = Qs ∧ Q and
|ξ| 6 size(Qε, Q1) + size(Qε, Qs ∧Q2) + 1 = size(Qε, Q1) + size(Qε, Qs) + size(Qs, Q2) + 1.
Note that size(Qε, Qs ∧ (Q1 ∧Q2)) = size(Qε, Qs) + size(Qs, Q1 ∧Q2) = 3 ∗ size(Qε, Qs) +
size(Qs, Q1)+size(Qs, Q2)+1. In addition, one can easily verify that, when covq(Qε, Q) =
covq(Qs, Q) = true, size(Qε, Q) 6 size(Qs, Q), by induction on Q. Hence size(Qε, Qs∧Q) >
|ξ|. Similarly for case (iii). For case (iv), from covq(Qε, Qi) 6= true and covq(Qs, Qi) = true
and the induction hypothesis we know that Qs ∧ Qi has a size(Qε, Qs ∧ Qi)-bounded
plan ξsi, for i ∈ {1, 2}. Consider plan ξ = (T1 = ξs1, T2 = ξs2, T3 = T1 × T2). Then ξ ≡A
(Qs∧Q1)∧ (Qs∧Q2) = Qs∧Q. Note that |ξ| 6 size(Qε, Qs∧Q1) + size(Qε, Qs∧Q2) + 1 =
2 ∗ size(Qε, Qs) + size(Qs, Q1) + size(Qs, Q2) + 1. Hence size(Qε, Qs ∧Q) = size(Qε, Qs) +
size(Qs, Q1 ∧ Q2) = size(Qε, Qs) + 2size(Qε, Qs) + size(Qs, Q1) + size(Qs, Q2) + 1 > |ξ|.
Similarly, one can verify the case when z̄1∩ z̄2 6= ∅. Furthermore,covq(Qε, Qs∧Q) = true
since covq(Qε, Qs)∧ covq(Qs, Q) = true. Therefore, we have that the statement holds on
Q in case (4b).

Case (4c). When Q falls in case (4c) of topped queries in Section 5, from covq(Qs, Q1

∧ Q2) = true we know that covq(Qε, Qs ∧ Q1) = true and covq(Qs ∧ Q1, Q2) = true. By
the induction hypothesis, from covq(Qε, Qs ∧ Q1) = true we have that Qs ∧ Q1 has a
size(Qε, Qs ∧ Q1)-bounded plan ξs1. Hence, further by the induction hypothesis, from
covq(Qε, Qs ∧ Q1) = covq(Qs ∧ Q1, Q2) = true and that Qs ∧ Q1 has plan ξs1, we have
that (Qs∧Q1)∧Q2 has a size(Qε, (Qs∧Q1)∧Q2)-bounded plan ξ, by treating (Qs∧Q1) as
a “newQs”. Note that ξ is also a plan forQs∧(Q1∧Q2). Observe that |ξ| 6 size(Qε, (Qs∧
Q1) ∧Q2) = size(Qε, Qs ∧Q1) + size(Qs ∧Q1, Q2) = size(Qε, Qs) + size(Qs, Q1) + size(Qs ∧
Q1, Q2) (by case (4c)). Therefore, by case (4c) size(Qε, Qs ∧ (Q1 ∧ Q2)) = size(Qε, Qs) +
size(Qs, Q1∧Q2) = size(Qε, Qs)+size(Qs, Q1)+size(Qs∧Q1, Q2) > |ξ|. Since covq(Qε, Qs∧
(Q1 ∧Q2)) = covq(Qε, Qs)∧ covq(Qs, Q1 ∧Q2) = true, the statement holds on Q when Q
is in case (4c).

A size(Qε, Qs ∧Q)-bounded plan in this case can be constructed along the same lines
as its counterpart for (4b) above, distinguishing the case when there exist common
variables in Qs ∧Q1 and Q2 from the case when they contain disjoint variables.

Remark. Note that when Q = Q1∧Q2, to compute covq(Qs, Q), we need to compute both
covq(Qs, Q2) (case (4b)) and covq(Qs∧Q1, Q2) (case (4c)). When Q2 is Q21∧Q22, we need
to compute covq(Qs, Q22), covq(Qs∧Q1, Q22), covq(Qs∧Q21, Q22) and covq(Qs∧Q1∧Q21,
Q22). In the worst case, we test 2|Q2| many different cases. Hence we restrict the size
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of Q2 to bound the number of expansions of Qs when computing covq(Qε, Q) to ensure
that covq(·, ·) is computable in PTIME (statement (3) of Theorem 5.1), although this has
no impact on the statement we are proving now.

(5) Q(z̄) is Q1(z̄)∨Q2(z̄). The case when Q is Q1 ∨Q2 is verified in the same way as for
case (4b) above.

(6) Q(z̄) is Q1(z̄) ∧ ¬Q2(z̄). When Q is Q1 ∧ ¬Q2 and covq(Qs, Q) = true, there are two
cases corresponding to cases (6a) and (6b) given in Section 5, respectively.

