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Expectations broadly influence our experience of the world. However, the process by which they are acquired and then 
shape our sensory experiences is not well understood. Here, we examined whether expectations of simple stimulus 
features can be developed implicitly through a fast statistical learning procedure. We found that participants quickly and 
automatically developed expectations for the most frequently presented directions of motion, and that this altered their 
perception of new motion directions, inducing attractive biases in the perceived direction as well as visual hallucinations in 
the absence of a stimulus. Further, the biases in motion direction estimation that we observed were well explained by a 
model that accounted for participantsʼ behaviour using a Bayesian strategy, combining a learned prior of the stimulus 
statistics (the expectation) with their sensory evidence (the actual stimulus) in a probabilistically optimal manner. Our 
results demonstrate that stimulus expectations are rapidly learned and can powerfully influence perception of simple 
visual features.
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Introduction
As well as depending on the sensory input that we re-

ceive, our perception of the world is shaped by our expecta-
tions. These expectations can be manipulated quickly 
through sensory cues or experimentalists’ instructions (Pos-
ner, Snyder, & Davidson, 1980; Sterzer, Frith, & Petrovic, 
2008), or more slowly, based on the statistics of previous 
sensory inputs. For example, in complex scenes, objects are 
recognized faster and more accurately when they are contex-
tually appropriate to the visual scene as a whole: when pre-
sented with an image of a kitchen, people are better at rec-
ognizing a loaf of bread than a drum (Bar, 2004). In other 
words, we learn from past experience which objects are ex-
pected within the context of a particular visual scene, and 
our perceptual sensitivity for these objects is increased ac-
cordingly.

Indeed, it has been shown extensively that expectations 
modulate perceptual performance. When visual cues are 
used to inform participants the location that a stimulus is 
most likely to appear, their perceptual sensitivity for stimuli 
presented at this location is increased. This results in de-
creased reaction times, decreased detection thresholds and 
increased sensitivity for discrimination of features such as 
orientation, form or brightness for stimuli presented at the 

expected location (Doherty, Rao, Mesulam, & Nobre, 2005; 
Downing, 1988; Posner et al., 1980; Yu & Dayan, 2005b). 
More recently it has been shown that, in complex tasks, 
participants implicitly learn which visual signals provide 
task-relevant information, such as predicting which stimuli 
are likely to be presented, and that this information can be 
used to optimize performance in the task (Chun, 2000; 
Eckstein, Abbey, Pham, & Shimozaki, 2004).

As well as enhancing perceptual performance, expecta-
tions can also influence ‘what’ is perceived. Specifically, 
recent studies have shown that rapidly learned expectations 
can help determine the perception of bistable stimuli (Hai-
jiang, Saunders, Stone, & Backus, 2006; Sterzer et al., 
2008). Perception of such bistable stimuli is unstable, un-
dergoing frequent reversals (van Ee, 2005) whose dynamics 
can be altered voluntarily by the observer (van Ee, van 
Dam, & Brouwer, 2005), In contrast, perception of simple 
stimuli is typically unambiguous and, seemingly, not so eas-
ily changed. Therefore, whether expectations can also alter 
the perception of simple stimuli that are not bistable is un-
clear.

A growing body of work suggests that perception is akin 
to Bayesian Inference (Knill & Pouget, 2004; Weiss, Simon-
celli, & Adelson, 2002), where the brain represents sensory 
information probabilistically, in the form of probability dis-
tributions. Here it is assumed that in situations of uncer-
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tainty, sensory information is combined with prior knowl-
edge about the statistics of the world, serving to bias percep-
tion towards what is expected. This framework has been 
used to understand a great number of perceptual phenom-
ena, such as why moving images appear to be moving slower 
when they are presented at low contrast (A. A. Stocker & 
Simoncelli, 2006), and the illusory ‘filling-in’ of discon-
tinuous contours (Komatsu, 2006; Lee & Mumford, 2003), 
adding support to the idea that expectations can alter the 
appearance of simple unambiguous visual stimuli. However, 
in these studies, participants’ expectations (i.e. priors) are 
usually assumed to be acquired over long periods of time, 
through development and life experience. On the other 
hand, in the field of sensorimotor learning, it has been 
shown that participants can learn priors about novel statis-
tics introduced during a psychophysical task, and that they 
combine this with information about their sensorimotor 
uncertainty in a manner that is consistent with a Bayes op-
timal process (Faisal & Wolpert, 2009; Körding & Wolpert, 
2004). In the visual domain, how new sensory priors are 
learned is an open question.

Here we sought to understand whether stimulus expec-
tations can be implicitly acquired through fast statistical 
learning, and if so, how such expectations are combined 
with visual signals to modulate perception of simple unam-
biguous stimuli. We examined this in the context of motion 
perception in a design where some motion directions were 
more likely to appear than others. Our hypothesis was that 
participants would automatically learn which directions 
were most likely to be presented and that these learned ex-
pectations would bias their perception of motion direction. 
A secondary hypothesis was that participants would solve 
the task using a Bayesian strategy, combining a learned 
prior of the stimulus statistics (the expectation) with their 
sensory evidence (the actual stimulus) in a probabilistic way. 

Methods
Observers and stimuli

Twenty naive observers with normal or corrected-to-
normal vision, participated in this experiment. All partici-
pants in the study gave informed written consent, received 
compensation for their participation and were recruited 
from the Riverside, CA area. The University of California, 
Riverside Institutional Review Board approved the methods 
used in the study, which was conducted in accordance with 
the Declaration of Helsinki.

Visual stimuli were generated using the Matlab pro-
gramming language and displayed using Psychophysics 
Toolbox (Brainard, 1997; Pelli, 1997) on Viewsonic P95f 
monitor running at 1024X768 at 100hz. The display lumi-
nance of the CRT monitor was made linear by means of an 
8-bit lookup table. Participants viewed the display in a dark-
ened room at a viewing distance of 100 cm with their mo-
tion constrained by a chin rest. Motion stimuli consisted of 

a field of dots (density: 2 dots/deg2 at 100Hz refresh rate) 
moving coherently at a speed of 9°/sec within a circular 
annulus, with minimum and maximum diameter of 2.2° 
and 7° respectively. The background luminance of the dis-
play was set to 5.2 cd/m2. 

Procedure
At the beginning of each trial a central fixation point 

(0.5° diameter, 12.2cd/m2) was presented for 400 ms. With 
the fixation point still onscreen, the motion stimulus was 
then presented, along with a red bar which projected out 
(initial angle of bar randomized for each trial) from the fixa-
tion point (figure 1). The bar was located entirely within the 
center of the annulus containing the moving dots (length 
1.1°, width 0.03°, luminance 3.4cd/m2). Participants indi-
cated the direction of motion by orienting the red bar with 
a mouse, clicking the mouse button when they had made 
their estimate (estimation task). The display cleared when 
either the participant had clicked on the mouse, or a period 
of 3000 ms had elapsed. On trials where no motion stimu-
lus was presented, the red bar still appeared and partici-
pants were required to estimate the perceived direction of 
motion as normal. Participants were instructed to fixate on 
the central point throughout this period. Participants’ reac-
tion time in the estimation task determined how long the 
stimulus was presented for. On average this was equal to 
1978±85ms (standard error on the mean; see supplemen-
tary figure 7 for a plot of reaction time versus presented 
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Figure 1: Sequence of  events in a single trial. Each trial began 
with a fixation point, followed by  the appearance of  a motion 
stimulus. A central bar projecting from the fixation point was pre-
sented simultaneously  with the motion stimulus, and allowed 
participants to estimate the direction of  motion.  After either par-
ticipants  had made an estimation, or a period of  3000 ms had 
elapsed,  the stimulus disappeared and was replaced by  a verti-
cal line, with text to either side. Participants moved a cursor to 
either side of  the line to indicate whether they  had perceived the 
motion stimulus.



motion direction). After the estimation task had finished, 
there was a 200ms delay before a vertical white line was pre-
sented at the center of the screen, with text to either side 
(reading ‘NO DOTS’ and ‘DOTS’ respectively). Participants 
moved a cursor to the right or left of this line to indicate 
whether they had or had not seen a motion stimulus (detec-
tion), and clicked the mouse button to indicate their 
choice. The cursor flashed green or red for a correct or in-
correct detection response, respectively. The screen was 
then cleared and there was a 400 ms blank period before 
the beginning of the next trial. 

