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Abstract According to a growing trend in theoretical neuroscience, the human perceptual system is 
akin to a Bayesian machine. The aim of this paper is to clearly articulate the claims that perception 
can be considered Bayesian inference and that the brain can be considered a Bayesian machine, 
some of their epistemological challenges, and some of their implications. We address two questions: 
i) How are Bayesian models used in theoretical neuroscience? ii) From the use of Bayesian models 
in theoretical neuroscience, have we learned or can we hope to learn that perception is Bayesian 
inference or that the brain is a Bayesian machine? From actual practice in theoretical neuroscience, 
we argue for three claims. First, currently Bayesian models do not  provide mechanistic 
explanations; instead they are useful devices for predicting and systematizing observational 
statements about people’s performances in a variety  of perceptual tasks. That is, currently we 
should have an instrumentalist attitude towards Bayesian models in neuroscience. Second, the 
inference typically  drawn from Bayesian behavioural performance in a variety of perceptual tasks to 
underlying Bayesian mechanisms should be understood within the three-level framework laid out 
by David Marr ([1982]). Third, we can hope to learn that perception is Bayesian inference or that 
the brain is a Bayesian machine to the extent that Bayesian models will prove successful in yielding 
secure and informative predictions of both subjects’ perceptual performance and features of the 
underlying neural mechanisms.
Keywords: Bayesian Models; Theoretical neuroscience; Perception; Instrumentalism/Realism; 
Predictive Models; Mechanistic Models
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1 Introduction
Theoretical neuroscience uses mathematical modelling and computer simulations to understand the 
brain and the behaviour it generates. Following on from an insight of Hermann von Helmholtz 
(Helmholtz [1925]), a growing trend in theoretical neuroscience considers that  the human 
perceptual system is akin to a Bayesian machine (Friston and Stephan [2007]; Jaynes [1957]; Knill 
and Pouget  [2004]; Kersten and Schrater [2002]; Knill, Kersten, and Yuille [1996]). The function of 
this machine would be to infer the causes of sensory  inputs in an “optimal” way. Because sensory 
inputs are often noisy  and ambiguous, this requires representing and handling uncertainty. In order 
to carry  out such a function, the nervous system would encode probabilistic models. These models 
would be updated by neural processing of sensory information using Bayesian inference.
 Work on Bayesian modelling of perception can be usefully  understood within David Marr’s 
([1982]) three levels of analysis framework. Marr’s levels include the computational, the 
algorithmic and the level of implementation. The computational level specifies the problem to be 
solved in terms of some generic input-output mapping. In the case of Bayesian modelling in 
theoretical neuroscience, this is the problem of handling uncertainty. If the task is one of extracting 
some property of a noisy stimulus, for example, the generic input-output mapping that defines the 
computational problem is a function mapping the noisy sensory input to an estimate of the stimulus 
that caused that input. It is “generic” in that it does not specify any class of rules for generating the 
output. Such class is defined at the algorithmic level. The algorithm specifies how the problem can 
be solved. Bayesian models belong to this level. They provide us with one class of methods for 
producing an estimate of a stimulus variable in function of noisy and ambiguous sensory 
information. The level of implementation is the level of physical parts and their organization. It 
describes the mechanism that carries out the algorithm.
 Bayesian modelling is essential in machine learning, statistics and economics. Given the 
increasing influence on neuroscience of ideas and tools from such fields, it’s not surprising that 
Bayesian modelling has a lot to offer to the study  of the brain. Yet that the brain is a Bayesian 
machine does not follow from the fact that Bayesian models are used to study the brain and the 
behaviour it generates.
 The aim of this paper is to clearly  articulate the claims that perception can be considered 
Bayesian inference and that the brain can be considered a Bayesian machine, some of their 
epistemological challenges, and some of their implications. In order to achieve this aim, we address 
two questions:
i) How are Bayesian models used in theoretical neuroscience?
ii) From the use of Bayesian models in theoretical neuroscience, have we learned or can we hope to 
learn that perception is Bayesian inference or that the brain is a Bayesian machine?
 The paper is structured as follows. Section 2 explains how Bayesian models are used in 
theoretical neuroscience by drawing on a widely cited case-study from psychophysics. Section 3 
assesses whether and in which sense perception is akin to Bayesian inference. It is argued that 
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currently this claim should be understood in an instrumentalist framework, that is: currently 
Bayesian models are useful devices for predicting and systematizing observational statements about 
people’s performances in a variety of perceptual tasks. Section 4 argues that the link between the 
claim that people perform as if they were Bayesian observers in a variety of tasks and the claim that 
the brain is a Bayesian machine should be understood within Marr’s three-level of analysis 
framework. Section 5 takes up the questions whether and in which sense the claim that the brain is a 
Bayesian machine may be justified. Section 6 concludes.

2 Theoretical Neuroscientists Meet Bayes
Statistical inference is the process of drawing conclusions about an unknown distribution from data 
generated by that distribution. Bayesian inference is a type of statistical inference where data (or 
new information) are used to update the probability that a hypothesis is true. To say that a system 
performs Bayesian inference is to say that it  updates the probability that a hypothesis H is true given 
some data D by executing Bayes’ rule1

(1)       

