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The precision of the neural code is commonly investigated using two
different families of statistical measures: (i) Shannon mutual informa-
tion and derived quantities when investigating very small populations
of neurons and (ii) Fisher information when studying large populations.
These statistical tools are no longer the preserve of theorists, and are
being applied by experimental research groups in the analysis of empir-
ical data. Although the relationship between information theoretic and
Fisher-based measures in the limit of infinite populations is relatively
well understood, how these measures compare in finite size populations
has not yet been systematically explored. We aim to close this gap.
We are particularly interested in understanding which stimuli are best
encoded by a given neuron within a population and how this depends on
the chosen measure. We use a novel Monte Carlo approach to compute
a stimulus-specific decomposition of the mutual information (the SSI)
for populations of up to 256 neurons and show that Fisher information
can be used to accurately estimate both mutual information and SSI
for populations of the order of 100 neurons, even in the presence of
biologically realistic variability, noise correlations and experimentally
relevant integration times. According to both measures, the stimuli
that are best encoded are then those falling at the flanks of the neuron’s
tuning curve. In populations of less than around 50 neurons, however,
Fisher information can be misleading.
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1 Introduction

Population coding—the transmission of information by the combined activity of
many neurons—is known to be a feature of many neural systems. Both exper-
imentalists and theorists have shown great interest in developing tools to assess
the precision of population codes. Such methods can be used to help understand
the relationship between neural representations and behaviour, as well as between
neural activity and environmental stimuli. Informational measures are also useful
for assessing the functional consequences of changes in neural response properties,
such as observed in sensory adaptation.

Measuring the precision of any neural code involves quantifying how the activity
of a neuron, or neurons, relates to some measurable quantity in the external world,
typically a feature of a presented stimulus or an observed action. The precision of
the code is essentially the degree to which the neural activity reflects the quantity
of interest, but several different methods of quantifying this interdependency exist,
and it is not always clear exactly what they imply or how they relate to each
other. For population codes, the situation is further complicated by the number
of neurons involved; in all but the simplest systems—such as the cricket cercal
interneurons discussed below (Theunissen and Miller, 1991)—it is impossible to
identify and record from all cells involved. This means that the measured activity
can only be a small sample of the activity of the population, although the situation
is improving due to the increasing use of multi-electrode arrays and two-photon
calcium imaging.

This article first provides an overview of the principle measures used to assess
coding precision, with emphasis upon their intuitive interpretation and practical
application in experimental neuroscience. We then go on to address some previ-
ously unanswered questions regarding the relationship between Fisher information
and Shannon mutual information in populations with a finite number of neurons.
Following the work of Butts and Goldman (2006), we also examine in detail how
the stimulus-specific precision of a neuron, and in particular the identification of
the stimuli that are best encoded by a given cell, depends upon the measure used.

1.1 A probabilistic view of neural coding

Before discussing the precision measures that are the main focus of this article,
it is worth clarifying, in probabilistic terms, what is being measured in a typical
sensory electrophysiology experiment. Let’s assume that the experiment consists
of a large number of trials in which a stimulus is presented and the response of
a neuron, the number of action potentials elicited, is recorded over a given time
window. By repeatedly presenting a stimulus, sufficient data can be gathered
to estimate the distribution of the responses; this process can then be repeated
for a range of stimuli. The resulting model is a conditional distribution—the
distribution p(R|Θ) of the response R conditioned upon the stimulus Θ.
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Classical single electrode techniques only allow the recording of one (or very few)
cells simultaneously. This means that it is not possible to measure interdependen-
cies between the activity of cells. In this situation it is usual to assume that the
activities of each cell are conditionally independent given the stimulus, i.e. that the
trial to trial variability or noise is independent. However, this can lead to under or
overestimation of the precision of the code (see e.g. Averbeck et al., 2006). In order
to characterise inter-neuronal correlations in the variability—‘noise correlations’—
it is necessary to simultaneously record from multiple cells, for example through
multi-electrode array or two-photon calcium imaging techniques.

1.2 Information theory

Information theory is a mathematical framework proposed in the 1940s by engineer
and mathematician Claude Shannon (1948). While originally intended as a tool
for analysing telecommunications systems, information theory is more generally
applicable and has been widely utilised in other fields (Cover and Thomas, 2006).
In contrast to many other statistical techniques, information theory does not
rely on any assumptions about the form of distributions or the properties of
underlying processes. It quantifies all forms of probabilistic interdependency
between variables, unlike less general statistics such as the correlation coefficient.

The basic quantity of information theory is information entropy, a measure of
the uncertainty or randomness of a variable. Entropy can be intuitively, but
very loosely, thought of as a generalisation of variance; while variance has a
special relevance to the Gaussian distribution, entropy is equally applicable to
any arbitrary distribution. More correctly, entropy is the amount of information
required, on average, to represent the value of a variable, and, for the purposes of
this article, is measured in bits. The entropy H(Θ) of a stimulus ensemble Θ is
given by: 1

H(Θ) = −
∑

θ∈Θ

p(θ) log2 p(θ) (1)

Shannon or mutual information Imut, is a measure of the informativeness of one
variable about another e.g. of a neural response R about a stimulus Θ. It is
the portion of a variable’s entropy that can be explained by the other variable;

1Since both the stimulus and response variables in our model are continuous, all
the entropies calculated in our analyses are differential entropies. These are largely
equivalent to discrete entropy as described here, but are obtained by integrating
over a continuous distribution rather than summing over a discrete distribution.
See Appendix B.1 for further details.
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specifically, it is the total entropy minus the conditional entropy:

Imut(Θ, R) = H(R)−H(R|Θ) = H(Θ)−H(Θ|R)

=
∑

θ∈Θ

p(θ)
∑

r∈R

p(r|θ) log p(r|θ)
p(r)

(2)

Uppercase characters Θ and R represent the stimulus and response ensembles,
while lowercase characters (θ, r) represent a single value within the ensemble.

Mutual information can be used to quantify the information provided by an entire
response ensemble about an entire stimulus ensemble, but it cannot inform us
about the precision with which specific stimuli within the ensemble are encoded.
To address this, several decompositions of the mutual information have been pro-
posed (see Butts, 2003, for a review), in particular the stimulus-specific surprise,
specific information and stimulus-specific information.

Stimulus-specific surprise is the most widely used MI decomposition. Like all of the
stimulus-specific measures described here, the average of the specific surprise over
the stimulus ensemble is equal to the mutual information. Equation 3 illustrates
an intuitive interpretation: the specific surprise is the reduction in surprise (log
reciprocal probability) of a given stimulus, averaged over the response ensemble.
The specific surprise was one of the first stimulus-specific measures to be applied
to population coding (Theunissen and Miller, 1991), there referred to as local
transinformation. Confusingly, specific surprise is also referred to in some articles
as stimulus-specific information.

Isur(θ) =
∑

r∈R

p(r|θ) log p(r|θ)
p(r)

=
∑

r∈R

p(r|θ)
[

log
1

p(θ)
− log

1

p(θ|r)

]

(3)

Specific information is a mutual information decomposition that quantifies the
decrease in uncertainty about the stimulus due to the observation of a given
response:

ISI(r) =
∑

θ∈Θ

p(θ|r) log p(θ|r)− p(θ) log p(θ) (4)

The specific information has a unique and advantageous property in that it is addi-
tive (DeWeese and Meister, 1999): the sum over the specific information associated
with a number of individual observations is equal to the specific information of
the whole set considered jointly.

The stimulus specific information (SSI) is a stimulus-specific development of the
specific information (Butts, 2003). The SSI is the average specific information
associated with a given stimulus:

ISSI(θ) =
∑

r∈R

p(r|θ)ISI(r)

=
∑

r∈R

p(r|θ)
[

∑

θ∈Θ

p(θ|r) log p(θ|r)− p(θ) log p(θ)

]

(5)
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In this article we discuss both the population SSI (the SSI of the population as
a whole) and the singleton SSI, which is the SSI of a single neuron considered
in isolation. A closely related quantity, the marginal SSI (mSSI) for a particular
neuron within the population, is defined as the difference between the population
SSI and the SSI for the population of remaining neurons with the neuron of interest
removed.

The SSI is a relatively recent development and has not yet been explored or applied
as widely as the specific surprise. The SSI was until recently considered to be
intractable for all but small populations; Butts and Goldman (2006) calculated the
SSI for a maximum of four neurons. The SSI has been used to analyse experimental
data from single neurons only (Sawtell andWilliams, 2008; Montgomery andWehr,
2010). In this article we demonstrate that this can be overcome through the use
of Monte Carlo integration to compute the average over the high-dimensional
response ensemble.

Specific surprise and SSI are both stimulus-specific decompositions of the mutual
information, so how do they differ? The SSI tells us the average reduction in
uncertainty—about all possible values of stimulus—that results from the pre-
sentation of a given stimulus. The specific surprise is the average amount by
which the surprise of a given stimulus reduces following the presentation of that
stimulus. The SSI could therefore be considered less stimulus-specific than the
specific surprise, since it relates to an observer’s knowledge of the full stimulus
ensemble (Butts, 2003).

All information-theoretic measures have one major disadvantage in an experimen-
tal neuroscience context. In order to calculate any of these measures directly, it
is necessary to establish the full joint distribution p(Θ, R). In a model this is
relatively simple, but in an experimental context it is, at best, very difficult to
record the number of trials necessary to establish an accurate joint distribution.
One method that has been proposed to avoid the problem of constructing the joint
distribution p(Θ, R) involves calculating the transmitted information using spike
train metrics (Victor and Purpura, 1997; Victor, 2005). Since this method relies on
stimulus-dependent clustering, it is inherently suited to assessing classification of
discrete stimuli. Another approach, which is suited to assessing the discrimination
of continuous-valued stimuli, is to estimate the mutual information by calculating
the Fisher information, as described in the following section. One of the goals of
this article is to assess the validity of this approximation.