Every 20 trials, participants were presented block feed-
back on the estimation task, with text displayed on screen 
telling participants what their average estimation error was 
in the previous 20 trials (e.g. “In the last 20 trials, your average 
estimation error was: 20°”). Block feedback, rather than trial 
by trial feedback was given, because we wanted to encourage 
participants to do their best at the estimation task, without 
interfering with their estimation behaviour (and biases) on 
each trial. 

Design
Participants took part in 2 experimental sessions lasting 

around 1 hour each, taken over successive days. Each ses-
sion was divided into 5 blocks of 170 trials where all stimu-
lus configurations were presented, making 1700 trials in 
total (850 trials per session).

Participants were presented stimuli at 4 different ran-
domly interleaved contrast levels. The highest contrast level 
was at 1.7cd/m2 above the 5.2cd/m2 background. For each 
session there were 250 trials at zero contrast and 100 trials 
at high contrast. Contrasts of other stimuli were deter-
mined using 4/1 and 2/1 staircases on detection perform-
ance (García-Pérez, 1998). For each session there were 135 
trials with the 2/1 staircase and 365 trials with the 4/1 
staircase.

For the two staircased contrast levels, on a given trial 
the direction of motion could be 0° ±16°, ±32°, ±48° or 

±64°, with respect to a central reference angle. To reduce 
potential biases in the population, we averaged results due 
to reference repulsion from cardinal motion directions  
(Rauber & Treue, 1998), this central motion direction was 
randomized across participants. We manipulated partici-
pants’ expectations about which motion directions were 
most likely to occur by presenting stimuli moving at ±32° 
more frequently than the others (figure 2). Therefore, at the 
4/1 staircased contrast level, there were 130 trials per ses-
sion with motion at -32° and +32°, and 15 trials per session 
for each of the other directions of motion. At the 2/1 stair-
cased contrast level there were an equal number of stimuli 
moving in each of the predetermined directions: 15 trials 
per session for each motion direction. At the highest con-
trast level there were 25 trials per session with motion at 
-32° and +32° and 50 trials per session at completely ran-
dom directions (among all possible directions, not just the 
predetermined directions used in the rest of the experi-
ment). 

Data analysis
In the analysis of the estimation task, we looked only at 

trials where participants both reported seeing a stimulus 
and clicked on the mouse during stimulus presentation to 
indicate their estimate of motion direction. The first 100 
trials from each session (~25 trials from each contrast stair-
case) were excluded from the analysis to allow the staircases 
to converge on stable contrast levels (supplementary figure 
2a). Data was analyzed for the 12 (of 20) participants who 
could adequately perform both tasks according to our pre-
determined performance criteria of detection greater than 
80% (quantified as the fraction of trials where participants 
both detect the stimulus and click on the mouse during 
stimulus presentation to estimate its direction) and mean 
absolute estimation error less than 30° with the highest 
contrast stimuli in both experimental sessions (supplemen-
tary figure 1; see supplementary materials for details of dif-
ferent participants’ performance). Importantly, our analysis 
of participants performance in the estimation task looked 
only at their responses to staircased contrast levels, and not 
their responses to the highest contrast stimuli, which we 
used to determine which participants should be included.

In the estimation task the variance of participants’ mo-
tion direction estimates tended to be quite large and varied 
greatly across different participants and motion directions. 
We hypothesized that this was due to the fact that in some 
trials participants made completely random estimates. 
T h u s , d a t a w a s f i t t e d t o t h e d i s t r i b u t i o n :
(1− a)V (µ, κ) + a/2π , where ‘a’ is the proportion of tri-
als where the participant make random estimates, and
V (µ, κ)  is a von Mises (circular normal) distribution with 
mean ‘ ’ and width determined by ’1/κ ’, given by:
V (µ, κ) = exp(κ cos(θ − µ))/(2πI0(κ)) . Parameters were 
chosen by maximizing the likelihood of generating the data 
from the distribution. Participants’ estimation mean and 
standard deviation were taken as the circular mean and 

Journal of Vision   3

 

pr
ob

ab
ilit

y

0

0.1

0.2

0.3

angle (deg)
0 40-40

Figure 2: Probability  distribution of  presented motion directions. 
Two directions, 64° apart from each other, were presented in a 
larger number of  trials than other directions.  Motion direction is 
plotted relative to a reference direction at 0°, which was different 
for each subject.



standard deviation of the von Mises distribution, V (µ, κ). 
The average biases obtained using this method were qualita-
tively similar to those obtained through calculating the es-
timated direction by simply averaging over trials, while the 
variances were significantly smaller and with more consis-
tency across participants and motion directions when the 
parametric fits were used. Therefore, in all of the following 
analysis we used this parametric method to quantify per-
formance in the estimation task.

There was no significant interaction between experi-
mental session and motion direction on the estimation bias 
or standard deviation (p = 0.11 and p = 0.41 respectively, 4-
way within-subjects ANOVA). Therefore, we collapsed data 
across the two experimental sessions.

There was a considerable degree of overlap between the 
luminance levels achieved using both staircases. After dis-
counting the first 100 trials from each session, the popula-
tion averaged standard deviation in the luminance of the 2/
1 and the 4/1 staircased levels over the course of one ex-
perimental sess ion was 0.051±0.001cd/m2 and 
0.054±0.001cd/m2 respectively; similar to the average lumi-
n a n c e d i f f e r e n c e b e t w e e n t h e t w o l e v e l s 
(0.052±0.004cd/m2). Further, there was no significant dif-
ference between the luminance levels achieved for both 
staircases (p = 0.23, 3-way within-subjects ANOVA). This 
was reflected in the estimation data: there was no signifi-
cant difference between participants’ estimation standard 
deviations for both staircased contrast levels (p = 0.12, 4-way 
within-subjects ANOVA). Therefore, we collapsed data 
across these contrast levels for all of the analysis described 
in the main text. Later, we looked at the effect of contrast 
level on participants’ behaviour by separating participants’ 
responses at different luminance levels, depending on their 
detection performance at different luminance levels. Details 
of this procedure are described in the supplementary mate-
rials.

To analyze the distribution of estimations when no 
stimulus was present, we constructed histograms of partici-
pants’ responses, binned into 16° windows. We converted 
these response histograms into probability distributions, by 
normalizing them over all motion directions for each par-
ticipant individually. There was no significant interaction 
between experimental session and motion direction on the 
response histograms (p=0.87, 4-way within-subjects 
ANOVA). There was also no significant 3-way interaction 
between motion direction, experimental session and 
detection-response (p = 0.81, 4-way within-subjects 
ANOVA). Therefore we collapsed data across experimental 
sessions for analysis of the participants’ responses when no 
stimulus was present.

In this study we were interested in how the uneven dis-
tribution of presented motion directions influenced par-
ticipants’ perception of the motion stimuli. By design, the 
probability distribution of presented motion stimuli was 
symmetrical around a central motion angle (figure 2). 
Therefore, we figured that any asymmetry in participants’ 
estimation and detection behaviour for stimuli moving to 

either side of the central motion direction was likely due to 
factors other than the distribution of presented stimuli that 
was used, such as participants’ implicit biases, or ‘reference 
biases’ away from caudal motion directions (Rauber & 
Treue, 1998). To reduce the effect of such asymmetries from 
our analysis, and to increase the number of data points that 
were available for each experimental condition, we averaged 
data from points corresponding to when the presented mo-
tion stimuli was moving to either side of the central motion 
direction. For the estimation task, this also required revers-
ing the sign of the estimation biases for stimuli moving anti-
clockwise from the central motion direction before averag-
ing (for ‘unfolded’ versions of figures 3a, 4a and 5 see sup-
plementary figures 4 & 5). 