We can read (1) thus: the probability of the hypothesis given the data (P(H|D)) is the probability of 
the data given the hypothesis (P(D|H)) times the prior probability  of the hypothesis (P(H)) divided 
by the probability of the data (P(D)).
 Theoretical neuroscientists have been increasingly using Bayesian modelling to address 
questions about biological perception (Doya et al.. [2007]; Knill and Richards [1996]; Rao, 
Olshausen and Lewicki [2002]). ‘One striking observation from this work is the myriad ways in 
which human observers behave as optimal Bayesian observers’ (Knill and Pouget [2004], p. 712). 
From these types of behavioural results, further hypotheses are drawn about the brain. ‘This 
observation––claim Knill and Pouget ([Ibid.])––along with the behavioural and computational work 
on which it is based, has fundamental implication for neuroscience.’ The ‘fundamental implication 
for neuroscience,’ according to Knill and Pouget ([2004]), is what they call the Bayesian coding 
hypothesis:
‘[T]he brain represents information probabilistically, by  coding and computing with probability 
density  functions or approximations to probability  density  functions’ (Knill and Pouget [2004], p. 
713).
 The hypothesis is twofold:
1. The brain performs Bayesian inference to enable us to make judgements and guide action in the 
world.
2. The brain represents sensory information in the form of probability distributions.
 Although there is no agreement on how the details of the hypothesis should be cashed out, 
much published work in theoretical neuroscience subscribes to the general claim that some neural 
processes can be described as Bayesian inference. The remainder of this section focuses on a widely 
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cited experiment. This case-study will help us to do three things: first, to make clearer why and how 
Bayesian models are used in theoretical neuroscience; second, to explain in which sense there is 
evidence underwriting the idea that ‘human observers behave as optimal Bayesian observers’ (Knill 
and Pouget  [2004], p. 712); third, to assess the link drawn between behavioural evidence and the 
Bayesian coding hypothesis.
 Our senses can be viewed as independent sources of information about the properties of 
external objects. Object perception, hence, can be viewed as integration of information from 
different senses. Pursuing these ideas, Ernst and Banks ([2002]) tackled these questions: When 
people both touch and look at an object why are their percepts often more affected by visual than by 
haptic information? How does visual information integrate with haptic information? In particular, 
does this integration vary with the relative reliability of the information provided by each modality?
 Since Knill and Pouget ([2004], p. 713) claim that ‘[p]erhaps the most persuasive evidence 
for the Bayesian coding hypothesis comes from sensory cue integration,’ we believe that Ernst and 
Banks’s ([2002]) work is particularly suited to assess in which sense perception can be considered 
Bayesian inference and the brain a Bayesian machine.
 Ernst and Banks ([2002]) designed an experimental task where human subjects were 
required to make discrimination judgements. Subjects had to judge which of two sequentially 
presented ridges was taller. There were three types of trials. Firstly  the subjects had only  haptic 
information: they could only touch the ridge. Then they had only visual information: they could 
only see the ridge. Finally, subjects had both types of information at the same time: they could both 
touch and see the ridge simultaneously. The trials involving only visual information comprised four 
conditions that differed in the amount of noise in the visual stimuli so as to manipulate the 
reliability  of the visual cue. To investigate cue integration quantitatively, Ernst and Banks measured 
the variances associated with subjects’ judgements across the three types of trials. They first 
measured the variances associated with judgements based only on visual information, and based 
only on haptic information. From these, they  could predict the performance of subjects for the 
condition where both visual and haptic cues were present, under the assumption that subjects would 
integrate information from the two cues in a Bayesian optimal way. They found that measured 
performance was in fact very  similar to the Bayesian prediction. This and other results from a 
variety of different psychophysical experiments on perception––e.g. on color perception (Brainard 
and Freeman [1997]), motion perception (Stocker and Simoncelli [2006]), visual illusions (Weiss, 
Simoncelli, and Adelson [2002]), and sensory-motor learning (Körding and Wolpert [2004a])—
would be evidence that human observers are Bayes’ optimal (Kill and Pouget [2004]).
 What exactly  does it mean that the subjects in Ernst and Banks’s experiment behaved in a 
‘statistically  optimal way’? How was Bayesian modelling used to reach the conclusion that ‘humans 
integrate visual and haptic information in a statistically  optimal fashion’ (Ernst and Banks [2002], p. 
429)?
 To answer these questions, let’s examine the logic underlying their experiment. Call S a 
random variable that takes on one of a set of possible values s1, …, sn of some physical property – 
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e.g. color, length, or velocity. A physical property of an object is any measurable property of that 
object. The value of S at  a certain time describes the state of that object with respect to that  property 
at that moment in time. Call M a sequence of measurements m1,…, mn of a physical property. M can 
be carried out through different measurement modality. Call Mi a sequence of measurements 
obtained through modality  i. Measurements Mi are typically  corrupted by noise. Noise might cause 
a measurement mi to yield the wrong value for a given s. An estimator f (Mi) is a deterministic 
function that maps measurements Mi  corrupted by noise to values of the physical property S. If we 
assume that Mi is the measurement carried out by sensory modality  i––e.g. vision, or touch––then 
perception can be modeled as Bayesian inference. Given a sequence of measurements Mi the task of 
a Bayesian sensory  system is to compute the conditional probability  density function P (S|Mi). We 
can then restate Bayes’ rule (1) thus:

(1’)  

where P(Mi|S) specifies the likelihood of the sensory measurements Mi for different values of the 
physical property S, P(S) is the prior probability of different values of S, P(S|Mi) is the posterior 
density  function. Bayesian inference here is concerned with computing the set of beliefs about the 
state of the world given sensory input. Bayes’ rule alone does not specify how these beliefs should 
be used to generate a decision or a motor response. How to use the posterior distribution to generate 
a single response is described by Bayesian decision theory and requires the definition of a loss-
function L (S, f (Mi)), which specifies the relative cost of getting the estimate wrong. If the aim of 
the task is to compute a single estimate of S, the problem reduces to one of estimation.
 It is worth noticing with Simoncelli ([2009]) two things. First, the estimation problem of 
extracting values of some physical property from noisy sensory  measurements can be addressed 
with different classes of methods, of which exact Bayesian inference is only one possibility. This 
possibility, moreover, might not be biologically feasible: some researchers have argued that 
biological implementation of exact Bayesian inference is unfeasible because of its computational 
complexity and the knowledge it  presupposes (e.g. Shimojo and Nakajama [1992]; Fiser et al. 
[2010]; but see Maloney [2002]). Alternative methods that do not require either representing or 
computing probabilities include: regression techniques, look-up tables and some other supervised 
and unsupervised inferential strategies. Secondly, in the case of Bayesian modelling ‘[o]ptimality is 
not a fixed universal property of an estimator, but one that depends on [three] defining 
ingredients’ (Simoncelli [2009], p. 529). The first two ingredients are:

• the prior P (S); and
• the measurement probability density P(Mi|S).

Together they specify  how to form the posterior distributions. However they do not tell us how to 
use the posterior to make judgements and decisions in a task. The prior and measurement 
probability  density, that is, are not sufficient to specify which estimate should be picked in a task. 
The optimal choice for this depends on a third ingredient:
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• the loss function L (S, f (Mi)).
If exact Bayesian inference is not feasible, optimality will depend on a fourth ingredient, that is:

• the family  of functions F from which the estimator is to be chosen (Simoncelli [2009], par.
1), e.g. linear functions.

The most common way of choosing an estimate from the posterior distribution is known as 
maximum likelihood estimator (MLE). This corresponds to choosing as an estimate ŝ the value of 
the physical property that maximizes the probability of resulting in the observed measurements.