1.3 Fisher information

Fisher information is a statistical measure of precision commonly used in both
theoretical (see e.g. Paradiso, 1988; Seung and Sompolinsky, 1993; Abbott and
Dayan, 1999; Wilke and Eurich, 2002; Berens et al., 2011) and experimental
(e.g. Jenison and Reale, 2003; Harper and McAlpine, 2004; Durant et al., 2007;
Gutnisky and Dragoi, 2008) studies of population coding. Fisher information J is
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defined as:

J(θ) = E

[(

∂

∂θ
log p(r|θ)

)2
∣

∣

∣

∣

∣

θ

]

(6)

In a population code with Gaussian variability, mean response vector (tuning
function) f (θ) and covariance matrix Q(θ), the Fisher information about θ is
given by:

J(θ) = f ′(θ)TQ(θ)−1f ′(θ) +
1

2
Tr
[

Q(θ)−1 Q′(θ) Q(θ)−1 Q′(θ)
]

(7)

Despite its name, it is not a measure of information in the information theoretic
sense; its units are those of the reciprocal of variance (e.g. deg−2 for an angular
stimulus). Fisher information is perhaps more intuitive than the information
theoretic measures: its reciprocal defines a lower limit (the Cramér-Rao bound)
on the variance of an unbiased estimator2, and hence the smallest achievable
standard error. Unfortunately, this level of precision is not necessarily achievable;
the performance of an optimal estimator only approaches the Cramér-Rao bound
asymptotically as the population size tends towards infinity. Predicting what
population size is required for effective saturation of the bound is non-trivial, and
this question has rarely been addressed in the literature (Bethge et al., 2002; Xie,
2002). Fisher information should therefore be treated with some caution, as it is
not always clear whether it indicates the true coding precision of a population.

1.4 Linking Fisher and Shannon

Brunel and Nadal (1998) linked Fisher and Shannon information by proposing
IF isher, a new information theoretic measure derived from Fisher information.
They considered an optimal estimator Θ̂(R), computed from R, with a Gaussian
conditional distribution p(Θ̂(R)|Θ) and variance that saturates the Cramér-Rao
bound. This is equivalent to assuming that the population size is infinite and
therefore that each estimate θ̂(r) is based on an infinite number of independent
observations. Given these assumptions, we can determine the conditional entropy
of the estimator from the variance, and hence from the Fisher information, using
the following relation:

h(Θ̂(R)|Θ = θ) =
1

2
log2(2πeσ

2) =
1

2
log2

(

2πe

J(θ)

)

(8)

This gives the conditional entropy for a specific stimulus value θ; to obtain h(Θ̂(R)|Θ)
it is necessary to take the average over the stimulus ensemble:

h(Θ̂(R)|Θ) = EΘ[h(Θ̂(R)|Θ = θ)] =

∫

Θ

p(θ)
1

2
log2

(

2πe

J(θ)

)

dθ (9)

2A function of r that yields an estimate of θ.
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The mutual information of stimulus and estimator is therefore given by:

Imut(Θ, Θ̂(R)) = h(Θ̂(R))−
∫

Θ

p(θ)
1

2
log2

(

2πe

J(θ)

)

dθ (10)

Using the data processing inequality to relate Imut(Θ, Θ̂(R)) and Imut(Θ, R):

Imut(Θ, R) ≥ h(Θ̂(R))−
∫

Θ

p(θ)
1

2
log2

(

2πe

J(θ)

)

dθ (11)

and showing that i) this inequality becomes an equality in the limit of large N
and under certain regularity conditions, and ii) that h(Θ̂(R)) → h(Θ) in the limit
where the estimator is sharply peaked around its mean value (i.e. J(θ) ≫ 1),
Brunel and Nadal show that Imut(Θ, R) can be approximated by:

IF isher = h(Θ)−
∫

Θ

p(θ)
1

2
log2

(

2πe

J(θ)

)

dθ (12)

which they call IF isher, since it is defined in terms of Fisher information. To our
knowledge, no assessment of how good this approximation is for finite populations
has previously been made.

In summary, information theory provides us with measures that are very powerful,
but which can be difficult to apply in practice. Other statistical measures, such as
the Fisher information, are often easier to measure or calculate, but it is not always
clear exactly what they tell us, or what the precise limits of their applicability are.
IF isher goes some way towards bridging the gap between mutual information and
Fisher information by allowing their absolute values to be compared, in the special
case of an infinite population.

1.5 Applications of Fisher and Shannon information in

neuroscience

Information measures tell us about the precision of neural representations and,
through careful selection of what is being measured, can also be used to address
other questions about neural codes. Here we include a few examples of the use
of Fisher and Shannon information in neuroscience, to illustrate the range of
possible applications. For more detailed information on applications of information
measures in the field of neural coding, see reviews by Borst and Theunissen
(1999), Sanger (2003), Averbeck et al. (2006), Nelken and Chechik (2007) and
Quian Quiroga and Panzeri (2009).

Information measures can be used to accurately assess how precision changes when
properties of the neural response change, such as through adaptation. Fairhall
et al. (2001) recorded from a single motion-responsive neuron in the fly visual
system and used information theory to show that the average information per spike
was maintained through adaptation as the variance of the stimulus distribution
was manipulated. A similar analysis of sound intensity coding in the mammalian
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midbrain, this time using Fisher information, showed that intensity tuning curves
adapted to changes in the stimulus statistics, allowing precision to be maintained
across a wide stimulus dynamic range (Dean et al., 2005). Fisher information
has also been used to measure how adaptive changes in noise correlations affected
the precision of orientation representation by cells in macaque V1 (Gutnisky and
Dragoi, 2008). Seriès et al. (2009) used Fisher information together with simulated
decoding to analyse the reconstruction precision and bias associated with various
models of neural decoding.

The nature of the neural code—which aspects of cell and population activity are
information bearing—is generally unknown. By comparing the coding precision of
various response properties (e.g. firing rate, spike times or inter-spike intervals),
information measures can be used to address this question. An example of this
type of analysis is the work of Panzeri et al. (2001) on the representation of whisker
stimuli in the barrel cortex of the rat. In this study, information theory was used
to examine whether spike times conveyed information about spatial aspects of
the stimulus by computing the time course of information accumulation following
the stimulus presentation for both spike count and spike times. In this case,
spike timing was found to contribute a significant amount of information beyond
that carried by the spike count alone. More generally, the inherent temporal
precision of a code can be found by perturbing the spike times by introducing
progressively larger amounts of temporal noise, and noting how the precision of
the code degrades as a function of the amount of jitter (Quian Quiroga and Panzeri,
2009).

Informational measures can also be used to examine which aspects of the stimulus
are best encoded—most precisely represented—by a cell or population. In this
case, the type of code (e.g. spike count versus spike timing) is fixed, and the
amount of information transmitted about various stimulus properties is compared.
Machens et al. (2005) used this approach to determine the optimal stimulus
ensemble—the distribution of stimuli that maximised the information transmitted
by a neuron—for grasshopper peripheral auditory neurons. The optimal stimulus
ensemble was found to coincide with grasshopper communication sounds and
not with natural sounds in general, indicating that the communication calls and
auditory system were well matched. Panzeri et al. (2001) also provide us with
an example of the use of stimulus-specific surprise to identify which whiskers are
most precisely represented within a given barrel.

Information measures can also be used to determine the optimal arrangement of
tuning curves in order to cover a given range of stimuli. Harper and McAlpine
(2004) conducted a theoretical study to determine the optimal (in terms of Fisher
information) frequency tuning for populations of auditory neurons selective for
interaural time difference (ITD). The study predicted that cells that responded to
frequencies below a certain species-specific threshold were more likely to respond
maximally to ITDs that were outside the range that occurs in nature. This
arrangement leads to the flanks of the tuning curves—the regions of maximum
Fisher information—coinciding with the physiological range of ITDs, and was in
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agreement with experimental findings in small mammals.

The relationship between neural precision and behavioural performance is a key
area of neural coding research. In order to examine this relationship, it is necessary
to ensure that both measures, neural and behavioural, are addressing equivalent
questions. Fisher information is rather inflexible in this respect, as it only tells us
about the precision of fine discrimination or stimulus reconstruction, and not about
coarser discrimination, classification or detection tasks. Information theoretic
measures are more flexible as they can be tailored to suit a particular task by
changing the stimulus ensemble. An alternative approach is to explicitly model a
decoder that mimics the decision required by the task; in this case the performance
of the decoder can be directly compared to behavioural performance. See Oram
et al. (1998) and Quian Quiroga and Panzeri (2009) for reviews that cover this
approach.

1.6 Outline

Both Fisher information and information theoretic measures are now widely used
for the study of neural codes. These tools are no longer the preserve of theorists,
and are being applied by experimental research groups in the analysis of empirical
data. Fisher information is a particularly accessible tool for experimentalists, as
it is generally easier to calculate than information theoretic measures, in terms of
both data requirements and computational complexity.