Results
Effect of expectations on motion direction 
estimates when no stimulus present

First, we investigated whether participants learned to 
expect the most frequently presented motion directions. To 
assess this, we examined participants’ estimation perform-
ance on trials where no stimulus was presented, but where 
they reported seeing a stimulus in the detection task, as well 
as clicking on the mouse to estimate its direction. On aver-
age this occurred on 46±3 trials for each participant 
(10.8±2% of the total number of trials where no stimulus 
was presented). For this subset of trials, participants’ estima-
tion response probability varied significantly with motion 
direction, with a clear peak close to the most frequently 
presented motion directions (±32°; p<0.001, 3-way within-
subjects ANOVA; figure 3a, grey). We quantified the prob-
ability ratio that participants made estimates that were close 
to the most frequently presented motion directions, relative 
to other directions, by multiplying the probability that they 
estimated within 8° of these motion directions by the total 
number of 16° bins (prel = p(θest = ±32(±8)◦) · Nbins ). 
This probability ratio would be equal to 1 if participants 
were equally likely to estimate within 8° of ±32° as they were 
to estimate within other 16° bins. We found that the me-
dian value of prel  was significantly greater than 1, indicat-
ing that participants were strongly biased to report motion 
in the most frequently presented directions when no stimu-
lus was presented (median(prel) = 2.7; p=0.005, signed rank 
test, comparing prel to 1; figure 3b). 

As on a large proportion of trials, the presented motion 
stimuli were moving in one of two directions, it is possible 
that participants could have habituated to automatically 
move the estimation bar towards one of these two direc-
tions, irrespective of their response in the detection task 
(note that the initial bar position was randomized on each 
trial and thus biases can’t arise from just leaving the mouse 
in its initial location). In this case we would also expect 
their ‘no-stimulus’ estimation distributions to be biased 
towards the two most frequently presented directions for 
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trials where they did not detect a stimulus. However, on 
trials where participants did not report seeing a stimulus in 
the detection task (but where they did click the mouse while 

the stimulus was present to estimate its motion direction; 
on average this occurred on 134±9 trials for each partici-
pant; 32±7% of the total number of trials where no stimu-
lus was presented), there was no significant variation in the 
estimation response probability with motion direction (p = 
0.12, 3-way within-subjects ANOVA; figure 3a, red). Fur-
ther, for these trials, participants were not significantly 
more likely to estimate close to the most frequently pre-
sented motion directions than other motion directions 
(median(prel) = 1.28; p=0.13, signed rank test, comparing 
prel  to 1; figure 3b). Indeed they were significantly more 
likely to report motion in the most frequently presented 
motion directions when they also reported detecting a 
stimulus, compared to when they did not (p = 0.012, signed 
rank test, comparing the values of prel  obtained for trials 
where participants either did or did not report seeing a 
stimulus in the detection task; figure 3b).

It could be argued that we would observe similar results 
if participants’ expectations influenced their behaviour in 
the detection task, but not in the estimation task. Thus, in 
the absence of a presented stimulus, they would be more 
likely to report detecting a stimulus when they mistakenly 
perceived motion in one of the two most frequently pre-
sented motion directions, although their estimation re-
sponses would be unaltered by their expectations. In this 
case participants’ estimation responses would be distributed 
uniformly when we looked at data from all trials where no 
stimulus was presented (regardless of their response in the 
detection task). This was not what we found: when we 
looked at data from all zero-stimulus trials, participants es-
timation response probability varied significantly with mo-
tion direction (p<0.001, 3-way within-subjects ANOVA; fig-
ure 3a, blue) and they were biased to report motion in the 
two most frequently presented directions (median(prel) 
=1.71; p < 0.001, signed rank test comparing prel  to 1). 
However, the size of this bias was reduced, compared to the 
case when we looked only at trials where participants de-
tected stimuli (p = 0.027, signed rank test comparing the 
values of prel  obtained for all trials with trials where par-
ticipants reported seeing a stimulus in the detection task).

Another response strategy that could have produced 
similar results is if, when participants were uncertain about 
the stimulus motion direction, they made estimations that 
were influenced by the stimulus presented immediately be-
forehand. In this case, we would expect the observed biases 
in participants’ no-stimulus estimation distributions to dis-
appear when we excluded trials that were immediately pre-
ceded by stimuli moving in the most frequently presented 
directions (±32°). However, when we excluded these trials 
from our analysis, participants’ zero-stimulus estimations 
(for trials where they reported detecting a stimulus) were 
still strongly biased towards the two most frequently pre-
sented directions (median(prel)=2.11; p=0.026, signed rank 
test, comparing prel to 1).

Taken together, our results indicate that the zero-
stimulus biases we observed were not due to ‘response 
strategies’, but rather, were perceptual in origin: partici-
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Figure 3: Estimation responses in the absence of  a stimulus. (a) 
Probability  distribution of  participants’ estimates of  motion direc-
tion when no stimulus was present. Response distributions are 
plotted for all trials (blue), as well as the subset of  trials where 
participants reported detecting a stimulus (grey) and trials where 
they  didn’t (red). Data points from either side of  the central mo-
tion direction have been averaged together in this plot,  so that 
the furthest left data point corresponds to the central motion 
direction, and the vertical dashed line corresponds to the most 
frequently  presented motion directions (±32°). Results are aver-
aged over all participants and error bars represent within-subject 
standard error. (b) Probability  ratio (prel) that individual partici-
pants estimated within 8° from the most frequently  presented 
motion directions (±32°) relative to other 16° bins,  plotted for 
trials  where the stimulus was undetected versus trials where the 
stimulus was detected. prel was significantly  greater than 1 for 
trials  where participants reported detecting stimuli (p = 0.005, 
signed rank test), but was only  marginally  so when subjects 
failed to detect the stimulus (p=0.13). Participants were also 
significantly  more likely  to estimate in the direction of  the fre-
quently  presented motion directions on trials where they  re-
ported detecting stimuli, versus trials where they did not (p = 
0.012).



pants ‘hallucinated’ motion in the most frequently pre-
sented directions when no stimulus was displayed. Further, 
these hallucinations developed extremely quickly. On trials 
where no stimulus was presented, but where participants 
reported detecting a stimulus, they were significantly more 
likely to estimate within 8° of ±32°, than other directions, 
after a period of only 200 trials (p = 0.008, signed rank test, 

comparing prel  to 1 after 200 trials; see supplementary fig-
ure 3), indicating rapid learning of motion direction expec-
tations.

Effect of expectations on motion direction 
estimates when stimulus was presented

We next asked whether these learned expectations 
would bias participants’ perceptions of real motion stimuli. 
Figure 4a shows the population averaged estimation bias, 
plotted against motion direction. In this plot, data points 
corresponding to presented stimuli moving to either side of 
the central motion direction have been averaged together 
(making sure to reverse the sign of the estimation bias when 
the presented stimuli was anti-clockwise from the central 
motion direction before averaging; see supplementary figure 
4 for an alternative version of this plot without averaging 
across the central motion direction). In this plot the curve 
has a negative slope around +32°, which itself was unbiased. 
This indicates that estimations were attractively biased to-
wards stimuli moving at +32° (and by symmetry, also to mo-
tion at -32°). Estimates of the central motion direction were 
unbiased, while estimates at +16° were positively biased, 
away from the centre and towards stimuli moving at +32° 
(again, by symmetry, stimuli moving at -16° were biased 
away from the centre, towards stimuli moving at -32°). Note 
that the apparent asymmetry in figure 4a is expected, and is 
due to the fact that the data points at 0° and 64° are not 
equivalent: 0° lies midway between the two most frequently 
presented directions, while +64° is on the edge of the dis-
tribution of presented motion directions (see figure 2). 
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Figure 4: Effect of  expectations on estimation biases. (a) Partici-
pants’ mean estimation bias is plotted against presented motion 
direction. Data points  from either side of  the central motion di-
rection have been averaged together, so that the furthest left 
point corresponds to the central motion direction, and the verti-
cal dashed line corresponds to data taken from the two most 
frequently  presented motion directions (±32°). Results are aver-
aged over all participants and error bars represent within-subject 
standard error. (b) The estimation bias for stimuli moving at ±48° 
(black) and ±16° (red) from the central motion direction, plotted 
against  the estimation bias at ±32°,  for each participant. Again, 
data from stimuli moving to both sides of  the central motion di-
rection has been averaged together, with the sign of  the bias for 
stimuli moving anti-clockwise from the central motion direction 
(i.e.  -48°, -32° and -16°) reversed before averaging. The red and 
black crosses mark the population mean of  both distributions, 
with the length of  the lines on the crosses equal to the standard 
error.

a

b Figure 5: Effect of  expectations on the standard deviation of  es-
timations. The standard deviation in participants’ estimation dis-
tributions is plotted against presented motion direction. Data 
points  from either side of  the central motion direction have been 
averaged together,  so that the furthest left point corresponds to 
the central motion direction, and the vertical dashed line corre-
sponds to data taken from the two most frequently  presented 
motion directions (±32°). Results are averaged over all partici-
pants and error bars represent within-subject standard error.