(2)  

The MLE method corresponds to optimal estimation under the assumption that the prior is flat 
(uniform), the loss-function is 0 for ŝ = s ± ε (where ε is a very small quantity) and constant 
otherwise and the family of functions F is not constrained.
 Let’s now re-examine Ernst and Banks’s ([2002]) experiment in this framework. In their 
experiment the physical property S of interest was the height of the ridges. Two types of sensory 
measurements Mi were used: visual and haptic measurements. If we call V the sequence of visual 
measurements and T the sequence of haptic measurements of S, then the estimator f (V, T) maps the 
integration of visual and haptic measurements corrupted by noise to estimated values ŝ. Ernst and 
Banks ([2002], pp. 429-30) reasoned that ‘[i]f the noises are independent and Gaussian with 
variance σi2, and the Bayesian prior is uniform, then the maximum-likelihood estimate of the 
environmental property […] states that  the optimal means of estimation (in the sense of producing 
the lowest-variance estimate) is to add the sensor estimates weighted by their normalized reciprocal 
variances.’
 The noises of different sensory  modalities are independent when the conditional probability 
distribution of either, given the observed value of the other, is the same as if the other’s value had 
not been observed. This assumption might be motivated by the fact that the neurons processing 
visual information are far apart from the cortical neurons processing haptic information in the 
cortex. To say that  the Bayesian prior is uniform is to say that all values of S are equally  likely 
before any  measurement Mi. This assumption can be justified by  noticing that the subjects in Ernst 
and Banks’s ([2002]) experiment had no prior experience with the task, and thus no prior 
knowledge as to the height of the ridges in the experiment.
 Based on individual measurements T and V of the physical property S, and assuming that the 
two modalities are independent, we can derive the likelihood function P(T, V | S) which describes 
how likely  it is that any S gives rise to measurements (T, V). Once particular measurements (T, V) 
are obtained, by using Bayes’ rule the posterior probability  P(S|T, V) of S being the height of the 
ridge can be expressed as:
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(1’’)      

If we assume that the prior P(S) is flat (i.e. a constant) and we know the mean estimate and variance 
for each modality  in isolation, we can predict  the mean and variance of the Bayes-optimal bimodal 
estimate in this way. If σT2  is the variance of the estimate of S based on haptic measurements T, and 
σV2 is the variance of the estimate of S based on visual measurements V, and the likelihoods are 
Gaussian, that is:

(3)              

(3’)            

then the posterior distribution of the final visual-haptic estimate will also be described by a 
Gaussian. That is, from (1’), (3) and (3’) it follows that:

(4)
               
If we assume that subjects’ estimations correspond to extracting the maximum of this distribution 
(MLE), the mean of their response is given by the mean of this Gaussian:

(5)            

It will fall between the mean estimates given by each isolated cue (if they differ) and will tend to be 
pushed towards the most reliable cue. Its variance is:

(6)               

This entails that the reliability  of the combined estimate is always greater than that given by the 
estimates of each individual modality.
 Ernst and Banks tested experimentally whether the variance of the subjects’ visual-haptic 
estimates ŝ was close to the variance worked out through MLE. When they  found that this was in 
fact the case, they concluded that humans integrate visual and haptic information in a statistically 
optimal fashion.