While both measures are widely used, studies almost invariably make use of either
Fisher information (when measuring whole populations) or information theory
(for studying single neurons). This leads to difficulties in comparing the findings
of studies based on different measures, since they are rarely applied to the same
cases. Are the two families of measure interchangeable; do they ultimately provide
the same results as to which stimuli are best encoded? The answer to this
question is: sometimes (Butts and Goldman, 2006), but to date this issue has
only been examined for very small populations (number of neurons N = 4). For
most biologically relevant population codes, the relationship between Fisher and
Shannon information is unclear. Resolving this ambiguity is of crucial importance
to bridge the gap between the Fisher information and information theoretic strands
of the literature.

In the remainder of this article we employ numerical models of simplified, but
broadly biologically realistic, populations to clarify the link between Fisher and
Shannon information. We also examine in detail the limits of applicability of
Fisher information. How many neurons are required before IF isher provides a
good working estimate of Imut? How does Fisher information relate to information
theoretic measures? We go on to show, through numerical simulation, that Fisher
information can be used to obtain the asymptotic value of SSI, in the same way
that it can provide the asymptotic value of Imut.
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2 Model Framework

We consider here a population of N sensory neurons encoding a unidimensional
circular stimulus variable θ, which represents a direction e.g. of a moving bar.
Each experiment consists of a number of virtual trials, in which the spike count
ri of each neuron over a time interval τ is computed. Each presentation of a
stimulus θ is therefore associated with a response vector r = [r1 . . . rN ]. For the
purposes of this study, information is assumed to be encoded exclusively by the
spike counts; the timing of individual spikes within the measurement window is
disregarded. Although this represents a simplification, the rate coding model is
frequently employed for its tractability and has been shown to be valid in a number
of contexts (Heller et al., 1995; Tovée et al., 1993).

The response of each neuron can be represented by a deterministic component
(the tuning curve) that defines the mean response over many trials, and a random
component that models the trial-to-trial variability or noise; these are described in
the following sections. The model framework described below (sections 2.1–2.2)
was used in all experiments described in this article, except for those based on
the cricket cercal interneuron model described by Theunissen and Miller (1991),
which is covered here in section 2.4.

2.1 Tuning curves

The mean firing rates of each neuron were modelled by a circular Gaussian func-
tion, given here for the ith neuron:

fi(θ) = fbg + fmax exp

[

−1− cos(θ − φi)

( π
180

σf )2

]

(13)

Where fmax and fbg are the peak firing rate and stimulus-independent background
firing rate respectively, both measured in spikes/s; φi is the preferred stimulus of
the ith neuron; θ is the stimulus angle and σf a width parameter. Unless otherwise
stated, the following parameter values were used in all simulations involving this
tuning function: fmax = 50 spikes/s, σf = 30◦. In all simulations the neurons’
preferred stimuli were uniformly distributed around the 360◦range of the stimulus
angle.

2.2 Trial-to-trial variability

Trial-to-trial variability was modelled by a multivariate Gaussian distribution:

r ∼ N [τf (θ), Q(θ)] (14)

Where r is the vector of spike counts recorded in response to stimulus θ, f (θ) is
the vector of mean neuronal responses defined in the preceding section and τ is
the integration time over which spike counts are recorded in each trial. In order
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to construct the inter-neuronal covariance matrix Q(θ), it is first necessary to
establish the variance of each individual neuron and any correlations in trial to
trial variability.

A multiplicative model of neuronal variability was used:

σ2
i (θ) = Fτfi(θ) (15)

Where F is the Fano factor, the ratio of the spike count variance σ2
i to the mean

spike count τfi(θ) over the time interval τ . This type of model can be viewed as
a generalisation of Poisson noise. The Poisson distribution is rather inflexible as
it has only a single parameter, with the Fano factor fixed at unity. By using a
Gaussian noise model, we gain an extra parameter and with it the flexibility to
adjust the Fano factor. In addition to this, the Fisher information can be found
analytically, without having to resort to time consuming numerical methods. For
this reason, negative spike counts have not been rectified to zero, as this would
render the variability non-Gaussian. Using a non-zero background firing rate helps
to prevent the occurrence of negative spike counts, and a value of fbg = 10 spikes/s
has been used in most simulations.

Correlations in the trial-to-trial variability are defined by a correlation matrix C.
Three forms of the correlation matrix are examined in this article:

• Independent trial-to-trial variability i.e. uncorrelated noise: C is the identity
matrix:

Cij = δij (16)

Where δ is the Kroeneker delta function.

• Localised correlations, specifically correlations that decay exponentially as
a function of the difference in preferred stimuli. In this case C is given by:

Cij = δij + (1− δij) c exp

(

−|φi − φj|
ρ

)

(17)

Where c is a correlation scaling coefficient and ρ is a correlation range
coefficient. The correlation scales examined here (0 ≤ c ≤ 0.3) cover most
biologically realistic scenarios. Unless otherwise stated, a range value of
ρ = 30◦ was used, meaning that the extent (in stimulus space) of the noise
correlations and tuning curves were matched.

• Uniform correlations, where every pair of neurons has a trial-to-trial vari-
ability correlation coefficient of c:

Cij = δij + (1− δij) c (18)

Once the correlation matrix has been defined, the covariance matrix is given by:

Qij(θ) = F [τfi(θ)]
0.5 Cij [τfj(θ)]

0.5 (19)
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A number of factors determine the coding precision of a population, principally:
the maximum and minimum (background) mean firing rates, the level of trial-to-
trial variability, and the integration time over which spike counts are recorded. The
Fano factor variability model was used as it allowed a convenient simplification
to be made; increasing F clearly increases the variability of the response, while
increasing τ means that we average the response over a longer time window
and hence reduce the effective level of variability. In the case of Gaussian noise
where the variance is determined by a Fano factor, F and τ have exactly equal
and opposite effects, so we can fully capture the effect of both parameters by
considering only their ratio F/τ , which has units of spikes/s2. Further details of
this simplification are given in Appendix A.1.

We explore F/τ initially in the interval [10−4, 103] spikes/s2, but most of our anal-
yses extend only up to F/τ = 100 spikes/s2. Since F is commonly thought to be
in the range [1, 3], the highest values of F/τ can be thought of as corresponding to
recording time windows in the region of 10–30ms. Some caution is required when
applying our model with high values of F/τ . Very short integration times lead
to low mean spike counts, and bring the model into a regime where the Gaussian
distribution is no longer a good approximation of the Poisson-like distribution of
real neuronal responses. For this reason we have restricted most of our analyses
to F/τ ≤ 100 spikes/s2.

2.3 Gain modulation

To examine the effect of adaptation-like gain changes on precision, we used the
following gain modulation model (Seriès et al., 2009):

f i
max = fmax

[

1− β exp

(

−1 − cos(φi − φmod)

( π
180

σmod)2

)]

(20)

Where f i
max is the post-modulation peak firing rate of the ith neuron and fmax is

the original peak firing rate common to all neurons. The ‘adapting stimulus’ and
extent of adaptation (centre and width of the modulation profile) are defined by
φmod and σmod respectively, while β = [0, 1] is the modulation depth.

2.4 Cricket cercal system model

We also re-implemented a model of the cercal interneurons in the cricket first
described by Theunissen and Miller (1991). The formulation given here is that
used by Butts and Goldman (2006).

The stimulus model is as described above, and the population consists of four neu-
rons with preferred directions evenly spaced at 90◦intervals around the 360◦stimulus
space. The mean response is given by a rectified cosine tuning curve:

fi(θ) =
cos(θ − φi)− 0.14

0.86
(21)
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The standard deviation of the neuronal response is defined as a linear function of
the mean response, hence the variance is a quadratic function of the mean (c.f.
Equation 15, where the variance is a linear function of the mean). The parameter
A is a variability scaling factor.

σi = A[0.048 + 0.052fi(θ)] (22)

The cosine tuning curve and noise are added together and negative values are
rectified to zero, yielding the response spike count:

ri(θ) = [fi(θ) + η]+

η ∼ N (0, σ2
i )

The rectification has the effect that the variability becomes non-Gaussian; note
that this is in contrast to the other simulations described in this article, where
negative spike counts are not rectified in order to preserve Gaussianity. For the
cricket cercal system model (Figure 4) only, Fisher information is calculated by
Monte Carlo integration in order to take into account the non-Gaussian response
distribution. The SSI calculations for this model assume a Gaussian response
distribution and are therefore an approximation.

3 Mutual information and IFisher

While it is known that mutual information and IF isher are equal for infinite
populations, how they are related in finite populations is less clear. As discussed in
section 1.4, it has been shown (Brunel and Nadal, 1998) that IF isher forms an upper
bound on the mutual information, and that the mutual information approaches
this bound asymptotically as N tends to infinity. To verify this numerically,
and to establish the population size required for IF isher to provide an accurate
estimate of the mutual information, a series of population models were examined.
In addition, a four-neuron population model was used to assess the effect of trial-
to-trial variability and background activity in very small populations.
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Figure 1: A comparison of mutual information and IF isher in a four-neuron
population, showing the effect of trial-to-trial variability (noise) and background
activity.
(A) Mutual information and IF isher as a function of variability, for several levels
of background activity. Increasing the background activity increases the signal
to noise ratio and reduces information. IF isher diverges from mutual information
with increasing F/τ ; background activity accelerates this divergence. At high
levels of variability, both Imut and IF isher flatten out and do not reduce with
further increases in F/τ . Error bars too small to plot; see B.
(B) Difference between Imut and IF isher for the same data shown in A, together
with an additional case fbg = 10 spikes/s. The maximum standard error across all
points is shown on the plot.

Figure 1 shows how mutual information and IF isher for a very small population
(four neurons) vary as a function of the trial-to-trial variability. Mutual informa-
tion is almost equal to IF isher when the noise level is low, even in a population
of only four cells, and the difference between the two measures increases as the
variability increases (see Figure 1B). Both mutual information and IF isher decrease
with increasing variability, and are almost logarithmically proportional to F/τ (see
Figure 1A).