Case (6a). The statement can be verified in the same way as case (4b) above.

Case (6b). Since covq(Qs, Q) = true, we have that covq(Qs, Q1) = true and covq(Qs, Q1

∧ Q2) = true. By the induction hypothesis, covq(Qε, Qs ∧ Q1) = true and Qs ∧ Q1 has a
size(Qε, Qs∧Q1)-bounded plan ξs1; similarly,Qs∧(Q1∧Q2) has a size(Qε, Qs∧(Q1∧Q2))-
bounded plan ξs12. Thus covq(Qε, Qs∧Q) = covq(Qε, Qs)∧covq(Qs, Q) = true, and Qs∧Q
has a plan ξ = (ξs1, ξs12, ξs1 − ξs12). Since Q1(z̄) ∧ ¬Q2(z̄) = Q1(z̄) ∧ ¬(Q1(z̄) ∧ Q2(z̄)),
ξ is a plan of Qs ∧ Q. Moreover, |ξ| 6 size(Qε, Qs ∧ Q1) + size(Qε, Qs ∧ Q1 ∧ Q2) + 1 =
size(Qε, Qs ∧Q).

Thus the statement holds for case (6).

(7)Q(z̄) is ∃wQ′(w̄, z̄). WhenQ falls in case (7) of topped queries in Section 5, i.e.,Q(z̄) =
∃wQ′(w̄, z̄), we only need to consider case (7c) whenQ′ is not a relation, since cases (7a)
and (7b) have already been covered in the base step. In case (7c), when covq(Qs, Q) =
true, covq(Qs, Q

′) is also true. Thus by the induction hypothesis, covq(Qε, Qs(x̄) ∧Q′(w̄,
z̄)) = true and Qs(x̄) ∧ Q′(w̄, z̄) has a size(Qε, Q

′(w̄, z̄))-bounded plan ξ′. Consider plan
ξ = (T1 = ξ′, T2 = πZ(T1)). Then ξ ≡A Q since ξ′ ≡A Q′. That is, Qs ∧ Q has a (|ξ′| +
1)-bounded plan, where (|ξ′| + 1) 6 size(Qε, Qs ∧ Q′) + 1 = size(Qε, Q). Observe that
covq(Qε, Qs ∧Q) = covq(Qε, Qs ∧Q′) = true. Thus the statement holds for case (7).

The proof above gives a construction of bounded rewriting of Q using V under A, by
defining the bounded rewriting for each case of computing covq(Qs, Q) and size(Qs, Q).
To show that the construction is in PTIME in M , |Q|, |A| and |V|, we only need to show
that the computation of covq(Qs, Q) and size(Qs, Q) can be done in polynomially many
induction steps (i.e., applications of the 7 cases above). This is verified below.

(3) It is in PTIME to check whether FO queries are topped by (R,V, A,M) with
a PTIME oracle for checking output boundedness. It suffices to show that both
functions covq(Qs, Q) and size(Qs, Q) are polynomial in |Q|, |Qs|, |A| and |V|. Below we
verify this for covq(Qs, Q); the proof for size(Qs, Q) is similar. Observe the following.

— At most O(|Q|) induction steps are needed for computing covq(Qs, Q), where each
induction step is an application of one of the seven cases given in the definition of
covq(Qs, Q) in Section 5. To see this, observe the following. (i) When only cases (1),
(2), (3), (5), (4a), 4(b), 6(a) and (7) are involved, covq(Qs, Q) can be computed within
|Q| induction steps because each application of such cases decreases |Q| by 1 while
keeping |Qs| unchanged. (ii) For case (4c) (when Q = Q1∧Q2), we need to check 2|Q2|

possible expansions of Qs to compute covq(Qs, Q), as remarked in the the proof of
statement (2) for case (4c) above. Since |Q2| is bounded by a predefined constant K
(see Section 5), the checking can be done in PTIME. Moreover, Qs can be expanded
at most O(|Q|) times, and each step corresponds to an induction step. That is, the
total number of induction steps remains bounded by O(|Q|). This is similar when
case (6b) (when Q = Q1 ∧ ¬Q2) is also concerned.
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— Each induction step is in PTIME in |Q|, |V| and |A| when a PTIME oracle for check-
ing output boundedness is available (Theorem 5.2). This is because (i) |Qs| can be
increased by no larger than |Q| when computing covq(Qs, Q) and size(Qs, Q); and
(ii) each step can be done by syntactically checking Qs, Q, A and V, and for output
boundedness checking in cases (4a) and (7b).

Thus it is in PTIME in |Q|, |A| and |V| to decide whether covq(Qε, Q) = true. Simi-
larly, it takes PTIME in M , |Q|, |A| and |V| to check whether size(Qε, Q) 6 M . Taken
together with the constructive proof given in (2) above, these show that it takes PTIME
to generate an M -bounded rewriting using V for each query topped by (R,V,A,M). 2
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