3 Is Perception Bayesian Inference?
The kind of results yielded by experimental studies such as Ernst and Banks’s is often taken as 
evidence that perception is Bayesian inference (Friston and Stephan [2007]; Knill and Pouget 
[2004]; Kersten and Schrater [2002]; Knill, Kersten, and Yuille [1996]). This conclusion may 
suggest that Bayesian models are descriptions of the mechanisms of sensory systems, that is: of the 
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sets of entities and associated activities organized so as to constitute perceptual phenomena (Craver 
[2007]; Machamer, Darden, and Craver [2000]).
 In this section we argue that currently Bayesian models are not descriptions of the 
mechanisms of sensory  systems. The most we can acknowledge from that kind of evidence is that 
viewing ‘perception as Bayesian inference’ is useful for generating predictions about people’s 
performance in perceptual tasks. We explain that the goal of Bayesian models in psychophysics 
experiments is not to describe sensory mechanisms. Bayesian models are used as tools for 
predicting, systematizing and classifying statements about people’s observable performance. Hence 
claims about perception as Bayesian inference should be interpreted within an instrumentalist 
framework.
 We start by introducing the distinction between scientific realism and instrumentalism. 
These are two stances about scientific theories (Devitt [2008]). The contrast between scientific 
realism and instrumentalism can be thought as a contrast in how scientific theories and models are 
to be understood – as a contrast in the epistemic attitude one should have towards scientific theories 
and models.
 Call X the target system that a scientific model aims to “represent.” Roughly, according to 
instrumentalism, scientific models of X are useful instruments, heuristic devices, tools we employ to 
predict observable phenomena concerning X or to summarise and systematize data about X. For 
instrumentalists, a good model need not pick out organized component entities and activities in the 
target system. Scientific realism contrasts with instrumentalism. For realists, good scientific models 
of X pick out organized component entities and activities in the target system. In this sense, for 
realists, good scientific models do not only, or mainly, aim to make predictions, summarise or 
systematize data about X.
 For scientific realists, a model of X is better than alternative models of X if it  is more 
successful than alternatives at describing the mechanism of X. According to instrumentalists, a 
successful model of X needs not describe any aspect of a putative mechanism of X. From this 
perspective, a model of X is better than alternative models of X if it is more successful than 
alternatives in predicting a certain set of phenomena concerning X or in summarising and 
systematizing data about X. We are aware that scientific realism and instrumentalism consist of a 
number of more specific theses (Psillos [1999]); for our purposes, however, this general 
characterization should be sufficient.
 A scientific model of the human perceptual system such as Ernst and Banks’s is not aimed at  
describing mechanisms. Ernst and Banks’s experiment was informed by abstract considerations 
about information processing rather than data about some mechanism of visual or tactile perception. 
The considerations that informed Ernst and Banks’s experiment were twofold. On the one hand, our 
senses need to extract information from different cues for estimating the properties of objects. On 
the other, under certain conditions a certain sensory modality or a certain type of cue seems to have 
more weight in the final estimation of the properties of objects. Given these considerations, we can 
be interested in the mechanistic project of understanding how humans’ perceptual systems integrate 
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different sensory cues, or we can be interested in the project of predicting and systematizing data 
about people’s performance in a variety of perceptual estimation tasks. The psychophysical 
approach to the study of the human perceptual system is concerned with the latter project.
 Works in “Bayesian psychophysics” typically proceed from the definition of a simple 
experimental task and the specification of how a Bayesian observer would perform in that task. The 
experimental task is such that experimenters can determine probability distributions necessary  to 
test whether subjects’ performance is consistent with Bayesian inference. With visual-alone and 
haptic-alone subjects’ discrimination estimations, Ernst and Banks could measure the variability of 
the unimodal estimates. From these, Ernst and Banks derived the optimal bimodal estimate by 
applying MLE; then they compared it to the experimental data.
 Thus, MLE was used to formalize the idea that perception is statistical inference. It defined 
how an ideal observer would perform in a well-defined visual task. One type of ideal observer is 
the one who uses Bayesian inference to make perceptual estimations. Ideal observers serve as a 
benchmark against which human performance in the perceptual task could be compared. However, 
from the fact  that human performance in such tasks is consistent with an ideal observer’s 
performance, it does not follow that human observers carry out (either consciously  or 
unconsciously) MLE when they integrate sensory information. Nor does it follow that people’s 
brain implement MLE. The use of Bayesian modelling in psychophysical research is aimed at 
predicting and systematizing data. Given this aim, the claim that perception is Bayesian inference 
should be understood in an instrumentalist framework. There are two reasons that justify this 
conclusion. Firstly, the methodology adopted is typically performance-oriented, instead of process-
oriented. Secondly, typically  the choice of the prior and of the loss function, which define the 
Bayesian formulation of perceptual estimation problems, has a mathematical justification rather 
than an empirical one.
 Unlike process-oriented models, performance-oriented models treat their targets as systems 
that exhibit overall properties. No internal structure is specified within the model. The focus is not 
on the mechanism that gives rise to the performance but on the relationship between performance 
and a benchmark.2 The methodology informing Bayesian modelling in psychophysical experiments 
such as Ernst and Banks’s is performance-oriented. Their data consist of subjects’ judgements under 
different conditions (e.g. estimations relying on visual information only vs. estimations relying on 
haptic information only). Subjects’ performance could finally be compared with the ideal observer’s 
performance. This approach focuses on describing regularities in behavioural data. It makes no 
claim as to the processes underlying performance.
 Maloney  and Mamassian ([2009]) make an analogous point. They argue that the use of a 
Bayesian model ‘as a benchmark model does not imply  that human visuomotor processing is in any 
sense Bayesian inference, even when human performance is close to ideal’ (p. 148). The 
behavioural patterns displayed by people in such perceptual tasks can result from different classes 
of non-Bayesian models. Maloney and Mamassian show how optimal performance in cue 
integration can be achieved by “table look-up” observers who would process information in a non-
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Bayesian fashion by implementing reinforcement learning. One of their conclusions is that  if we 
want to know whether people process information in a Bayesian way we have to use Bayesian 
models in visuomotor experimental tasks differently. In particular, one could investigate the 
implications of Bayesian models in terms of representation of the underlying probability 
distributions. Maloney  and Mamassian propose an experimental methodology, which they call 
‘transfer criteria,’ which may help  us discriminate Bayesian inference from some reinforcement 
learning algorithm in visuomotor experimental tasks. This methodology aims to assess whether 
observers can transfer knowledge about previously encountered priors, likelihoods and loss-
functions to carry out novel tasks. If perception is Bayesian, observers who have learned to carry 
out two perceptual tasks, that are defined by two different priors, likelihoods and loss-functions, 
should be able to transfer knowledge of these functions to carry out a new task corresponding to 
novel combinations of the previously encountered priors, likelihoods and loss-functions. If 
observers’ performance in the novel task is close to optimal without much practice, then we would 
have evidence that the system saves, restores and combines in a Bayesian fashion representations of 
those functions. With few exceptions (e.g. Adams et al. [2004]), currently  Bayesian models are not 
used in this way. They are typically used as a benchmark for performance in a single task.
 That the aim of Bayesian modelling is predictive since the underlying methodology  is 
performance-oriented can also be justified thus. Typically the models used in psychophysical 
experiments are empirically  underconstrained. Ernst and Banks’s model, for example, does not 
provide any  clue about how exactly  information is acquired, represented and transformed by the 
perceptual system. Models of perception that are constrained by incorporating empirical data about 
information acquisition, for example, may help us to understand in which order information is 
searched, when search terminates and why a certain class of models is suitable to predict subjects’ 
performance in certain types of circumstances rather than others. If we want models that instruct us 
about the nature of certain phenomena, such models need to be constrained to incorporate data 
about some putative mechanism underlying subjects’ performance. Without such constraints we 
have little grounds to maintain that the model has counterparts in the world even though people’s 
performance in a given task is consistent with the performance the model predicts. If we have little 
reason to maintain that the model has counterparts in the world, we cannot conclude that people’s 
perception is Bayesian inference from evidence that people often behave as ideal observers. As 
shown by Maloney and Mamassian ([2009]), a good fit between predictions about what an ideal 
observer will do in a given task and people’s performance in that task does not  necessarily mean 
that the Bayesian model describes the cognitive processes behind people’s performance.
 Secondly, to formulate cue combination in terms of Bayesian integration it is necessary  to 
choose a prior and a loss-function. The prior is assumed to capture the statistical structure of the 
environment. The loss function defines the goal of a given task by specifying the costs and benefits 
to the observers of their estimations. If Bayesian models were aimed to represent some feature of 
the mechanisms of sensory  perception, experimenters’ choice of prior and loss function should be 
informed by empirical considerations. But typically prior and loss function are chosen on 
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theoretical grounds only, with the concern of keeping the assumptions of the model as simple as 
possible. Hence Bayesian models are not aimed at representing some feature of the mechanisms of 
sensory  perception. The choice of prior and loss-function is aimed at making prediction in 
experimental tasks simple.
 Stocker and Simoncelli ([2006], p. 578) underwrite this last claim by arguing that ‘the prior 
distribution used in most Bayesian models to date was chosen for simplicity  and/or computational 
convenience.’ Ernst and Banks ([2002]), for example, chose uniform prior distributions for the 
physical property  being estimated in their experiment (i.e. height cues). This decision can be 
justified on “intuitive” grounds by observing that their subjects had no prior knowledge of the size 
of the ridges in that experiment. In general however sensory  systems processes are adapted to the 
perceptual signals to which they  are exposed at evolutionary, developmental and behavioural 
timescale. Not all sensory signals are equally likely  in one’s environment, ‘it  is natural to assume 
that perceptual systems should be able to best process those signals that occur most frequently. 
Thus, it is the statistical properties of the environment that are relevant for sensory 
processing’ (Simoncelli and Olshausen [2001], pp. 1193-4). Hence, in general, if the aim of 
Bayesian modelling is to acquire knowledge about underlying mechanisms of perception then the 
criterion for choosing the prior should include some “ecological” consideration since neural 
processing is influenced by the statistical properties of the environment.
 An analogous set of issues arises in choosing the loss-function. Ideal observers are those 
who minimize the average loss. Thus the choice of the loss function defines what counts as optimal 
performance in a given perceptual task. The criterions for the choice of the loss function could be 
whether it represents the true gains (or losses) of the observer, or whether it facilitates prediction of 
certain types of performance in a given task because of its mathematical tractability. Discussing 
models of sensorimotor control, Körding and Wolpert, D. ([2004b], p. 9839) argue that ‘[l]oss 
functions have been assumed to be quadratic in error in almost all the models of sensorimotor 
control.’ This assumption is typically made purely  for mathematical convenience. If the loss 
function is quadratic in error, that is L (S, f (Mi)) = (S - f (Mi))2, then the optimal estimate is the 
mean of the posterior. A quadratic loss is simple to solve since it is differentiable, whereas, say, 
absolute error is not. Ernst and Banks ([2002]) made this assumption, and thereby they showed that 
their subjects’ performance was consistent with the claim that observers combine cues linearly with 
the choice of weights that minimize quadratic loss. However, Ernst and Banks gave no empirical 
reason for the claim that human observers in fact penalize the errors they make in that way.
 One possible approach to the choice of prior and loss function is to develop psychophysical 
tasks that allow us to estimate them. Once we have gained some knowledge of the prior and loss 
function of the subjects performing in a task, we may constrain the Bayesian model and use it to 
predict the subjects’ behaviour in different psychophysical tasks, as Maloney and Mamassian 
([2009]) recommend with their ‘transfer criteria.’ This use of Bayesian modelling would give us 
grounds to maintain that the claim that  perception is Bayesian inference is intended to offer an 
approximately true account of the mechanisms of perception. Some recent work in psychophysics 
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(e.g. Chalk, Seitz and Seriès [2010]; Körding and Wolpert [2004b]; Stocker and Simoncelli [2006]) 
pursued this approach by “reverse-engineering” the shape of the prior and of the loss-function 
directly  from people’s perceptual behaviour. The question underlying this “reverse-engineering” 
approach is: for what  choices of prior and loss function would the subject’s performance be 
considered optimal?
 Körding and Wolpert ([2004b]), for example, adopted this approach. They measured the loss 
associated with different  errors in a sensorimotor task. The task was such that the subjects’ choices 
were associated with different patterns of errors. The subjects were required to make their choice so 
as to be ‘on average as accurate as possible.’ Körding and Wolpert estimated the loss-function used 
by subjects from their choice behaviour in the task. They  assumed that ‘people are able to optimize 
an inherent loss function and that we can systematically measure this function’ (p. 9841). From the 
distribution of errors in the task, Körding and Wolpert found that  their subjects seemed to use a 
loss-function in which for small errors the cost increases approximately quadratically with error, 
and for large errors the cost increases significantly less than quadratically.
 The estimation of the loss function or of the prior, however, does not contribute by itself to 
the justification of a realistic interpretation of Bayesian models of sensory  perception. In order to 
give grounds to such an interpretation, the choice of prior and loss function should be 
systematically  constrained by evidence from independent studies. Once researchers fit parameters 
in a Bayesian model to one set of data, they should try to predict  subjects’ performance––now with 
these parameters fixed––in a further new set of circumstances. However, this kind of validation 
presents a number of challenges and might be unfeasible. As pointed out both by Stocker and 
Simoncelli ([2006]) and Körding and Wolpert ([2004b]), it is likely that the prior and the loss 
function are specific to the particular experimental task and the details of the particular physical 
property  to be estimated in the task. Thus the prior and loss function estimated for certain subjects 
performing in a particular task may not generalize to different experimental conditions.
 In contrast to current Bayesian models of perception, mechanistic models have different 
purposes. They aim to be explanatory, as they aim to give us genuine insight into the way 
perceptual systems work by describing their physical implementation. Mechanistic models, unlike 
current Bayesian models, purport to produce explanations that are potentially useful for intervention 
and control. So if we want to understand what we can currently  learn about the brain with Bayesian 
models and how we can use them in cognitive neuroscience, it is important for us to mark their 
difference from mechanistic models.
 Although Bayesian models are currently not mechanistic, they are still useful epistemic 
devices. For example, that  a model shows good predictive success in a given psychophysical task 
can give us reason to investigate why this is the case (Schrater and Kersten [2002]). Researchers in 
theoretical neuroscience typically make the inference that if people behave as Bayesian observers in 
psychophysical tasks then their brains must implement some Bayesian estimation scheme and 
somehow represent probability distributions over possible states of the sensory  world (see e.g. Ma 
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et al. [2006], p. 1432). But how should we understand the inference from psychophysics to brain 
mechanisms? The next section addresses this question.