Background activity has a similar effect to variability. Since background activity
is uniformly present and gives no information about the stimulus it is essentially
noise, therefore increasing the background activity reduces the signal to noise ratio,
and this drop in SNR results in lower information values. Increased background
activity also contributes to the divergence of MI and IF isher, leading to greater
differences between the two measures for a given level of trial-to-trial variability.

For large values of F/τ (roughly corresponding to integration times of less than
10ms with a Fano factor of 1), both Imut and IF isher flatten out and do not reduce
with further increase in variability. In terms of Fisher information, this can be
understood as the regime within which the trace term in Equation 7 is dominant
(Shamir and Sompolinsky, 2004). In this regime, information is encoded primarily
by the stimulus-dependent response variances, as opposed to the mean responses.
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In general, IF isher forms an upper bound upon the mutual information, as shown
by Brunel and Nadal (1998). However, for very high levels of variability combined
with background activity, IF isher can be less than the mutual information (e.g.
when fbg = 20 spikes/s in Figure 1), and can even become negative (unlike the
Fisher information, which is inherently non-negative). This occurs because the
amount of noise in the system is such that the overall entropy of the response
becomes significantly greater than the stimulus entropy, while the derivation of
IF isher relies on the assumption that the entropies of stimulus and response are
approximately equal. IF isher is therefore best at predicting the mutual information
when IF isher is non-negative and within the logarithmically proportional regime
with respect to F/τ .

Figure 2 shows the effect of population size upon Imut and IF isher under a number
of different variability regimes. Figure 2A shows that IF isher is essentially pro-
portional to logN over the range of population sizes examined. The asymptotic
approach of the mutual information to the bound formed by IF isher is evident in
Figure 2B, which shows the difference between the two measures plotted against
N . Increasing the variability F/τ increases the difference between Imut and IF isher

for a given population size. Despite this, even for the highest level of variability
modelled (e.g. equivalent to supra-Poisson variability F = 3 with a time window of
30ms), there is a difference of only 3.5% between the two measures for a population
of 50 neurons. For τ = 300ms, F = 3, the same relative error is achieved with
less than 20 neurons.

From a decoding perspective, increasing the population size means that there are
more parallel ‘channels’ carrying information about the stimulus. With a greater
number of channels, a decoder can better average out the variability of these
channels, hence coding precision is increased. The information carried by each
channel becomes increasingly redundant as N increases, so the gain in coding
precision diminishes; this is why we observe that information is approximately
proportional to logN rather than N .

The relationship between Imut and IF isher is complicated slightly when there are
inter-neuronal correlations in the trial-to-trial variability. Figures 2C and 2D show
the effect of uniform correlations. The presence of uniform correlations slightly
increases the information conveyed by the population, but the effect is much less
than that of altering the level of variability. The information increase due to
uniform correlations is effectively independent of population size. The reason for
this increase in coding precision can be understood by considering the extreme
case of c = 1. In this scenario, the noise correlation coefficient for every pair
of neurons is 1, therefore every cell in the population exhibits exactly the same
random noise. The relative firing rates of the neurons (the profile of activity
across the whole population, determined by the tuning curves) are thus perfectly
preserved, allowing very accurate decoding (see Averbeck et al., 2006, for further
explanation of how noise correlations affect the precision of population codes).



Fisher vs. Shannon Information 16

Figure 2: Relationship between mutual information and IF isher in populations
varying in size from 4 to 320 neurons. IF isher is, in most cases, a good
approximation of Imut. The two measures diverge only for small populations
(N < 100). Errors are shown as in Figure 1.
(A) Imut and IF isher for various levels of independent variability. Imut converges
towards IF isher from below with increasing N . Parameters: fbg = 10 spikes/s.
(B) This plot shows the difference between Imut and IF isher for the same cases as
A.
(C, D) Absolute values, and difference between, Imut and IF isher for various
values of c with uniform correlation structure. Uniform correlations increase
coding precision, but delay convergence of Imut and IF isher. Parameters: F/τ =
10 spikes/s2, fbg = 10 spikes/s.
(E, F) As per C and D, but with a localised correlation structure. Localised
correlations reduce coding precision and delay convergence between Imut and
IF isher. Parameters: F/τ = 10 spikes/s2, fbg = 10 spikes/s.
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Figures 2E and 2F illustrate the effect of localised correlations. In contrast to
uniform correlations, these act to reduce coding precision, although this effect is
again small in comparison to that of variability. In large populations, the presence
of localised correlations can have a marked effect, as it greatly reduces the rate
with which both Fisher and mutual information increase with logN (Wilke and
Eurich, 2002).

In general, both uniform and localised correlations act to increase the difference
between the mutual information and IF isher, although this effect is small in com-
parison to that of changing the level of variability. For very small populations
(N < 10), however, uniform correlations actually reduce the difference. The
effects of localised correlations vanish as the population size decreases, as the
increasing spacing between tuning curves leads to a general reduction in pairwise
correlation coefficients across the population. The effect of correlations, both
uniform and localised, on the difference between Imut and IF isher is greatest for
large populations, in contrast to the effect of variability, which diminishes with
increasing N . As a result of this, correlations reduce the rate of convergence of
the two measures, whereas variability itself does not.

The three noise correlation scenarios examined here can be seen as lying on a single
continuum, where uniform correlations are equivalent to localised correlations
with infinite range, and independent variability corresponds to zero range. The
correlation range parameter ρ can be varied continuously, allowing the change
in coding precision across this continuum to be explored. It is most useful to
consider the correlation range relative to the width of the tuning curves, as the
tuning curve width determines the extent of activity and the range of signal (as
opposed to noise) correlations present in the population. Figure 3 shows how
coding precision varies across the correlation range continuum. The worst case
scenario in terms of precision is when the correlation range matches the tuning
curve width. It has been shown previously how signal and noise correlations with
the same sign, as is the case with localised noise correlations, degrade coding
precision (Latham and Nirenberg, 2005; Averbeck et al., 2006). Our results can
be seen as a logical extension of that principle: maximal degradation of precision
occurs when the signal correlations (tuning curves) and noise correlations have
not only the same sign, but the same extent and shape.
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Figure 3: The effect of localised correlation range on precision. The main plot
shows how, given a constant correlation strength, IF isher is dependent on the
correlation range parameter ρ. Imut is very similar and has been omitted for
clarity. Introducing short-range correlations reduces coding precision relative to
the uncorrelated noise case (top left), which is equivalent to ρ = 0. Precision
decreases as the noise correlation range increases until it reaches a minimum,
before increasing and converging towards the precision of the uniform correlation
case as ρ → ∞. The insets show the normalised tuning curve (solid line) and the
correlation coefficients (i.e. a slice through the correlation matrix C; dashed line)
for one neuron. Minimum information occurs where the noise correlation profile
is most closely matched to the tuning curve i.e. where ρ = σf = 30◦.
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4 Which stimuli are most precisely represented

by a neuron?

Tuning curves are commonly used to characterise the selectivity of neurons, but it
is not always clear how they should be interpreted. Which stimuli does a neuron
represent; which does it encode most precisely? Those at the peak of the tuning
curve, where the activity of the neuron is most prominent? Or those at the steep
flanks of the tuning curve, where the level of activity is most strongly modulated
by small changes in the stimulus? To address these questions, Butts and Goldman
(2006) calculated the stimulus-specific information for small populations of model
neurons (N ≤ 4) and showed that the stimuli that are best encoded by a neuron
depend upon the level of variability. For neurons operating within a low noise
regime (see Figure 4B), the best encoded stimuli lie at the flanks of the tuning curve
(‘flank coding’), while those operating in the high noise regime (see Figure 4D)
have a single best encoded stimulus coinciding with the peak of the tuning curve
(‘peak coding’). This property is not unique to the SSI; the specific surprise also
gives similar predictions. This is in contrast to Fisher information, which always
predicts that the best encoded stimuli lie at the flanks of the tuning curve. This
finding is potentially troublesome to the field as it suggests that the interpretation
of the tuning curve depends on the measure used to determine the stimulus-specific
precision. To investigate the extent of this issue and its implications for the
analysis of experimental data, we use the SSI to further investigate how trial-to-
trial variability, and also population size, affect which stimuli are most precisely
encoded.

When determining the best-encoded stimuli for a neuron within a population, both
the marginal SSI and singleton SSI are relevant. The meaning of the singleton
and marginal SSI can be intuitively understood by considering a scenario where
a population is constructed progressively by introducing one neuron at a time.
The singleton SSI and marginal SSI are the contributions to the population SSI
from the first and last neurons respectively. Because there is redundancy in the
information encoded by each neuron, the actual informational contribution from a
single neuron within a population lies somewhere between these bounds (e.g. the
shaded regions in Figure 4).

4.1 The effect of variability and integration time in small
populations

As reported by Butts and Goldman (2006), the stimuli most precisely represented
by a neuron, according to the SSI, can lie at either the peak or flanks of the
tuning curve, depending on the amount of noise present. Figure 4 illustrates
this by showing the marginal and singleton SSI of the cricket cercal interneuron
model for three different noise levels. The tuning curves and variability are shown
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in Figure 4A.3 Figures 4B–D show how the best encoded stimuli shift from the
flanks of the tuning curve to the peak of the tuning curve as the noise level is
increased. Both the singleton and marginal SSI undergo this transition, with the
marginal SSI transitioning between peak and flank regimes at a higher noise level
(thus, if the singleton SSI is known to be in the flank coding regime, we can infer
that the marginal SSI, which is more difficult to calculate, is also in the flank
regime). The difference in the peak/flank transition point is due to the fact that
the marginal SSI relates to a four-neuron population, while the singleton SSI is
based only upon a single neuron. The presence of more neurons in the population
increases the coding precision, reducing the effective noise level of the code; this
will be examined further in the following section on the effect of population size.