Overall, there was a significant effect of motion direction 
on the estimation bias (p<0.001, 3-way within-subjects 
ANOVA).

We wanted to quantify the extent to which individual 
participants’ estimates were biased towards the most fre-
quently presented motion directions. For a participants 
whose estimates were attractively biased towards stimuli 
moving at +32°, we would expect their estimates of stimuli 
moving at +48° and +16° to be positively and negatively bi-

ased respectively, compared to their estimation bias for 
stimuli moving at +32° (and by symmetry, we would also 
expect the converse to hold for stimuli moving anti-
clockwise from the central direction: for a participant 
whose estimates were attractively biased towards stimuli 
moving at -32°, we would expect the bias at -48° and -16° to 
be negatively biased and positively biased respectively, com-
pared to their estimation bias for stimuli moving at -32°). 
Figure 4b plots individual participants’ estimation bias for 
stimuli moving at ±48° and ±16° versus their estimation bias 
at ±32° (plotted in black and red respectively). Note that, 
similarly to figure 4a, we averaged data from motion direc-
tions moving to either side of the central motion directions 
in this plot, making sure to reverse the sign of the bias for 
stimuli moving anti-clockwise from the central motion di-
rection. After doing this, the computed estimation biases at 
±48° and ±16° were significantly smaller and larger respec-
tively than the bias at ±32° (p = 0.005 and p = 0.001 respec-
tively, signed rank test). This indicates that on average, par-
ticipants were biased to estimate stimuli as moving in direc-
tions that were closer to the most frequently presented mo-
tion directions (±32°) than they actually were.

Stimuli in-between ±32° were expected to be biased by 
both frequently presented directions and thus we expected 
that these directions should yield larger standard deviations 
in estimated angles than those outside of this range. Figure 
5 plots the population averaged standard deviation of esti-
mations against motion direction. Again, for this plot, data 
points from either side of the central motion direction have 
been averaged together. The estimation standard deviation 
was greatest for the central motion direction at 0°, and 
smallest for motion directions that were closer to the most 
frequently presented directions (±16°, ±32° and ±48°). As 
with the estimation biases, there was a significant effect of 
motion direction on the estimation standard deviation 
(p<0.001, 3-way within-subjects ANOVA).

Effect of expectations on detection perform-
ance and reaction time

One of our interests was the extent to which stimulus 
expectations influenced participants’ performance in the 
detection task. To test this, we measured the fraction of tri-
als where participants both detected stimuli and clicked on 
the mouse during stimulus presentation, as a function of 
motion direction (figure 6a). Participants were significantly 
more likely to detect stimuli moving in the most frequently 
presented motion directions (71.5±2.5% detected at ±32° 
versus 64.2±2.5% detected over all other motion directions; 
p<0.001 signed-rank test; figure 6b). Overall, there was a 
significant effect of motion direction on the fraction de-
tected (p = 0.002, 3-way within-subjects ANOVA).

Another measure that could reflect how easily partici-
pants detected stimuli was their reaction time in clicking 
the mouse during stimulus presentation. For trials where 
they detected a stimulus, participants’ reaction time was 
significantly reduced for the most frequently presented mo-
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Figure 6: Effect of  expectations on detection performance. (a) 
The fraction of  trials where participants  correctly  detected a mo-
tion stimulus is plotted against presented motion direction. Data 
points  from either side of  the central motion direction have been 
averaged together, so that  the furthest left point corresponds to 
the central motion direction, and the vertical dashed line corre-
sponds to data taken from the two most frequently  presented 
motion directions (±32°). Results are averaged over all partici-
pants and error bars represent  within-subject standard error. (b) 
The fraction of  trials where participants correctly  detected a 
stimulus, averaged over all presented motion directions except 
for ±32°,  plotted against  the fraction of  trials where participants 
correctly  detected a stimulus moving at ±32°, for each partici-
pant.  The black cross marks the population mean, with the 
length of the lines on the cross equal to the standard error.
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tion directions, relative to other motion directions 
(1924±86ms at ±32° versus 1991±85ms over all other mo-
tion directions; p < 0.001, signed rank test; supplementary 
figure 7). Overall, there was a significant effect of motion 
direction on participants’ reaction time (p = 0.003, 3-way 
within-subjects ANOVA).

Modeling
To understand the nature of the biases in motion direc-

tion estimation that we observed, we tested among alterna-
tive models of how participants’ expectations may be com-
bined with the presented stimulus to produce the observed 
response distributions. Two classes of models were consid-
ered. The first class of model assumed that participants de-
veloped response strategies unrelated to perceptual changes. 
The second class of model assumed that participants solved 
the task using a Bayesian strategy, combining a learned 
prior of the stimulus statistics (the expectation) with their 
sensory evidence (the actual stimulus) in a probabilistic way. 
These models simulate the estimation distributions in the 
case where participants judged the stimulus to be present.

Multiple-strategy ʻresponse biasʼ models
The first two models looked at whether participants’ 

behaviour could be attributed to a ‘response bias’. The key 
assumption in both of these models was that participants 
followed different strategies on different trials: for example, 
by making an unbiased estimate of motion direction on a 
fraction of the trials, and by estimating one of the most fre-
quently presented motion directions on other trials.

The first model (‘ADD1’) assumed that when partici-
pants were unsure about which motion direction they had 
perceived they made an estimate that was close to one of 
the two most frequently presented motion directions. 

In this model, on each trial, participants make a sen-
sory observation of the stimulus motion direction, θobs. We 
parameterize the probability of observing the stimulus to be 
moving in a direction θobs  by a von Mises (circular normal) 
distribution centered on the actual stimulus direction and 
with width determined by 1/κl: 

pl(θobs|θ) = V (θ,κl)                                                (1)

On most trials we assume that participants make a per-
ceptual estimate of the stimulus motion direction (θperc) 
that is based entirely on their sensory observation so that,
θperc = θobs. However, on a certain proportion of trials, 
when participants are uncertain about whether a stimulus 
was present or not, they resort to their `expectations’, by 
making a perceptual estimate that is sampled from a learned 
distribution, pexp(θ) . For simplicity, we parameterize this 
distribution as the sum of two circular normal distributions, 
each with width determined by 1/κexp, and centered on 
motion directions −θexp and θexp respectively:

pexp(θ) = 1
2 [V (−θexp, κexp) + V (θexp, κexp)]        (2)

Finally, we accommodate for the fact that there will be a 
certain amount of noise associated with moving the ‘estima-
tion bar’ to indicate which direction the stimulus is moving 
in, as well as allowing for a fraction of trials ‘α ', where par-
ticipants make estimates that are completely random. Thus, 
the estimation response θest  is related to the perceptual 
estimate θperc via the equation:

p(θest|θperc) = (1− α)V (θperc, κm) + α                (3)

Bringing all this together, the distribution of estimation 
responses for a single participant is given by:

 

where the asterisk denotes a convolution and a(θ) deter-
mines the proportion of trials that participants sampled 
from the ‘expected’ distribution, pexp(θ) . For this model, 
free parameters that were fitted to the estimation data for 
each participant were the centre and width of participants’ 
‘expected’ distributions (determined by θexp & 1/κexp  re-
spectively), the width of their sensory likelihood (deter-
mined by 1/κl ), the fraction of trials where they made esti-
mates by sampling from their ‘expected’ distribution (a(θ)), 
the magnitude of the ‘motor’ noise in their responses (de-
termined by 1/κm ) and the fraction of trials where they 
made estimations that were completely random (α ).

The second ‘response-bias’ model (‘ADD2’) assumed a 
more complex strategy, such that when participants were 
unsure of stimulus direction, they made estimates that were 
preferentially sampled from different proportions of their 
‘expected’ distribution. Crucially, the portion of this ‘ex-
pected’ distribution that was sampled from depended on 
the actual stimulus motion direction.