4 How should we understand the Inference from Bayesian Observers to Bayesian Brains?
From their psychophysical results, Ernst and Banks ([2002], p. 431) drew a conclusion about brain 
functioning: ‘we found that height judgements were remarkably similar to those predicted by  the 
MLE integrator. Thus, the nervous system seems to combine visual and haptic information in 
fashion similar to the MLE rule.’ It is not clear that this claim should be read in a realist fashion 
since the use of ‘similar’ can be compatible with an instrumentalist  reading of Ernst  and Bank’s 
position.
 Some authors seem to display more explicitly  a realist stance towards results like those 
obtained by Ernst  and Banks. Knill and Pouget, for example, write that ‘these [psychophysical] data 
strongly suggest that the brain codes even complex patterns of sensory  and motor uncertainty in its 
internal representations and computations’ (Knill and Pouget [2004], p. 718). Knill writes that ‘[a]n 
emerging consensus from the perceptual work [in psychophysics] is that the visual brain is a near-
optimal Bayesian estimator of object properties, for example, by integrating cues in a way  that 
accounts for differences in their reliability’ (Knill [2005], abstract). Ma et al. ([2006]) claim that 
behavioural studies showing that subjects often behave as Bayesian observers have ‘two important 
implications. First, neural circuits must represent probability  distributions… Second, neural circuits 
must be able to combine probability distributions nearly optimally, a process known as Bayesian 
inference’ (p. 1432, emphases added). Beierholm et al. ([2008]), after having introduced 
behavioural results on multisensory perception, write that ‘cue combination has become the poster 
child for Bayesian inference in the nervous system.’
 According to a realist stance, the model used in the psychophysical task would pick out at  
least some features of the mechanism that gave rise to the psychophysical performance. Hence a 
realist interpretation of Bayesian models would be apt to motivate the inference from behavioural 
performance to brain mechanism. Moreover, according to the so-called ‘no miracle argument’ for 
scientific realism (see e.g. Putnam [1975]), the inference from behavioural performance to brain 
mechanism would be necessary to account for the success of the model in the psychophysical task. 
The no-miracle argument starts from the premise that the success of Bayesian models in predicting 
behavioural performance in a wide range of tasks calls for explanation. We would have an 
explanation of why the predictions of Bayesian models hold only if they picked out organized 
component entities and activities responsible for the system’s performance. People’s performance 
would therefore be explained in virtue of Bayesian models picking out features of brain 
mechanisms. The success of Bayesian models would appear miraculous if scientific realism were 
not endorsed.
 Thus, under a realist interpretation, the fact that people’s performance can be described in 
terms of MLE integration of sensory information would justify the inference that the nervous 
system combines information in a way ‘similar to MLE.’ A realist, it is worth noting, needs not 
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assume that for every model of behavioural performance there is a model of the neural processing 
carried out in some part of the brain such that the two models are isomorphic. The realist can hold 
that the Bayesian algorithms describing behavioural performance are not implemented in a 
particular neural population. Visual processing, for example, takes place along a cascade of many 
processing stages. ‘If the system as a whole performs Bayesian inference, it  seems unlikely that any 
one stage in this cascade represents a single component of the Bayesian model (e.g. the prior) or 
performs one of the mathematical operations in isolation (e.g. multiplying the prior and the 
likelihood)’ (Rust  and Stocker [2010], p. 384). In general, it may be the case that whole brains solve 
certain “computational problems” in a distributed way such that their solutions are visible only at 
the level of behavioural performance, and the performance does not depend on any particular 
process in any specific part of the brain (see e.g. Dennett [1991]).
 However, no-miracle arguments are controversial (see e.g. Lipton [2004], Ch. 11). And, 
more importantly, current practice in theoretical neuroscience––we have argued––shows that it is 
premature to endorse a realist attitude towards Bayesian models of sensory perception. Bayesian 
models do not, and do not purport to, represent features of the mechanisms of perception. How 
should we understand the inference from Bayesian observers to Bayesian brains then?
 We argue that understanding this inference within Marr’s three-level framework (Marr 
[1982]) fits nicely with an instrumentalist  attitude towards Bayesian models. Marr’s framework of 
levels of analysis is in fact often used to understand probabilistic models of cognition (e.g. Griffiths 
et al. [2010]). It  can also be used to understand Bayesian models of sensory perception. The 
adoption of Marr’s framework can both motivate the inference from behavioural performance to 
underlying mechanisms, and an instrumentalist attitude towards the Bayesian model. This is 
because of two features of Marr’s framework: First, the relationship between the three levels is one 
of non-decompositional realization. This relationship  does not necessitate inferences across levels. 
Nonetheless, it can motivate us to ask what type of mechanism may  implement a given algorithm. 
Second, questions at the computational level are formally independent of issues at the other levels, 
and therefore they can be tackled with no, or little, concern for constraints at lower levels.
 Craver ([2007]) explains that the relationship  between levels in a mechanism is a type of 
part-whole relationship where entities and activities at  one level are components of organized 
entities and activities at  a higher level (Craver [2007], Ch. 5). Craver notes that the relationship 
between Marr’s three levels is not one of composition, but rather one of realization. Computational, 
algorithmic and implementation levels are not decompositional. Algorithms are not components of 
computations. Rather, the algorithmic level realizes the computational level. Thus estimation of 
environmental properties in the human sensory system may be realized by certain algorithmic 
Bayesian transformations, which in turn may be realized by a certain organized collection of neural 
structures and activities. This relationship of realization allows one to avoid questions of biological 
mechanisms, as it suggests that algorithmic and biological implementation approaches are just 
different ways of looking at the same system.
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 Adapting Craver’s ([2007], p. 218) reconstruction of Marr’s framework to our topic it may 
be said that: The human sensory system as a whole is at once an estimator, a Bayesian manipulator 
of sensory information and an organized collection of certain patterns of neural spikes. The system 
is an estimator in virtue of its being a Bayesian manipulator of sensory information. It is a Bayesian 
manipulator of sensory  information in virtue of its being an organized set of neural circuits. The 
computational process of estimation, the Bayesian transformations and the organized collection of 
neural circuits are all properties of the same system. But  if they are all properties of the same 
system, the predictive success of a Bayesian model in a given psychophysical task can motivate us 
to investigate why this is the case. Hence, the discovery  that the sensory system can solve the 
problem of sensory cue integration by using Bayesian inference or its approximation using MLE 
motivates the Bayesian coding hypothesis at the neural level.
 Marr emphasised the formal independence of the three levels because different algorithms 
can solve the same computational problem and different hardwares (or mechanisms) can implement 
the same algorithms. In this sense, the discovery that people behave as though they were Bayesian 
observers does not compel us to make any specific claim at the neural level of implementation. 
Theoretical neuroscientists pursuing Marr’s methodological approach can continue to work at the 
algorithmic level independently of findings about the hardware that implements it. It  is important to 
note, however, that the formal independence of algorithmic and implementation levels does not 
entail that the algorithms used by the human cognitive system are best discovered independently of 
a detailed understanding of its neurobiological mechanisms. The formal independence of algorithms 
and neural hardware allows theoretical neuroscientists to be able to use Bayesian models to 
generate predictions and systematize data, while remaining agnostic about the underlying 
mechanism (on instrumentalism and Marr’s framework, see Danks [2008]).
 The formal independence of the three levels emphasised by Marr, however, is not a claim 
about how the algorithms implemented by our cognitive system are best discovered. Ultimately 
knowledge of the nervous system is essential to discovering what types of algorithms are carried out 
by our cognitive system. Therefore, knowledge of the nervous system should inform the Bayesian 
models we use to study perception, if, by using those models, we aim to discover whether our 
cognitive system implements some Bayesian algorithm in solving a given perceptual task. The next 
section explains this last claim by exploring the issue of how Bayesian models could be used so as 
to be gradually informed and constrained by knowledge at the neural level of implementation.