3Figure 4 is based on results obtained from our re-implementation of the cricket
cercal interneuron model used by Butts and Goldman (2006), and its layout is
based on that of Figure 3 from their article.
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Figure 4: Model four-neuron population of cricket cercal interneurons as described
by Theunissen and Miller (1991). This is a re-implementation, using our model,
of the simulations shown in Butts and Goldman (2006), Figure 3.
(A) Tuning curves (mean responses) and three levels of trial to trial variability
(illustrated as curves of mean + one standard deviation).
(B) Stimulus-specific information for the low noise case (A = 1). The dotted line
shows the SSI of the whole population, while the shaded region shows the potential
range of the information contribution of a single neuron, bounded from above by
the singleton SSI and from below by the marginal SSI. Fisher information for
a single neuron is shown for comparison. Both the singleton and marginal SSI
indicate that the best-encoded stimuli lie at the flanks of the tuning curve.
(C) Intermediate noise case (A = 3). Here the singleton SSI is greatest at the
peak of the tuning curve while the mSSI is greatest at the flanks.
(D) High noise case (A = 5). In this case both the singleton and marginal SSI are
greatest at the peak of the tuning curve.
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Under the flank coding regime, stimulus values can be read out by matching the
firing rate of the neuron with the flanks of the tuning curve. Under the peak coding
regime, it is not the precise level of activity, but the fact that the neuron’s activity
stands out from the background noise that conveys most of the information. This
is a more robust, but coarser, indicator of the stimulus value—we know only that
it is somewhere close to the neuron’s preferred stimulus—and this is reflected in
the lower absolute SSI values.

It is important to note that in all three cases the predictions of Fisher information
and SSI differ; the shapes of the curves are different, and indicate that different
stimuli are most precisely encoded. This is a consequence of the small number of
neurons involved: the performance of an optimal decoder would not saturate the
Cramér-Rao bound, so in this case the Fisher information is uninformative.

To further investigate the peak/flank transition in small populations, we used
a four-neuron population model with circular Gaussian tuning curves and Fano
factor variability, as described in sections 2.1–2.2. We calculated both the marginal
SSI and marginal specific surprise (Isur) for several levels of variability (F/τ),
so that the predictions of these closely-related measures could be compared (see
Figure 5A). Both measures have similar shapes and absolute values, and both
exhibit a transition from the flank regime to the peak regime with increasing F/τ ,
although for Isur the transition occurs at a higher value of F/τ i.e. its flank regime
is more extensive. It is important to note that the quantity F/τ represents both
noise level (Fano factor) and integration time; a transition from peak to flank
regime could be caused by an decrease in the Fano factor, or equivalently by an
increase in the time over which spikes are counted in each trial. At low levels
of variability (probably unrealistically low in biological terms), SSI and Isur are
practically indistinguishable. Although the two measures differ more at higher F/τ
values, their shapes are qualitatively similar. Fisher information differs from both
SSI and Isur in all four cases. While the shape of the singleton Fisher information,
and hence its indication of best-encoded stimulus, remains identical across the
four levels of variability, its absolute value varies by two orders of magnitude
(not shown). Even in the lowest variability case (F/τ = 0.1 spikes/s2), where
all three measures indicate flank coding, the best encoded stimuli predicted by
Fisher information and the Shannon information measures differ. Again, this is
due to the small size of the population; four neurons is insufficient for the Fisher
information to accurately predict the shape of the SSI or specific surprise.
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Figure 5B shows the effect of altering the background firing rate upon the level of
variability at which the peak/flank transition occurs. The shape of the marginal
SSI is summarised by its peak to flank ratio (PFR); this is defined as the ratio of
the SSI at the preferred stimulus (tuning curve peak) to its value at the maxima of
the Fisher information (flanks of the tuning curve).4 A PFR value of one indicates
the point at which the SSI has three peaks of approximately equal value, and is
therefore at the transition between the peak and flank regimes. PFR values of
less than one correspond to the flank coding regime and values greater than one
indicate the peak coding regime.

4The SSIflank value does not necessarily correspond to the local maximum of
the SSI, as the peaks of the SSI and Fisher information only become aligned as
N → ∞. The PFR can therefore be subject to fluctuations as parameter sweeps
cause local SSI features to move across the stimulus value at which SSIflank is
calculated. The advantage of calculating the PFR in this way is that it is only
necessary to compute the SSI at two predetermined points, as opposed to over the
entire range of the stimulus variable.
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Figure 5: In small populations (here N = 4), SSI and specific surprise (Isur) can
be either unimodal or bimodal, depending on the level of trial-to-trial variability.
(A) Marginal SSI and marginal Isur for several levels of variability. SSI and Isur
are very similar at low F/τ values, but diverge to some extent as the variability
increases. Both measures undergo a transition from bimodal (greatest on the
flanks of the tuning curve) to unimodal (greatest at the peak of the tuning curve)
as the variability increases; this occurs slightly earlier for the SSI. Parameters:
independent variability, fbg = 10 spikes/s. Error bars show the worst case standard
error for each measure.
(B) Marginal SSI peak to flank ratio (PFR) for several levels of background activity
fbg, with independent variability. Altering the level of background activity has a
pronounced effect on the transition between low noise (Ipeak/Iflank < 1) and high
noise (> 1) regimes, with higher fbg causing the transition to occur at a lower level
of variability. For clarity, error bars have been omitted where the standard error
is less than 0.02 bits.
(C) Marginal SSI PFR for various values of c, with uniform correlation structure.
Uniform correlations improve coding precision, delaying the transition from flank
to peak regime to greater levels of variability compared to the independent case.
Parameters: fbg = 10 spikes/s. Error bars omitted when StdErr < 0.02 bits.
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In the absence of background activity (fbg = 0) the population remains within
the flank coding regime up to F/τ ≈ 30 spikes/s2 (equivalent to τ ≈ 33ms for
F = 1). Introducing a small amount of background activity (fbg = 5 spikes/s,
10% of fmax) has a pronounced effect, with a transition to the peak coding regime
now occurring at F/τ ≈ 3.5 spikes/s2 (equivalent to τ ≈ 285ms, F = 1). Further
increases in baseline activity continue to shift the peak/flank transition to lower
F/τ values. This is line with the findings of Wilke and Eurich (2002), who noted
a rapid decrease in Fisher information at low levels of background activity. When
fbg = 0, neurons with preferred stimuli that differ from θ by more than about 3σf

have essentially zero activity and hence zero variance. Increasing fbg causes these
neurons—approximately half of the population in this case—to fire at fbg spikes/s
and to have a rate variance of Ffbg (spikes/s)

2, thus substantially increasing the
variability of the population as a whole.

Figure 5C illustrates the effect of uniform correlations in trial to trial variability
upon the peak/flank transition. Uniform correlations improve coding precision and
hence shift the regime transition to greater F/τ values relative to the uncorrelated
case, although this is less pronounced than the shift caused by small levels of
background activity.

4.2 The effect of population size

As demonstrated by Butts and Goldman and described in the preceding section, in
very small populations the SSI can predict either flank or peak coding, depending
on the amount of noise, noise correlation and the time over which spikes are
counted. To date, this has not been investigated in populations larger than four
neurons. Here we address the effect of population size upon the stimuli that
are best encoded by a neuron. Do both peak and flank regimes occur in larger
populations? How does population size affect the transition between regimes?

By using Monte Carlo integration (Metropolis and Ulam, 1949) to compute the
SSI and specific surprise (see Appendix B.2), we were able to extend the analysis
of Butts and Goldman to populations of up to 256 neurons. Such a sampling
approach is necessary because the dimensionality of the response distribution is
equal to the number of neurons, so any algorithm that exhaustively integrates over
this distribution quickly becomes intractable as the population size increases. In
order to validate our Monte Carlo approach we first replicated (see Figure 4)
the results shown in Figure 3 of Butts and Goldman (2006), which describe
the SSI for the cricket cercal interneurons, and were obtained via quadrature
integration. Because of the similarity between the SSI and specific surprise, the
unique advantages of the specific information (on which the SSI is based), and
because the Monte Carlo estimate converges more rapidly for the SSI than for the
specific surprise (due to its averaging over the stimulus ensemble), we leave aside
the specific surprise and focus on the SSI for the remainder of the article.

We used the SSI to examine how the best-encoded stimulus of a neuron is affected
by the size of the population that it exists within. Figure 6A shows the marginal
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SSI for populations of various sizes; all curves are normalised to allow comparison.
The mSSI shows a transition from the peak coding to the flank coding regime
with increasing N , and the shape of the mSSI approaches the shape of the Fisher
information as N becomes larger, although the units and absolute values of the
two measures are different.

The transition between peak and flank regimes with N is shown in Figure 6B
for several levels of variability, using the peak to flank ratio to summarise the
shape of the marginal SSI. For very low levels of variability (F/τ = 0.1 spikes/s2),
the population operates in the flank regime at all population sizes, but at more
realistic noise levels a transition occurs. The population size at which this happens
depends on the level of variability: more noise means that a larger population size
is required before the population moves into the flank coding regime.