Here, the expected distribution pexp(θ)  was divided 
into two parts:

panti−clockwise(θ) = V (−θexp, κexp)                      (5)

pclockwise(θ) = V (θexp, κexp)                                  (6)

As before, on a single trial, participants made estimates 
that were either equal to their sensory observation θobs , or 
sampled from a learned distribution of expected motion 
directions. However, instead of sampling from a single dis-
tribution of expected motion directions, pexp(θ) , partici-
pants could now make estimates that were sampled either 
from the distributions panti−clockwise(θ)  or pclockwise(θ) , 
with a probability that was dependent on the actual stimu-
lus motion direction. For example, on a single trial, a par-
ticipant might be aware that the stimulus was moving 
‘clockwise from centre', and thus would be more likely to 
make an estimate that was sampled from the distribution, 
panti−clockwise(θ), than from pclockwise(θ).

 This more complex response strategy results in a distri-
bution of estimation responses given by:
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p(θest|θ) = (1− α)[(1− a(θ)) · pl(θobs = θest|θ)
+ a(θ) · pexp(θest)] ∗ V (0, κm) + α

(4)



where ‘a(θ)’ and ‘b(θ)’ were additional free parameters that 
determined the proportion of trials where participants 
sampled from each distribution.

Finally, we considered variations to the ADD1 and 
ADD2 models (denoted ‘ADD1_mode’ and ‘ADD2_mode’ 
respectively) where, on trials where participants were unsure 
of the stimulus motion direction, they made perceptual es-
timates that were equal to the mode of the ‘expected’ distri-
bution. These models are equivalent to the ADD1 and 
ADD2 models, with ‘1/κexp’ set to zero.

Bayesian model
The second class of models assumed that participants 

combined a learned prior of the stimulus directions with 
their sensory evidence in a probabilistic manner. Specifi-
cally, unlike the previous models, where on individual trials 
participants either rely entirely on their sensory observa-
tions or on their expectations, in the Bayesian model par-
ticipants make estimations based on a combination of both 
their sensory observation and expectations. A schematic of 
this model class is shown in figure 7.

 As before, we assume that on a single trial, participants 
make noisy sensory observations of the stimulus motion 
direction (θobs), with a probability pl(θobs|θ) = V (θ,κl) . 
From Bayes’ rule, the posterior probability that the stimulus 
is moving in a particular direction θ, given a sensory obser-
vation θobs , is obtained by multiplying the likelihood func-
tion (pl(θobs|θ)), with the prior probability (pprior(θ)):

p(θ|θobs) ∝ pprior(θ) · pl(θobs|θ)                             (8)

While participants cannot access the ‘true’ prior, 
pprior(θ), directly, we hypothesized that they learned an 

approximation of this distribution, denoted ‘pexp(θ)’. In 
our model this ‘learned prior’ was parameterized similarly 
to pexp(θ) in ADD1 (see equation 2).

We assume that participants make perceptual estimates 
of motion direction, θperc , by choosing the mean of the 
posterior distribution, so that :

                
 where ‘Z ’ is a normalization constant. An alternative 
choice would be for the perceptual estimate to be given by 
the maximum of the posterior distribution. For our work 
both methods gave qualitatively identical results.

We accounted for the ‘motor noise’ associated with 
making the estimation response in a similar way to the pre-
vious models. For this model, the free parameters that were 
fitted to the estimation data for each participant were the 
centre and width of participants’ ‘expected’ distribution 
(determined by θexp & 1/κexp  respectively), the width of 
their sensory likelihood (determined by 1/κl ), the magni-
tude of the ‘motor’ noise in their responses (determined by 
1/κm ) and the fraction of trials where they made estima-
tions that were completely random (α ). We included two 
variants of the Bayesian model: ‘BAYES_L-var’, where the 
width of the likelihood function was allowed to vary with 
the stimulus motion direction, and ‘BAYES_L-const’, where 
it was held constant.

Inferring the parameters for each model
At the highest contrast, the stimulus was clearly visible, 

so we assumed that the perceptual uncertainty was close to 
zero (1/κl → 0 ). Therefore for all models, the distribution 
of estimations should be given by equation (3), with the 
substitution, θperc = θ . We used this equation to fit par-
ticipants’ estimation distributions at high contrast (by 
maximizing the log probability of getting the observed the 
data; see later), thus allowing us to approximate the ‘motor 
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Figure 7: Bayesian model for estimation. The posterior distribution of  possible stimulus motion directions is constructed by  combining 
prior knowledge about likely  motion directions (the expectation) with the available sensory  evidence (based on a noisy  observation, 
θobs) probabilistically. A perceptual estimate is made by  taking the mean of  the posterior distribution. This posterior distribution is used 
to make a perceptual estimate (θperc). Additional ‘motor noise’ is added to this perceptual estimate to produce the final estimation re-
sponse (θest) 

θperc =
1
Z

�
θ · pexp(θ) · pl(θobs|θ)dθ (9)

p(θest|θ) = (1− α)[(1− a(θ)− b(θ)) · pl(θobs = θest|θ)
+ a(θ) · panti−clockwise(θest)
+ b(θ) · pclockwise(θest)] ∗ V (0, κm) + α

(7)



noise’ (determined by 1/κm) for each participant.
As with the rest of our data analysis, we modelled par-

ticipants responses to stimuli at both staircased contrast 
levels (although see supplementary materials). Also, as all 
three models looked only at the estimation task, effectively 
ignoring the detection response, we initially looked only at 
data where participants detected the motion stimulus (see 
supplementary materials for a version of the Bayesian 
model which incorporates the detection task).

For each model, and for a particular set of parameters 
‘M’, we were able to calculate the probability of making an 
estimate ‘ θest ’ given a stimulus moving in a direction ‘θ’ (
p(θest|θ;M)). Assuming that participants’ responses on 
each trial were independent, this allowed us to calculate the 
likelihood of generating our experimental data ‘D’ from the 
particular model and parameter set ‘M’. We then chose 
model parameters to fit the data for each participant by 
maximizing the log of the likelihood function:

M = argmaxM

�
ntrials�

i

log(p(θest = θi,data|θi))

�
     (10)

where the summation was taken over all trials, and ‘θi’ and 
‘θi,data’ represent the presented motion direction and the 
estimation response on the ith  trial respectively. We found 
the maximum of the likelihood function using a simplex 
algorithm (the Matlab function ‘fminsearch’). We were con-
cerned that for some participants our model fits might con-
verge to local rather than local maxima. To reduce this pos-
sibility, we ran the model fits with a range of initial values 
for κl  and κexp  (‘1/

√
κl’ and ‘1/

√
κexp’ were varied inde-

pendently in 2° increments, between 1° and 21°), selecting 
the model fit that produced the highest value for the log-

likelihood. The results obtained were also found to be ro-
bust to changes in all of the other initial parameter values.

The models varied greatly with respect to the number 
of parameters that they required to fit the data. Excluding 
κm  (as this was obtained from the high contrast responses, 
not the low contrast responses that were the principle area 
of investigation), ADD1 and ADD2 required 9 and 14 free 
parameters respectively: κl , θexp , κexp  and α , plus 5 values 
for a(θ)  and, for ADD2, another 5 values for b(θ)  (one for 
each presented motion direction). ADD1_mode and 
ADD2_mode required 8 and 13 free parameters respectively 
(one less parameter than ADD1 and ADD2 respectively, as 
κexp  was no longer a free parameter). BAYES_L-const re-
quired only 4 free parameters (κl , θexp , κexp  and α ). 
BAYES_L-var required 8 free parameters (including a value 
for κl  for each presented motion direction).

Model comparison
We assessed how well each of the models accounted for 

the estimation distribution using a metric called the ‘Bayes-
ian information criterion’ (BIC), defined as: 

BIC = −2 · ln(L) + k · ln(n)                                (11)

where, ‘L ’ is the likelihood of generating the experimental 
data from the model, ‘k ’  is the number of parameters in the 
model and ‘n’ is the number of data points available. In 
general, given two estimated models, the model with the 
lower value of BIC is the one to be preferred (Schwarz, 
1978). The first term of this expression accounts for the 
error between the data and the model predictions, while the 
second term represents a penalty for including too much 
complexity in the model.
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Figure 8 plots, for each participant, the BIC obtained  
with each model, subtracted by the BIC obtained with the 
BAYES_L-const model. From this plot we can see that the 
BIC values obtained with the ADD1, ADD2, ADD1_mode, 
ADD2_mode and BAYES_L-var models were significantly 
greater than the BIC values obtained with the BAYES_L-
const model (p=0.002, p<0.001, p=0.003, p=0.005 and 
p<0.001 respectively; signed-rank test). Thus, while a small 
minority of participants were not best fitted by the 
BAYES_L-const model (2 participants exhibited a lower BIC 
value with the ADD1  model, 2 participants exhibited a 
lower BIC value with the ADD1_mode model and 2 partici-
pants exhibited a lower BIC value with the ADD2_mode 
model), this model provided the best description of the data 
for the majority of participants.