5 How could we discover that brains are Bayesian?
Theoretical neuroscientists are ultimately  interested in how a system actually  works. Hence they are 
ultimately  interested in building mechanistic models where findings about the hardware inform 
investigations at the algorithmic and computational levels. Mechanistic models of sensory 
perception describe entities, activities and organizational features that are relevant to represent and 
explain perceptual phenomena. Granted this goal of theoretically neuroscience, and granted that 
currently Bayesian models should be understood as no more than toolboxes for making predictions 
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and systematizing data, how can an instrumentalist use of Bayesian models lead to gradually 
transforming them into mechanistic models so that a realist  attitude towards such models can be 
justified?
 A growing number of theoretical studies have started to explore how neural mechanisms 
could implement the types of Bayesian models used in psychophysical perceptual tasks (Rao 
[2004]; Ma et al. [2006]; Beck et al. [2008]; Deneve [2008]). To carry out this project, three issues 
need be addressed: (i) How might neurons represent  uncertainty? (ii) How might they represent 
probability  distributions? (iii) How might they  implement different approximations to Bayesian 
inference?
 Recall our case study above. Ernst and Banks ([2002]) derived psychometric functions from 
subjects’ estimations. That is, they derived functions that  described the relationship between a 
parameter of the physical stimulus (the height of a ridge) and the discrimination performances of 
the subjects. At the neural level, the probability  that the physical stimulus takes any particular value 
can be estimated from firing activity. If one adopts Marr’s framework the psychophysical model 
and the neural model are isomorphic. If the algorithm that solves a problem such as sensory 
integration uses certain probability distributions, then that algorithm and those probability 
distributions are to be implemented neurally since it is on the neural hardware that this algorithm 
would run.
 Although for a given experimental task the two models can be taken to be isomorphic, that  
does not mean that there is only one way that probability  distributions could be neurally  encoded. 
There are a number of proposals about how populations of neurons might code probability 
distributions (Fiser et al. [2010]; Ma, Beck and Pouget [2008]). These proposals consist of neural 
models aimed at predicting and systematizing statements about neural data. The current challenge 
for these models is to yield good, clear and testable predictions at the neural level, a goal that has 
yet to be satisfactorily reached (Fiser et al. [2010]).
 In general, good predictions have two epistemic virtues: they are secure and informative. 
Secure predictions are based on reliable, solid grounds. The more adjustable parameters a proposed 
model has, the more secure its predictions are, but the greater the risk of merely accommodating the 
data used to construct the model. In general, models should accommodate the data used to 
formulate them. But the risk for models that merely  aim to accommodate some known data set is to 
overfit  the data (Hitchcock and Sober [2004]). If a model fits perfectly the data of a given data set, 
its predictive power can be undermined. By over-fitting the data, it would be too sensitive to the 
idiosyncrasies or noise in the particular data set which are unlikely to generalise across samples 
drawn from the same underlying distribution. Because of over-fitting the data, a model can yield 
predictions that are either uninformative or inaccurate.
 Bayesian models are often simpler and depend on fewer parameters than other types of 
models designed to fit the same data (see e.g. Chalk et al. [2010]; Weiss et al. [2002]). In that sense, 
they  are not  particularly prone to over-fitting the noise. However, they suffer from a related 
concern: they have sometimes been accused of merely accommodating the data due to the use of 
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ad-hoc priors, thereby running the risk of yielding uninformative predictions. Hammett et al. 
([2007], p. 565) emphasise this problem when they argue that ‘a Bayesian model [of speed 
perception] might be seen as little more than a re-description of the data with little predictive 
power.’ Their point is that it is not clear that, in general, a given Bayesian model can yield 
informative predictions of perceptual phenomena like speed perception. The model might 
accommodate any experimental result by moulding ‘the shape of the prior to observed 
data’ ([Ibid.]). Theoretical neuroscientists, like Stocker and Simoncelli, using Bayesian models of 
sensory  perception are aware of this problem. Their methodological advice is that ‘in order to 
realize its potential for explaining biology, [a Bayesian model] needs to be constrained to the point 
where it can make quantitative experimentally testable predictions’ (Stocker and Simoncelli [2006], 
p. 583). The idea is that Bayesian models can be more than mere ‘descriptions of the observed 
data.’ They can yield good predictions of both subjects’ perceptual performance in a variety of tasks 
and features of the underlying mechanisms to the extent they  are able to incorporate knowledge of 
relevant neurophysiological constraints. By yielding good predictions, the models can then 
gradually ‘explain biology.’ If Bayesian models ‘explain biology,’ we would have more grounds for 
a realistic attitude towards them.
 Good predictions are typically quantitatively accurate and informative, in that they match 
some novel phenomena, thereby avoiding over-fitting. Musgrave ([1974]) distinguishes three ways 
in which predictions match novel phenomena. According to the temporal view, a phenomenon is 
novel for a model only if it was unknown at the time the model was construed. According to the 
heuristic view, a phenomenon is novel if the model was not constructed only to accommodate it. 
According to the theoretical view, a phenomenon is novel for a model if it  is not predicted by any  of 
the model’s extant alternatives. As the predictions yielded by a model neural network become more 
secure and informative, the model is gradually  transformed into a mechanistic model. Whether a 
literal understanding of the claim that  the brain is akin to Bayesian machine is justified depends 
ultimately  on the success of the transformation from Bayesian models as predictive tools to 
Bayesian models as mechanistic models.
 Let’s illustrate the logic underlying such a transformation by considering Ma et al.’s ([2006]) 
work. They  tackled the questions of how neuronal activity can encode probability distributions and 
perform Bayesian inference by building a model network. Their methodology is top-down: the 
computational problem that motivates their work is analogous to Ernst and Banks’s ([2002]). They 
relied on the finding that human observers perform in a Bayesian fashion in variety  of 
psychophysical tasks to claim that neurons ‘must represent probability distributions’ and ‘must be 
able’ to implement Bayesian inference (p. 1432).3  They  approached this implementational problem 
by observing that  the response of cortical neurons has high variability, namely: firing responses of 
cortical neurons to the same stimulus vary dramatically from one presentation to the next. This 
variability can be described by Poisson statistics. Ma and colleagues ([2006], p. 1432) gave a 
specific interpretation to neural firing-rate variability: ‘it allows neurons to represent probability 
distributions in a format that reduces optimal Bayesian inference to simple linear combinations of 
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neural activities.’ When a population of neurons displays Poisson-like firing-rate statistics, Bayesian 
cue integration can be implemented by  a network of neurons by using linear operations on 
population activities. Ma and colleagues ([2006], p. 1436) claimed that their model makes a number 
of specific predictions about neural activations and behavioural performance in psychophysical 
tasks. For example, if an observer performs in a Bayesian fashion in a cue combination task, and the 
variability of multisensory neurons is Poisson-like, then ‘the responses of these neurons to 
multisensory inputs should be the sum of the responses to the unisensory inputs’ (p. 1436). Hence 
the model network is used as a tool to interpret existing neural data and to yield predictions based 
on such an interpretation.
 The security  of its predictions depends both on the identification of the particular types of 
circumstance where people behave as Bayesian observer and on the extent to which specific neural 
circuits exhibit Poisson statistics. The security of the predictions of the neural model, that  is, 
depends on research both at the psychophysical and neurobiological level. Research at the 
psychophysical level should provide information about the relationship between certain classes of 
algorithms and certain classes of tasks. Knill and Pouget ([2004], p. 712) claim that there are 
‘myriad ways in which humans behave as optimal Bayesian observers.’ But it may be the case that 
the “myriad ways” are in fact instances of the same type. It may be the case that, though the tasks 
where people behave as optimal Bayesian observers seem to be different types of perceptual tasks, 
they  are in fact the same type. By gaining better knowledge about such a relationship, we can 
identify under what circumstances a certain type of algorithm is sufficient to warrant the prediction 
that people will behave as Bayesian in a given task. Experimental situations where human subjects 
are found to behave sub-optimally violating the predictions given by the Bayesian model (e.g. 
Eckstein et al. [2004]; Seriès et  al. [2009]; Brayanov and Smith [2010]) are thus particularly 
informative for two reasons: on the one hand they can lead to questioning the computational goal of 
the system; on the other, they can shed light into the constraints on the system at the 
implementational level.
 Research at the level of neurophysiology should provide information about the extent to 
which Poisson-like variability is specific to some neural circuits. Ma and colleagues’ neural model 
does not target a specific neural population. Yet its predictive power depends on a specific neural 
feature, namely  Poisson-like variability. If it is uncertain whether Poisson-like variability is a 
general feature of cortical neurons, or even of all neurons involved in visual processing, then the 
predictions yielded by the model are unsecure. As mentioned above, visual processing takes place 
along a cascade of processes distributed over different circuits. If the visual system as a whole 
represents probability  distributions and performs Bayesian inference, then it is likely  that their 
specific instantiations will vary as a function of the specific neural, non-mathematical constraints 
along this cascade. Once knowledge is gained of where in the brain, and to what degree, neuronal 
variability is Poisson-like, Ma and colleagues’ model might be revised to incorporate information 
about the architecture of such a circuit. The predictions of this revised neural model will be limited 
to a specific circuit but, because of this greater level of detail, more secure.
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 Ma and colleagues’ model predicts novel phenomena in the heuristic and theoretical sense. 
Hence it is informative. On the one hand, the construction of their model was motivated by a 
computational problem and by  psychophysical findings. It was not formulated specifically to 
accommodate the data about the high variability  of the responses of cortical neurons. On the other, 
unlike alternative proposals about how probabilities can be neurally represented and how Bayesian 
inference may be implemented in neural activity, it predicts that Bayesian cue integration is carried 
out by populations of neurons because of the specific Poisson-like form of their variability. Insofar 
as neural Bayesian models such as Ma and colleagues’ will explicitly commit themselves to precise 
interpretations of specific neural features that stand in some relationship to other features, they  may 
predict “novel” facts about these other neural features, such as the time course of multisensory 
integration or the action of specific neuromodulators. As the predictions of the model become more 
informative, the model itself might enable us to identify candidate mechanistic features of Bayesian 
cue integration.
 An instrumentalist use of Bayesian models of perception may  gradually transform the 
models into mechanistic models. Good predictions are secure and informative. Secure predictions 
can be yielded by models that specify  under what circumstances a phenomenon is likely to obtain. 
Informative predictions can be yielded by models that provide novel interpretations of known 
neural features. If a model enables us to learn under what circumstances, in virtue of what 
components and in virtue of what relationships between such components a phenomenon is to be 
expected, then the model provides us with information about some set of organized parts and 
activities that may be responsible for that phenomenon. That is, the model provides us with 
information about a candidate mechanism. Currently the claim that the brain is a Bayesian machine 
should not be understood as taking on a commitment to the truth of the Bayesian coding hypothesis. 
Talk of the Bayesian brain is currently a useful locution that refers to a class of models that function 
as predictive tools. They  enable us to make predictions about human performance and the neural 
activities that may generate that performance. We have argued that as long as such tools yield 
increasingly  better predictions they may gradually transform into models of candidate mechanisms 
of sensory perception. Ultimately the status of the claim that brains are Bayesian machines will 
depend on the quality of the predictions that Bayesian models in theoretical neuroscience can yield.