For sufficiently large populations (approximately N > 50), variability no longer
determines the coding regime and no (qualitative) discrepancy exists between the
measures; both predict that neurons operate in the flank coding regime (for τ in
the range [10, 30]ms given F in the range [1,3]). Population size, along with trial-
to-trial variability, is therefore an important determinant of the coding properties
of individual neurons within a population.

Figures 6C and 6D show the effect of correlations. In line with other findings,
uniform correlations increase precision and hence drive the population towards
the flank coding regime, while localised correlations have the opposite effect.
Figure 6D shows the effect on the PFR and transition point; localised correlations
decrease the PFR and shift the peak/flank transition to lower N , while localised
correlations have the opposite effect. The effect of localised transitions on the
PFR is greatest at moderate population sizes around the regime transition, while
uniform correlations have the greatest effect in small populations. To understand
this difference, recall that the effect of localised correlations on precision is negli-
gible in very small populations and increases with population size (see Figure 2E),
whereas the effect of uniform correlations does not vary with population size (see
Figure 2C).
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Figure 6: Marginal SSI and marginal SSI peak to flank ratio (PFR) in populations
of various sizes. The stimulus value that is most precisely encoded by a neuron
varies with population size. Maximum information occurs at the flanks of the
tuning curve in large populations, but can occur at the peak or flanks in small
populations, depending on the level of variability.
(A) Marginal SSI for various population sizes with independent variability. This
plot illustrates the transition of greatest SSI from peak to flank of the tuning curve,
and towards the shape of the singleton Fisher (heavy dashed line). Parameters:
F/τ = 10 spikes/s2, fbg = 10 spikes/s. Error bar: worst case across all N, θ.
(B) PFR versus N for various levels of independent variability. The F/τ =
10 spikes/s2 case corresponds to the SSI curves in A. Increasing variability delays
the transition (SSIpeak/SSIflank = 1) to greater population sizes. Parameters:
fbg = 10 spikes/s. Error bars < 0.02 bits omitted.
(C) The effect of correlated variability on marginal SSI; localised correlations bring
the neuron closer to the peak regime, while uniform correlations have the opposite
effect. Singleton Fisher information shown for comparison; at this population
size the mSSI has not yet converged to the shape of the Fisher information.
Parameters: N = 16, F/τ = 10 spikes/s2, fbg = 10 spikes/s. Error bar: worst
case across all N, c.
(D) PFR curves showing the effect of correlated variability. Localised
correlations increase PFR, corresponding to reduced coding precision, while
uniform correlations have the opposite effect. Parameters: F/τ = 10 spikes/s2,
fbg = 10 spikes/s. Error bars < 0.02 bits omitted.
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4.3 SSIFisher

As described in section 1.4, IF isher allows us to make quantitative comparisons
between Fisher information and Shannon mutual information when considering
overall coding precision, but when dealing with stimulus-specific precision only
qualitative comparisons have previously been possible. Qualitatively, Figure 6C
suggests that the shape of the marginal SSI converges towards the shape of the
singleton Fisher information as the population size goes to infinity. To allow
this convergence to be investigated quantitatively (i.e. using the same units), we
propose a new measure: SSIF isher. SSIF isher is a stimulus-specific decomposi-
tion of IF isher; more specifically it is the SSI of an optimal Gaussian-distributed
estimator that saturates the Cramér-Rao bound (a formal definition is given
in Appendix A.2). SSIF isher is an approximation of the SSI, in the same way
that IF isher is an approximation of the mutual information. Here we consider
the marginal SSIF isher (mSSIF isher), which is calculated in the same way as the
marginal SSI, but is based upon SSIF isher rather than the SSI itself.

Figure 7A shows mSSI, mSSIF isher, and Fisher information together, for several
population sizes. Fisher information is shown on a separate scale for ease of
comparison and the scales are adjusted such that the maximum of SSI/SSIF isher is
level with the maximum Fisher information. It can be seen that the three curves
converge with increasing N ; in the case of SSI and SSIF isher this convergence is to
the same absolute value, which equals Fisher information up to a multiplicative
constant. The SSIF isher, like the SSI, undergoes a peak to flank transition with
increasing N . Interestingly, the transition occurs later in SSIF isher than in the SSI
itself, which is surprising as SSIF isher is derived from Fisher information, which
relates to an upper bound on coding precision.

The convergence of mSSI and mSSIF isher roughly parallels that of mutual infor-
mation and IF isher, but the latter converge more quickly. Figures 7B and 7C
show the difference between Shannon and Fisher information based measures,
as proportion of the Shannon information, for stimulus-specific (SSI, SSIF isher)
and overall (MI, IF isher) quantities respectively. It can be seen that convergence
occurs at approximately the same rate for both sets of measures, and that the
relationships between the four variability cases are similar on both plots. Note that
the scales on the two plots are different; the proportional difference between MI
and IF isher is less than that between SSI and SSIF isher. This is due to differences
in what is being measured: the marginal measures compared by ∆mSSI relate
to the rate of change of overall information with respect to N , rather than the
absolute value.

4.4 Summary

For large populations (more than around 50 neurons, for integration times down
to around 10–30ms) both Fisher information and the marginal SSI indicate that
neurons provide information primarily about stimuli at the flanks of their tuning
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curves. Even for large populations, there is some difference between the shapes of
Fisher information and marginal SSI, but this diminishes as the population size
increases. Smaller populations, however, can operate in either the flank coding
regime or a peak coding regime where neurons convey most information about
stimuli at the peaks of their tuning curves. Here, the regime depends upon
the level of trial-to-trial variability (noise), integration time window, the amount
and structure of noise correlations, and the population size. Increased noise, the
presence of localised noise correlations, and reduced population size all drive the
system towards the peak coding regime. Conversely, decreased noise, uniform
noise correlations, and larger population sizes have the opposite effect, moving
the population towards the flank coding regime. For small, noisy populations—
populations operating in the peak coding regime—Fisher information gives a
misleading indication of which stimuli are best represented by a neuron. This dis-
crepancy between best-encoded stimulus predictions (mSSI versus Fisher) reflects
the divergence of overall coding precision (Imut versus IF isher) in small populations
described in section 3.
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Figure 7: Marginal SSI converges towards marginal SSIF isher as population size
increases.
(A) Marginal SSI, marginal SSIF isher and singleton Fisher information for
populations of different sizes. The scales of the y axes are adjusted so that
the maximum value of mSSI, mSSIF isher is aligned with the maximum value of
the Fisher information. Parameters: independent variability, F/τ = 10 spikes/s2,
fbg = 10 spikes/s. Error bar: worst case across θ.
(B) Convergence of marginal SSI and marginal SSIF isher for various parameter

values. The y axis quantity is defined as ∆mSSI = RMS(mSSI−mSSIFisher)
RMS(mSSI)

where
RMS denotes the root mean square. Case A: localised correlations, c = 0.3,
F/τ = 10 spikes/s2, fbg = 10 spikes/s. Case B: independent variability, F/τ =
10 spikes/s2, fbg = 10 spikes/s. Case C: independent variability, F/τ = 1 spikes/s2,
fbg = 10 spikes/s. Case D: independent variability, F/τ = 1 spikes/s2, fbg =
0 spikes/s. Error bars < 5% relative error omitted.
(C) Convergence of Imut and IF isher roughly parallels the convergence of mSSI and

mSSIF isher. ∆inf = |Imut−IFisher|
Imut

Parameter values are the same as in (B) for each
case. Error bars < 5% relative error omitted.



Fisher vs. Shannon Information 31

Figure 8: The effect of adaptation-like gain modulation on stimulus-specific coding
precision.
(A) Population SSI and Fisher information for various combinations of tuning
curve width (σf ) and modulation profile width (σmod). SSI and Fisher are
normalised so that their maximum values coincide on the plots. Similarly, zero
for both measures coincide at the bottom of each plot. A single unmodulated
tuning curve is shown, along with the modulation profile, to allow the widths to
be visualised. The shape of both SSI and Fisher information is dependent upon
the relative width of modulation and tuning curves. When σmod < σf a double
trough shape is produced. The closer the two widths, the less pronounced the
central peak. For σmod > σf , there is a single trough with the least precise coding
occurring at the centre of the modulation (the ‘adapting’ stimulus). Parameters:
modulation depth 90%, independent variability, N = 128, F/τ = 5 spikes/s2,
fbg = 10 spikes/s.
(B) Population SSI and SSIF isher for the same cases shown in A. Both measures
are plotted on the same scale. Although the values and shapes of SSI and Fisher
shown in A differ, they indicate the same precision: SSIF isher and SSI are almost
equal across all stimulus values.
(C) Trough shapes for population SSI and Fisher converge with increasing N , but
the shapes of both functions are largely independent of N for large populations.
Measures are normalised such that maximum and minimum values are aligned.
Parameters as above, σf = 20◦.
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5 Gain Modulation

Gain modulation due to adaptation or attention-like processes is an often observed
phenomenon in sensory neurons (see e.g. Wark et al., 2007). We applied the
principles introduced above to examine the functional consequences of adaptation-
like localised negative gain modulation, using the model described in section 2.3.
Reducing the overall activity of the population is equivalent to reducing the signal
to noise ratio, so the negative gain modulation causes a reduction in Imut and
IF isher. This is well understood, so our investigation focussed on the stimulus-
specific precision: does adaptation affect the representation of the adapting stim-
ulus itself or adjacent stimuli on the flanks of the affected tuning curves? Is the
coding precision of the adapted stimulus increased, decreased or unchanged?