Each of the models described attempted to fit the esti-
mation distributions for each participant. To achieve a 
qualitative understanding of how the estimation distribu-
tions predicted by each of the models compared to the ex-
perimental data, we analyzed the predicted estimation bi-
ases and standard deviations. As the ADD1_mode and the   
ADD2_mode, and the BAYES_L-const models provided bet-
ter fits to the data than the other models, we only analyze 
here the predicted estimation biases and standard devia-
tions for these three models. In our previous analysis of the 
experimental data, we parameterized participants’ estima-
tion distributions as the sum of a circular normal distribu-
tion and a ‘flat’ background probability (to account for the 
proportion of trials where they made random estimations). 
Participants estimation means and standard deviations were 
then taken as the centre and width of the fitted circular 
normal distribution respectively. To be consistent with this, 
we computed biases and standard deviations from the esti-
mation distributions predicted by each model in an identi-
cal way. 

Figure 9 shows the estimation biases and standard de-
viations predicted by each of the models, plotted alongside 
the experimental data. Both the BAYES_L-const and 
ADD2_mode models provided a good fit for the population 
averaged estimation biases (mean absolute error of 0.75°, 
and 0.62° for the BAYES_L-const and ADD2_mode models 
respectively). The ADD1_mode model, however, was unable 
to reproduce the repulsive biases away from the central mo-
tion direction (at ±16°) that were observed experimentally 
(mean absolute error of 2.14°; figure 9a). This was also re-
flected in the fits of individual participants’ estimation bi-
ases (quantified by calculating the mean absolute error for 
the fits of the estimation biases separately for each partici-
pant, averaged over motion directions). The error in the fits 
of the individual participants’ estimation biases was signifi-
cantly smaller for the BAYES_L-const model than for the 
ADD1_mode model (p<0.001, signed rank test), while there 
was no significant difference between the BAYES_L-const 
and ADD2_mode models. 

The fact that the ADD1_mode model was unable to fit 
the experimentally observed repulsive biases away from the 
central motion direction can be explained by the fact that 
for this model we parameterized the ‘expected’ distribution 
of motion direction, pexp(θ) , to be symmetrical around 0°. 
Thus, even in the extreme case where all responses are sam-
pled from this distribution, there would only be an attrac-
tive bias towards the central motion direction.

The BAYES_L-const model produced estimation stan-
dard deviations that varied with motion direction in a 
qualitatively similar way to the experimental data, (with a 
maximum at 0°, decreasing for stimuli moving further from 
the central motion direction), although in general, the 
model predicted values that were slightly larger than what 
was observed experimentally (figure 9b). The fits for the 
estimation standard deviation produced by the ADD1_mode 
and ADD2_mode were worse than the BAYES_L-const model 
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(mean absolute error of 5.11°, and 2.74° for the 
ADD1_mode and ADD2_mode models respectively, com-
pared to 2.17° for the BAYES_L-const model), and did not 
vary with motion in a way that was similar to the experi-
mental data. However, the error in the fits of the individual 
participants estimation standard deviations (quantified by 
calculating the mean absolute error for the fits of the esti-
mation standard deviation separately for each participant, 
averaged over motion directions) was not significantly dif-
ferent between the models (p=0.91 and p=0.34  respectively 
for comparisons of the ADD1_mode and ADD2_mode mod-
els with the BAYES_L-const model; signed rank test) 

While all the free parameters in the BAYES_L-const 
model (σl, θexp , σexp  and α ) were held constant across 
presented motion directions, in order for the ‘response bias’ 
models (ADD1, ADD2, ADD1_mode and ADD2_mode) to fit 
the data, additional free parameters were required (a(θ) 
and b(θ) ) which had to be varied between different pre-
sented motion directions. Thus, for the ADD1  and ADD2 
models to be valid, participants would have had to alter 
their response strategy, varying the proportion of trials 
where they sampled from their ‘expected’ probability distri-
butions, depending on the direction of the presented stimu-
lus. In addition, the ADD1_mode and ADD2_mode models 
assumed that when participants were unsure about the pre-
sented motion direction, they made a perceptual estimate of 
motion direction that was exactly the same on each trial. 
This seems unrealistic: in reality there would be some trial 
to trial variation in the expected motion direction. 

In summary, BAYES_L-const exhibited significantly 
smaller BIC values than all of the other models, as well as 
producing fits for the estimation biases and standard devia-
tion that were at least as good as the response bias models, 
despite the fact that it had fewer free parameters (4 parame-
ters, as opposed to 9, 14, 8, and 13 parameters for ADD1 
and ADD2, ADD1_mode and ADD2_mode respectively), 
leading us to conclude that it provided the best description 
of participants’ behavior. Overall, our results argue against 
the hypothesis that the observed estimation biases were 
produced by ‘response strategies’ unrelated to perceptual 
changes, but rather support the hypothesis that participants 
performed the task using a Bayesian strategy, where a 
learned a prior of expected stimulus directions was com-
bined with their sensory evidence in a probabilistic way.

Modeling estimation responses in the absence of a 
stimulus

We were interested to see whether the prior and likeli-
hood distribution that we derived to fit participants’ re-
sponse distributions when a stimulus was present were suf-
ficient to explain their estimation performance in the ab-
sence of any stimulus. 

While the original BAYES_L-const model ignored the 
detection task, in order to analyze participants ‘no-stimulus’ 
behaviour it was important to incorporate this into our 
model. The full model, BAYES_dual, which is of the same 
form as the original bayesian model, with the exception that 
it simulates the detection task, is described in the supple-
mentary materials. The BAYES_dual model required 3 addi-
tional parameters: participants’ prior expectation that a 
stimulus would be presented on each trial, the probability 
that participants made sensory observations of the stimulus 
as being present, on trials where a stimulus was presented, 
and on trials where no stimulus was presented (see supple-
mentary materials). Importantly, these parameters were fit-
ted using only data from trials where the stimulus was pre-
sented, and not zero-stimulus trials, which was what we 
were aiming to predict. 

Figure 10 shows the estimation distributions predicted 
by this model for trials where there was no stimulus present, 
but where participants detected a stimulus (black), plotted 
alongside the experimentally measured distribution (red). 
The average ‘zero-stimulus’ estimation distribution pre-
dicted by the model, provided a good fit for the population 
averaged estimation distributions, with an R2 value of 0.71. 
The behaviour of individual participants was also well pre-
dicted by the model: the fits for participants’ zero stimulus 
estimation distributions had a positive R2 value for 8 out of 
12 of them. For these participants, the median R2 value was 
0.65 (0.46, 0.83; 25th & 75th percentiles). The fact that the 
majority of participants’ behaviour in the absence of a 
stimulus could be predicted, based solely on their estima-
tion responses in the presence of a stimulus, provides strong 
evidence in favor of the Bayesian model put forward here. 
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Figure 10: Predicted estimation response probability  distributions 
for trials where no stimulus is presented, but where participants 
reported detecting a stimulus. Model predictions (grey; BAY-
ES_dual model,  see supplementary  materials for details) are 
plotted alongside the experimental results (red). Data points from 
either side of  the central motion direction have been averaged 
together in this plot, so that the furthest left data point  corre-
sponds to the central motion direction, and the vertical dashed 
line corresponds to the most frequently  presented motion direc-
tions (±32°). Results are averaged over all participants and 
shaded error bars represent within-subject standard error. 