6 Conclusion
In 1952, Hodgkin and Huxley published their work on the action potential in the squid giant axon. 
This is one of the first and most successful models in theoretical neuroscience. Their model can be 
used to predict  many features of different kinds of neurons. Hodgkin and Huxley  write: ‘certain 
features of our equations were capable of a physical interpretation, but the success of the equations 
is no evidence in favor of the mechanism of permeability  change that  we tentatively had in mind 
when formulating them’ ([1952], p. 541).4  Currently, Bayesian models in theoretical neuroscience 
should be treated analogously. In this paper we have explained how Bayesian models are used to 
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understand the workings of the brain and the behaviour they  generate. From actual practice in 
theoretical neuroscience, we have argued for three claims. First, currently Bayesian models do not 
provide mechanistic explanations, instead they are predictive instruments; second, the inference 
typically drawn from psychophysical performance to the Bayesian coding hypothesis should be 
understood within Marr’s framework. Third, within Marr’s framework we can hope to learn that 
perception is Bayesian inference or that the brain is a Bayesian machine to the extent that Bayesian 
models will prove successful in yielding secure and informative predictions.
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1 The issue of what it is for a physical system to execute Bayes’ rule is controversial (Piccinini 
[2010]). Here we assume a mechanistic account according to which a machine that executes Bayes’ 
rule is a system of organized components and related activities that processes ‘computational 
vehicles’ according to Bayesian inferential schemes that are ‘sensitive to certain vehicles 
properties’ (Piccinini [2010], sec. 2.5).