Population Fisher information and population SSI were calculated for 108 model
populations with different combinations of population size, tuning curve width,
modulation width and modulation depth. The shape of both Fisher information
and SSI for the population depends mainly upon the relative width of the tuning
curves and modulation profile; the function defining the height of the tuning curve
peaks (see Figure 8). When the modulation profile is narrower than the tuning
curves, both Fisher information and SSI have a double trough shape, with the
coding precision of stimuli adjacent to the adapting stimulus reduced, while the
representation of the adapting stimulus itself remains relatively unaffected (see
Figure 8A, bottom left panel).5 Hol and Treue (2001) observed a similar effect in
a human psychophysical study. They observed that adaptation had no effect on
the discrimination threshold at the adapting stimulus, but increased the threshold
for neighbouring stimuli on both sides.

As the modulation width is increased relative to the tuning curve width, the
representation of the adapting stimulus becomes progressively less precise relative
to neighbouring stimuli (bottom centre panel, in this example σmod = σf ). Ul-
timately, as the modulation width is further increased beyond the tuning curve
width, the adapting stimulus becomes the least precisely represented stimulus,
with coding precision increasing monotonically with distance from the adapter
(top right panel).

5The extreme case for this scenario is an infinitesimally narrow modulation
profile. In this case, the gain modulation would only affect a single neuron
and the singleton Fisher information of this cell would effectively be subtracted
from the population Fisher information, leading to the double trough shape with
the representation precision of the adapting stimulus unchanged and that of
neighbouring stimuli (those lying on the slopes of the modulated tuning curve)
reduced. As the modulation width is increased, more neurons are affected and
the troughs and central peaks begin to cancel out, eventually resulting in a single
trough with the maximum reduction in coding precision occurring at the adapting
stimulus itself.
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Although the shapes and values of the population Fisher information and SSI in
Figure 8A are different, the coding precision that they imply is essentially the
same. Figure 8C shows the population SSI and SSIF isher for the same six cases.
In all cases the SSI and SSIF isher are very similar. This is to be expected given the
size of the population (N = 128); with this number of neurons the performance
of the code is close to saturating the Cramér-Rao bound, hence the two measures
should be close to equal. The slight difference between SSI and SSIF isher in the
immediate neighbourhood of the adapting stimulus (the bottom of the trough)
may be due to low response firing rates, which locally increase the signal to noise
level and delay convergence of the two measures.

Figure 8C illustrates the convergence of the shape of the population SSI and Fisher
information as the population size is increased. In the same way that singleton
Fisher information is usually in agreement with the marginal SSI, we find here
that population Fisher information in most cases predicts the same pattern of
stimulus-specific precision as the population SSI. For large populations (N > 32)
the shapes of the two measures are very similar. Differences are observed only
within a restricted domain where N is small and the modulation width is narrow
relative to the tuning curve width. In these cases Fisher information overestimates,
relative to the SSI, the representation precision for the adapting stimulus.

6 Discussion

Information theory provides a powerful and general set of tools for assessing
the precision of neural codes, but information theoretic measures are difficult
to compute for experimentally-characterised populations due to the large number
of observations required. Fisher information is an alternative statistical measure
of precision that is generally easier to compute, but specifies an upper bound on
coding precision that is only achieved in infinite populations. Brunel and Nadal
(1998) showed that IF isher, an information theoretic measure derived from Fisher
information, could provide an estimate of the mutual information Imut in infinite
populations (given certain conditions). However, how these two measures are
related in finite populations had not previously been investigated. By numeri-
cally simulating neural populations of various sizes and levels of variability, we
found that the mutual information is well approximated by IF isher (3.5% error) in
populations with more than approximately 50 neurons, even with high variability
and small time windows (e.g. F = 3 and τ = 30ms). For populations with fewer
neurons, IF isher tends to overestimate the mutual information and this disparity is
greater for smaller populations. Increasing the amount of trial-to-trial variability
(noise), or reducing the time window over which spikes are counted, increases the
difference between Imut and IF isher, but does not change the rate at which the
two measures converge as a function of population size. Noise correlations slightly
increase the difference between the two measures and delay their convergence, but
these effects are small in comparison to those of population size or noise level.
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We next addressed a related question: which stimuli are best encoded by a
neuron operating within a population? Those that elicit the maximum response,
corresponding to the peak of the tuning curve, or those coinciding with the flanks?
We compared the predictions of Fisher information to those of the marginal SSI,
a stimulus-specific decomposition of mutual information. Butts and Goldman
(2006) found that in very small populations the most precisely encoded stim-
ulus indicated by the marginal SSI was dependent on the level of variability,
and sometimes conflicted with the predictions of Fisher information. Neurons
operating in the peak coding regime have also been found experimentally, using
the SSI to analyse single neurons (Montgomery and Wehr, 2010). Using a novel
Monte Carlo approach to computing the SSI, we extended the analysis of Butts
and Goldman to populations of up to 256 neurons. We found that the shape
of the mSSI converges towards that of the Fisher information as the population
size increases and, consequently, both measures predict the same best-encoded
stimulus in large populations. Discrepancies occur only within a restricted do-
main of small populations (approximately N < 50) combined with high levels of
trial-to-trial variability or short integration times. Under these conditions, the
mSSI indicates peak coding, whereas Fisher information, as in all cases, indicates
flank coding. Outside this limited domain, both measures indicate that neurons
operate in the flank coding regime. Decreasing variability, increasing integration
time, and uniform noise correlations drive the system towards the flank coding
regime, while localised correlations have the opposite effect. This dependence
upon integration time means that what stimulus is best encoded by individual
neurons is a dynamical process: neurons will operate in the peak coding regime
immediately following stimulus presentation and transition to flank coding as time
progresses.

As with any modelling study, our analysis has a number of limitations. Perhaps
most importantly, the results are specific to fine discrimination tasks, as Fisher
information is defined as a very local measure of precision around a particular
stimulus value. This limitation also applies to the information theoretic measures,
since the stimulus ensemble was constructed in such a way as to simulate a
reconstruction or fine discrimination task in order for the SSI and Imut to be
comparable with Fisher information and IF isher. For detection tasks, and probably
also for coarse discrimination tasks, neurons best encode stimuli at the peak of
their tuning curves. Fisher information is not applicable to these tasks, but
other measures, such as Chernoff distance (Kang et al., 2004), can be used to
estimate the mutual information as a function of the discrimination ‘coarseness’
(the distance between stimuli). We also assume that information is carried by a
rate code; in cases where this assumption does not hold, the tuning curves and
rate variability do not necessarily determine the best-encoded stimuli, as additional
information about other stimuli may be conveyed by spike timing. In addition, all
models were based on broadly-tuned neurons; we did not investigate how tuning
curve width contributes towards determining the coding regime.

Some other studies addressing the validity of Fisher information have asked:
what are the properties of population codes that are optimal in terms of Fisher
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information? Tuning curves optimised to give maximal Fisher information would
not resemble those observed experimentally (Bethge et al., 2002). If the tuning
curves are constrained to be bell-shaped, maximising the Fisher information of
a population means that tuning curve width is dependent upon population size,
and is narrow in large populations. This is due to the fact that Fisher information
increases as the tuning function width is decreased, up to the point where the
overlap of neighbouring tuning curves is insufficient to give full coverage of the
stimulus space (Berens et al., 2011). These studies also found that Fisher-optimal
population codes are often sub-optimal in terms of other measures. Our work does
not contradict the findings of these studies, but addresses a separate question:
when can Fisher information be used to assess the precision of population codes
that have been characterised experimentally? Our model neurons are broadly-
tuned, in line with experimental findings (see e.g. Clifford, 2002), and the width
does not vary with population size. Whilst Fisher information appears to be a
poor tool for assessing the optimality of population codes, our results suggest that
it is a valid measure of discrimination precision, albeit with limitations.

Our findings have two main implications for the experimental characterisation
of neurons. Firstly, Fisher information can be used to obtain approximations of
both Imut and mSSI for neurons within large populations. As such, it is a reliable
indicator of both coding precision and best-encoded stimuli for discrimination or
reconstruction. In cases where it appears that the population size is well above the
N ≈ 50 threshold (e.g. hundreds of cells), Fisher information can be safely used,
given the limitations discussed above. Secondly, for smaller populations where
the number of neurons is known or can be accurately estimated, it is feasible
to compute the SSI (and even the marginal SSI) if the tuning curves, trial-to-
trial variability, and pairwise correlations can be modelled. It is then possible to
determine whether neurons are operating in the peak or flank coding regime. The
question as to which coding regime(s) the brain operates in is an interesting one,
and one that cannot yet be answered in most cases as it depends in part on the
size of the population involved in the relevant computation, which is generally
unknown.

There has been much interest in calculating Fisher information from experimental
data, and there are several possible approaches to estimating it, depending on the
data available. The simplest method of obtaining Fisher information is to compute
it directly from the tabular conditional response distribution p(r|θ) by numerically
evaluating Equation 6 (as in e.g. Dean et al., 2005). Measuring p(r|θ) directly is
only feasible for single neurons or very small populations, so the population Fisher
information can only be obtained by this method in the case of uncorrelated noise.
Alternatively, it is possible to use experimental data to construct a model of tuning
curves and variability, and then to compute Fisher information from the model (as
in e.g. Durant et al., 2007). Independent noise is typically modelled as a Poisson or
univariate Gaussian distribution and correlated noise by a multivariate Gaussian
distribution. While the best-encoded stimuli in large populations can be identified
by computing the singleton Fisher information, computing the population Fisher
information under a Gaussian variability model requires knowledge of the stimulus-
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dependent covariance matrix Q(θ). The measurement of Q(θ) represents the
most challenging obstacle to computing the population Fisher information, as this
requires many trials and simultaneous recording of multiple neurons. In addition,
any inaccuracies will be amplified when Q(θ) is inverted to obtain Q−1(θ) (see
Equation 7). It is not yet clear what the best method of determining the covariance
matrix is, or how many trials are required to measure Q(θ) with sufficient accuracy
to obtain a reasonable estimate of the Fisher information; more work is required
to establish the answers to these open questions. Additionally, the level of noise
correlations present in the brain is a matter of active debate (Ecker et al., 2010);
in cases where trial-to-trial variability is effectively uncorrelated, the process of
calculating the population Fisher information is greatly simplified.