Discussion
We found that participants quickly and automatically 

developed expectations for the most frequently presented 
directions of motion. On trials where no stimulus was pre-
sented, but where participants reported seeing a stimulus, 
they were strongly biased to report motion in the two most 
frequently presented motion directions (figure 3). This bias 
could not be explained as due to any particular ‘response-
strategy’. Participants’ perception of real motion stimuli was 
also influenced by their learned expectations: they showed 
increased detection performance for the most frequently 
presented motion directions, and estimated stimuli to be 
moving in directions that were more similar to the most 
frequently presented motion directions than they really 
were (figures 4 - 6). Participants’ estimation behaviour was 
well described by a model which assumed that they solved 
the task using a Bayesian strategy, combining a learned 
prior of the stimulus statistics with their sensory evidence in 
a probabilistic way (figures 7-9). Further, our model of par-
ticipants’ behaviour in the presence of a stimulus was able 
to accurately predict their estimation responses when no 
stimulus was presented (figure 10).

Learning the ʻexpectedʼ motion directions 
Participants rapidly learned to expect the likely stimuli; 

within just a few minutes of task-performance. One by-
product of such rapid learning was that because participants 
learned which motion directions were expected within a 
very few number of trials, it was difficult for us to measure 
the short term time-course and dynamics of learning (sup-
plementary figure 3). Future work could investigate this 
using a more complicated distribution of presented stimuli 
or statistical learning paradigm that produces slower learn-
ing of stimulus expectations (Eckstein et al., 2004; Orbán, 
Fiser, Aslin, & Lengyel, 2008).

Recent studies have shown that rapidly learned expecta-
tions influence perception of bistable stimuli (Haijiang et 
al., 2006; Sterzer et al., 2008). In common with our results, 
these studies found attractive perceptual biases towards par-
ticipants’ expectations. However, while these studies looked 
at perception of relatively complex visual features, such as 
whether a stimulus was rotating (Sterzer et al., 2008), our 
experiment looked at perception of simple unambiguous 
features, which are likely to be processed at a lower level in 
the visual hierarchy, such as cortical area MT (Newsome, 
Britten, & Movshon, 1989). Whether similar neural 
changes are responsible for the effects of expectations on 
perception of both simple and more complicated stimulus 
features is an open question.

Our finding, that participants perceived motion in ex-
pected directions when nothing was presented, is similar to 
what has been found in perceptual learning, where after 
learning participants report seeing dots moving in the 
trained direction when no stimulus is displayed (Seitz, 

Nanez, Holloway, Koyama, & Watanabe, 2005). However, 
an important difference between our results and what has 
been reported previously was the time taken for these hallu-
cinations to develop: in the study of Seitz et al. it took 
around 8 1hr sessions for participants to perceive motion in 
the trained direction when there was nothing there, while 
we observed this effect within the first 250 trials. It is inter-
esting to consider whether these visual hallucinations were 
caused by the same underlying phenomena in both cases. 
Indeed, elucidating the similarities and differences between 
the physiological and behavioral effects of different types of 
learning is an important goal for future research (Seitz & 
Watanabe, 2005).

Bayesian model
In our experiment, participants were implicitly asked to 

learn the statistics of the stimulus directions. In Bayesian 
terms, this corresponds to learning a prior distribution of 
the motion stimuli. Bayesian theory (MacKay, 2004) tells us 
how such knowledge should then be combined with sen-
sory inputs to lead to optimal estimates. Our results can 
thus be interpreted in the context of 2 questions: 1) are par-
ticipants able to learn a prior about motion stimuli in the 
course of our experiment?; 2) is this prior combined opti-
mally with participants’ sensory observations to lead to mo-
tion estimates? 

We constructed a simple model of participants’ estima-
tion behaviour, which assumed that on each trial they com-
bined their sensory evidence (based on a noisy sensory 
measurement of motion direction) with a learned prior dis-
tribution of ‘expected’ motion directions, in a probabilisti-
cally optimal manner (figure 7). For each participant, we 
chose the width of the likelihood function and shape of the 
learned prior to maximize the probability of their estima-
tion data being generated by the model. The model pro-
vided a good fit of participants’ estimation biases and stan-
dard deviations (figure 9). Interestingly, the quality of the fit 
to the data did not decrease when the width of the likeli-
hood was held constant with presented motion direction 
(figure 8). On average, the shape of participants’ learned 
prior (supplementary figure 10) was found to be qualita-
tively similar to the actual distribution of presented stimuli 
(figure 2), indicating that they were able to rapidly learn a 
multi-modal prior distribution of stimulus directions. 

In our experiment, the luminance of the two staircased 
contrast levels (determined by running staircases on the 
detection performance) were very similar to each other, with 
a large degree of overlap between them.Therefore, we com-
bined data from both contrast levels for the majority of our 
analysis. Later, we looked at how participants’ estimation 
behaviour varied with the stimulus contrast by dividing par-
ticipants’ estimation responses into ‘low’ and ‘high’ contrast 
trials, determined by the contrast level of each individual 
trial, rather than the staircased contrast level that it was a 
part of (see supplementary materials for details). We found 
that the average magnitude of participants’ estimation stan-
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dard deviations increased for lower contrast levels, along 
with the magnitude of estimation biases towards the central 
motion direction (supplementary figure 6).

This is consistent with what we would expect if partici-
pants behaved as Bayesian observers. At lower contrast lev-
els, we would expect participants’ sensory uncertainty to 
increase, causing an increase in the standard deviation of 
estimations. As a result of this, the learned prior would be-
gin to dominate over sensory evidence, causing the magni-
tude of the estimation biases to increase. While we were not 
able well fit participants’ estimation behaviour at varying 
contrast using our Bayesian model (as there were too few 
data points per experimental conditions to well constrain 
the model) this will be an interesting question for future 
work. 

We reasoned that if our participants were indeed be-
having as Bayesian observers, then the prior and likelihood 
derived from their estimation responses when a stimulus 
was present should also predict their estimation behaviour 
when no stimulus was present. This is indeed what we 
found: the majority of participants’ zero-stimulus estimation 
distributions were well fitted by the model (figure 10). 
Therefore, while ‘hallucinating’ motion when none is there 
will clearly be disadvantageous in most everyday situations 
(Seitz et al. 2005), in the context of our experiment, it is 
just what we would expect for an ideal Bayesian observer 
who sought to minimize their estimation error in the face 
of perceptual uncertainty.

We compared the Bayesian model with various ‘re-
sponse bias’ models, which assumed that participants re-
sponded according to different strategies on different trials: 
either relying entirely on their sensory observations, or on 
their expectations. These models were worse at describing 
the estimation data than the Bayesian model (larger BIC 
values; figure 8), leading us to rule them out as an explana-
tion for participants’ behaviour in the estimation task.

Our finding that participants responded according to a 
‘single-strategy’ Bayesian model does not necessarily imply 
that the biases we observed were perceptual in origin. For 
example, it is possible that participants altered their overall 
behavioral strategy in order to incorporate knowledge about 
which motion directions were most likely, while their per-
ception of the stimuli remained unchanged. Indeed, distin-
guishing between biases that occur at the perceptual or 
decision-making level is a very difficult task to perform psy-
chophysically (Schneider & Komlos, 2008). However, our 
modeling work does imply that participants’ combined 
their expectations with their sensory observations in a non-
trivial way. Specifically, on each trial participants did not 
rely solely on either their expectations or their sensory ob-
servations, but rather, they made their estimations based on 
a combination of both of these sources of information. Fur-
ther, we noted that if the observed estimation biases were 
due to a change in behavioural strategy, this must have oc-
curred at a largely subconscious level, as most participants 
were unable to indicate the two motion directions that had 
been most frequently presented, with a large proportion (9 

out of the 12 participants included in our analysis) report-
ing either that there were equal number of stimuli moving 
in all directions, or that most of the stimuli were centered 
around a single motion direction. Also, our personal obser-
vations from setting up the experiment is that lab personnel 
often perceived patterns of moving dots in zero contrast 
trials, leading us to the conclusion that experimental sub-
jects experienced the same “hallucinations”. 

Effect of expectations on performance
We were interested to see whether participants’ per-

formance in the detection task was improved for stimuli 
moving in ‘expected’ directions. We found that there was a 
significant increase in participants’ detection performance, 
as well as a significant decrease in reaction time for clicking 
the mouse during stimulus presentation, for stimuli moving 
in the most frequently presented motion directions (figure 6 
and supplementary figure 7). Although somewhat smaller 
in magnitude, these effect are similar to what has been re-
ported previously by Sekuler & Ball (1977), who found 
large improvements in both detection performance and re-
action time when participants knew which direction stimuli 
would be moving in. Such an increase in perceptual sensi-
tivity towards expected stimuli is similar to the effects of 
selective attention (Doherty et al., 2005; Downing, 1988; 
Posner et al., 1980), suggesting that the learned expectations 
led participants to direct selective attention towards the 
expected stimuli.