2 A different way to put the distinction between process- and performance-oriented models can be in 
terms of models that are intended to be constrained by the details of the underlying mechanism 
versus models that are intended to be used to summarise/systematize data and make predictions 
about some outcome. Thanks to an anonymous referee for drawing our attention to this way to put 
the distinction.

3 As already noted, the way Ma et al. ([2006]) put this point suggests a decided realist attitude 
towards Bayesian models of sensory perception. They write: ‘Behavioral studies have confirmed 
that human observers not only take uncertainty into account in a wide variety of tasks, but do so in a 
way that is nearly optimal (where “optimal” is used in a Bayesian sense, as defined below). This has 
two important implications. First, neural circuits must represent probability distributions… Second, 
neural circuits must be able to combine probability distributions nearly optimally, a process known 
as Bayesian inference.’ (p. 1432, emphases added). Interestingly, the way the same authors phrase 
the same point in a subsequent paper does not underwrite the same realist attitude. Now they write: 
‘models of neural representation and computation have started to explore the possibility that 
neurons encode probability distributions and that neural computation is equivalent to probabilistic 
inference. This work was inspired by psychophysical findings showing that human perception and 
motor control are nearly optimal in a Bayesian sense.’ (Ma, Beck and Pouget [2008], p. 217, 
emphases added).

4 Bogen ([2005]) was the first, or one of the first, to argue that the Hodgkin and Huxley model 
describes regularities but has no explanatory force. The model played an important epistemic role in 
the discovery of underlying mechanisms, but the regularities it describes had no explanatory import.