Eye movements
In the experiment of Sekuler & Ball (1977), partici-

pants reported that they experienced their eye movements 
being involuntarily ‘pulled’ in the direction of the stimulus. 
It was suggested by the authors that mechanisms controlling 
eye movements might be capable of responding to very low 
luminance motion stimuli, and thus, that the resulting eye 
movements could be used by participants to help them cor-
rectly detect stimuli that were otherwise imperceptible. 

If this is the case, then it could have also contributed to 
changes in detection performance and reaction time with 
motion direction in our experiment. For example, if par-
ticipants were biased to move their eyes in ‘expected’ mo-
tion directions, then this could result in decreased detec-
tion thresholds for these motion directions. However, how 
such eye movements would influence estimation of motion 
direction is not so clear. Naively, if participants were biased 
to move their eyes in expected motion directions, then we 
might expect this to produce estimation biases away from 
these directions (as the motion component in this direction 
would be reduced, relative to the motion of the eye), which 
is not what we observed. A proper understanding of how 
extra-retinal eye-movement signals are combined with sen-
sory signals to produce perceptual estimates, is an impor-
tant area for future work.
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Interaction between tasks
We considered how participants’ behaviour in one task 

could have influenced their behaviour in the other (Jazayeri 
& Movshon, 2007). Specifically, we asked whether biases in 
the estimation task could have come about as a result of 
participants optimizing their behaviour in the detection 
task. To illustrate how this could happen, consider the case 
where participants’ expectations influenced their detection 
performance, but not their perception of motion direction. 
Here, if participants were more likely to detect a stimulus 
when they perceived it to be moving in ‘expected’ direc-
tions, then this would also cause the estimation distribu-
tions to be biased towards these directions when we looked 
just at trials where a stimulus was detected. However, this 
bias would disappear when we looked at estimation re-
sponses from all trials, regardless of participants’ detection 
responses, which is not what we find experimentally (there 
was no significant difference between the estimation biases 
calculated from trials where participants detected stimuli, 
and from all trials; p = 0.71, 5-way within-subjects ANOVA). 

On the other hand, if, on trials where participants did 
not detect a stimulus, they treated the estimation task as 
meaningless and provided random estimation responses, 
then on average we would still observe a bias towards the 
expected directions. This could allow participants to re-
spond in a ‘self-consistent’ way in both tasks (A. Stocker & 
Simoncelli, 2008): when they have settled on the hypothesis 
that there is no stimulus present, it makes little sense for 
them to scrutinize which direction it is moving in. However, 
as discussed earlier, participants’ detection performance 
varied relatively weakly with motion direction, with an  
population averaged difference in detection performance of 
only 5.9±1.0% between the two most frequently presented 
motion directions, and other directions (figure 6). Thus, it 
seems unlikely that the highly significant variation in esti-
mation biases observed experimentally (varying by 
14.6±2.9° between stimuli moving at ±16° and ±64°; figure 
4a) could be brought about by such small changes in detec-
tion performance.

Expectations and attention
The behavioural effects of sensory expectations have 

been often linked to those of attention, as both phenomena 
result in increased perceptual quality for attended or ex-
pected stimuli (Doherty et al., 2005; Downing, 1988; Pos-
ner et al., 1980; Summerfield & Egner, 2009). In the con-
text of this experiment, it is possible that participants 
learned to direct feature-based attention towards the most 
frequently presented motion directions. Therefore, it is 
worthwhile comparing our results to previous experiments 
looking at the effects of feature-based attention on motion 
perception.

Previous studies using transparent motion stimuli, have 
shown that feature-based attention can modulate how dif-
ferent motion components are perceptually combined, thus 
altering the perceived directions (Chen, Meng, Matthews, 

& Qian, 2005; Tzvetanov, Womelsdorf, Niebergall, & 
Treue, 2006). For example, Chen et al. (2005) found that 
attending towards one of two overlapping motion signals 
reduced the degree of repulsion between the two motion 
signals, so that the non-attended motion direction was per-
ceived as being closer to the attended motion direction than 
it would be otherwise. This is consistent with our results, 
where attending to a particular motion direction resulted in 
an attractive bias in estimation-responses towards the at-
tended direction. However, in these previous studies, atten-
tion acted to select one of two competing motion stimuli, 
and thus modified the interaction between processing of 
these different motion signals. Here, we find that when par-
ticipants ‘expect’ stimuli to be moving in a particular mo-
tion direction, this alters the perceived direction of motion, 
even in the absence of any competing stimuli.

 It is interesting to consider how the perceptual effects 
that we observed here could be produced by changes at the 
neural level in the visual cortex. Much modeling work has 
looked at how visual neurons could encode information 
about sensory stimuli in the form of probability distribu-
tions, both at the single neuron (Deneve, 2008) and popu-
lation level (Knill & Pouget, 2004; Ma, Beck, Latham, & 
Pouget, 2006; Pouget, Dayan, & Zemel, 2003). However, at 
present the evidence for neural encoding of the prior is 
minimal (Basso & Wurtz, 1997; Platt & Glimcher, 1999; 
Summerfield & Koechlin, 2008).

On the other hand, recent experiments have shown 
that expectations of when and where motion stimuli are 
likely to be presented, can result in increased reliability of 
neurons in visual area MT (Ghose & Bearl, 2009). In the 
context of visual attention, numerous studies have shown 
that selective attention increases the sensitivity of neurons 
that are tuned towards attended spatial (Spitzer, Desimone, 
& Moran, 1988; Treue & Maunsell, 1996) or featural  
(McAdams & Maunsell, 2000; Treue & Martínez Trujillo, 
1999) dimensions. Looking specifically at visual motion, 
electrophysiological studies in macaque MT show that the 
firing rate of neurons that are tuned towards an attended 
motion direction are increased relative to neurons that are 
tuned towards other directions (Treue & Martinez-Trujillo 
1999). Therefore, if, in our experiment, participants learned 
to direct feature-based attention towards expected motion 
directions, then it is likely that the gain of neurons that 
were tuned towards these directions was increased. When 
considered together with our results, this leads to the fol-
lowing questions. First, are the learned priors that seem to 
be involved in our task encoded directly by gain changes of 
sensory neurons such as are observed with attention  
(Dayan & Zemel, 1999; Rao, 2005; Yu & Dayan, 2005a)? 
Secondly, how are these changes interpreted, or ‘decoded’, 
by upstream cortical areas to produce the perceptual biases 
that we observed (Jazayeri, 2007, 2008; Jazayeri & 
Movshon, 2006, 2007; Seriès, Stocker, & Simoncelli, 
2009)? Finally, an interesting goal for future research is to 
understand how priors that are learned over a short period 
of time are incorporated with and used to update long term 
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priors about the statistical structure of the world (Knill & 
Pouget, 2004; Weiss et al., 2002).

Conclusions
We asked whether the statistics of past motion stimuli can 
modulate perception of new motion directions. This was 
indeed what we found: participants quickly developed ex-
pectations for the most frequently presented directions of 
motion, and this strongly influenced their perception of 
simple, unambiguous, visual stimuli, inducing a shift in the 
perceived direction of stimuli towards expected motion di-
rections as well as hallucinations to see motion when none 
was presented.

In our work, expectations can be directly interpreted 
and modelled as Bayesian priors. In a situation like ours 
where stimuli are presented to only one sensory modality, 
without conflict or ambiguity, expectations, or Bayesian 
priors, are often thought to develop slowly over a lifetime of 
sensory inputs. In contrast, we found that they can be 
learned rapidly, in a period of a few minutes. Moreover, we 
showed they are combined with sensory inputs in a way that 
is compatible with optimal Bayesian inference.

In conclusion, our findings support the idea of a very 
plastic perceptual system in which prior knowledge is rap-
idly acquired and constantly used to shape our perceptions 
towards what we expect to see. Though useful for the system 
in the face of uncertainty, this plasticity comes at the cost of 
unconscious illusions and hallucinations.
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