The problem of determining the covariance matrix can be avoided by using a
decoding approach. This involves constructing a function that estimates the
stimulus given single-trial response spike counts for each neuron in the population.
The variance of this estimator θ̂(r) over many trials can then be used to determine
a lower bound on the Fisher information:

J(θ) ≥ 1

Var(θ̂(r))
(23)

This approach has been used in theoretical studies (e.g. Seriès et al., 2004; Beck
et al., 2008; Chelaru and Dragoi, 2008). With this method, the most difficult
part of the analysis is constructing an efficient estimator; this can be done via a
number of machine learning techniques and the quantity of data required to train
the estimator will depend upon the method used.

However the Fisher information is obtained, it tends to be much less difficult
to calculate than information theoretic measures such as the SSI, in terms of
both data requirements for experimentalists and computational complexity for
numerical modellers. Although we have focussed upon the SSI, we have also
shown that specific surprise gives similar predictions as to the best-encoded stimuli.
Other stimulus-specific decompositions of the mutual information are possible, in
particular the local information or stimulus information density proposed by Bezzi
et al. (2002). Under the uniform stimulus distribution used in our model, the latter
measure approaches the specific surprise (up to a multiplicative constant), so its
predictions in the cases examined here are likely to be very close to those of specific
surprise.

An important direction for future research is to examine how coding accuracy
and best-encoded stimuli depend on the coarseness of discrimination. We have
shown that large populations probably operate in the flank coding regime for fine
discrimination tasks, and it is clear that the peak coding regime is relevant for very
broad discrimination, where entirely separate groups of neurons are activated in
response to the stimuli. What happens between these two edge cases has yet to be
investigated. The stereotypical nature of most population code models points to
further open questions. Most theoretical work to date has assumed that population
codes are based on regular arrays of uniform unimodal tuning curves; what effect
does heterogeneity of tuning curve width or shape have on the coding regime? The
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peak and flank coding regimes discussed here are specific to bell-shaped tuning
curves. For monotonic tuning functions, high Fisher information corresponds to
steeply sloping regions of the curve; this is equivalent to the flank coding regime.
It is not clear what the best encoded stimulus is for monotonic tuning curves and
tasks other than fine discrimination. In future work, it is our intention to extend
the current study to monotonic tuning curves and other behavioural tasks besides
fine discrimination.

7 Conclusions

We have shown that it is feasible to compute the SSI for populations consisting
of hundreds of neurons via Monte Carlo integration. This means that the SSI
has the potential to be used to analyse experimental results at the population
level, as well as for single neurons. Although the full set of results presented in
this article represents considerable computational effort, calculating the SSI for a
single empirically-determined model, even with 200 neurons, requires at most a
day or so of computing time on a modern desktop computer.

The predictions of the SSI and Fisher information converge rapidly as a function
of the number of neurons in the population. The exact pattern of convergence
depends on the parameters of the chosen model. However, we found that for
populations larger than around 50 neurons, they are qualitatively identical, even
with high levels of variability and/or short integration times. The stimuli that are
best encoded are then always those falling at the flanks of the tuning curves. This
indicates that there is no need to go to very large population sizes for the SSI and
the Fisher information to lead to similar predictions. Marginal SSI and Fisher
information differ only over a restricted domain (small temporal windows, small
populations, high noise), which seems to roughly correspond to the range where
Fisher Information ‘fails’ (i.e. where the Cramér-Rao Bound is not saturated by
maximum-likelihood or other optimal decoders (Bethge et al., 2002; Xie, 2002)).

Correlations in the trial to trial variability (noise correlations) have a relatively
minor effect upon the convergence of information theoretic and Fisher-based mea-
sures. The 50-neuron guideline threshold for qualitative convergence holds in the
presence of biologically realistic levels of correlation, whether uniform or localised.
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Appendix A Mathematical supplement

Appendix A.1 Justification for use of F/τ

The response spike counts are distributed as a multivariate Gaussian with mean
τf (θ) and covariance Q(θ):

r(θ) ∼ N [τf (θ), Q(θ)]

Where the covariance matrix is defined as:

Qi,j(θ) = F [τfi(θ)]
α Ri,j [τfj(θ)]

α

= Fτ 2α fi(θ)
α Ri,j fj(θ)

α

Collecting the non-scalar terms as P (θ):

Pi,j(θ) = fi(θ)
α Ri,j fj(θ)

α

gives the following expressions for Q(θ), its inverse, and its derivative with respect
to θ:

Q(θ) = Fτ 2αP (θ)

Q(θ)−1 =
1

Fτ 2α
P (θ)−1

Q′(θ) = Fτ 2αP ′(θ)

The Fisher information is given by (this is the same as Equation 7, but the
integration time τ is stated explicitly rather than being included in the mean
response term):

J(θ) = τf ′(θ)TQ(θ)−1τf ′(θ) +
1

2
Tr
[

Q(θ)−1 Q′(θ) Q(θ)−1 Q′(θ)
]

Separating out the scalar terms as above, we have:

J(θ) = τf ′(θ)T
1

Fτ 2α
P (θ)−1 τf ′(θ) +

1

2
Tr

[

1

Fτ 2α
P (θ)−1 Fτ 2αP ′(θ)

1

Fτ 2α
P (θ)−1 Fτ 2αP ′(θ)

]

=
τ 2−2α

F
f ′(θ)TP (θ)−1f ′(θ) +

1

2
Tr
[

P (θ)−1 P ′(θ) P (θ)−1 P ′(θ)
]

Thus for Fano factor variability (i.e. when α = 0.5), F and τ appear in the
expression for Fisher information only in the ratio τ/F :

J(θ) =
τ

F
f ′(θ)TP (θ)−1f ′(θ) +

1

2
Tr
[

P (θ)−1 P ′(θ) P (θ)−1 P ′(θ)
]
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Appendix A.2 Stimulus-specific IFisher

The stimulus-specific IF isher (SSIF isher) is the SSI of an optimal Gaussian estima-
tor θ̂opt(r) with variance equal to the Cramér-Rao bound:

IssiF (θ) =
∑

θ̂opt(r)∈Θ

p(θ̂opt(r)|θ)
[

∑

θ∈Θ

p(θ|θ̂opt(r)) log p(θ|θ̂opt(r))− p(θ) log p(θ)

]

where p(θ|θ̂opt(r)) =
p(θ̂opt(r)|θ)p(θ)

∑

θ∈Θ p(θ̂opt(r)|θ)p(θ)
and (due to the Cramér-Rao bound) p(θ̂opt(r)|θ) = N (θ, J(θ)−1)

Appendix B Implementation details

Appendix B.1 Differential entropy and continuous MI

H(X) = −
∑

x∈X

p(x) log p(x) (24)

h(X) = −
∫

X

p(x) log p(x) dx (25)

Shannon entropy (Equation 24) can only be calculated for discrete variables. Dif-
ferential entropy (Equation 25) is a generalisation of Shannon entropy to continuous-
valued random variables, but unfortunately does not retain all of the useful prop-
erties of Shannon entropy. In particular, differential entropy is not invariant
under a change of variables, such as a change in the units used to measure the
stimulus. Also, while Shannon entropy is always positive, differential entropy can
take negative values. However, mutual information computed using differential
entropies (continuous mutual information) does not suffer from these problems
and retains the properties of its discrete counterpart (Cover and Thomas, 2006).
Since both the stimulus and response variables in our model are continuous, all
the entropies discussed here in relation to our model are differential entropies.
How these entropies were calculated in order to find the SSI is described in the
following section.

Appendix B.2 Calculating the MI, SSI and Isur

In all simulations, SSI and specific surprise were calculated simultaneously via
Monte Carlo integration. The method for computing the SSI is given here as
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an example; the MI and specific surprise are evaluated similarly. Referring to
Equation 5, it can be seen that the SSI is an average over the entire N -dimensional
response ensemble (the outer summation). Since the complexity of computing
the average over the response ensemble grows exponentially with N , the calcu-
lation quickly becomes intractable as the population size increases. Monte Carlo
integration enables us to avoid this problem by sampling at random from the
response distribution, computing the value of the measure based on this sample,
and averaging across all samples to find the final value. This process is repeated
until the desired level of precision is reached.

The SSI is defined as:

ISSI(θ) =
∑

r∈R

p(r|θ)
[

∑

θ∈Θ

p(θ|r) log p(θ|r)− p(θ) log p(θ)

]

(26)

To calculate the SSI for a given stimulus θ, we first sample a vector of neuronal
responses rk (where the superscript k is an index over Monte Carlo samples) from
the conditional distribution.

rk ∼ p(r|θ) = N [τf (θ), Q(θ)] (27)

We then calculate p(r|θ′) for many values of θ′ regularly spaced across the entire
stimulus space Θ; this is trivial since p(r|θ) is known. We can then apply Bayes’
theorem to find p(θ′|r):

pk(θ′|r) = p(rk|θ′)p(θ′)
∫

Θ
p(rk|θ′)p(θ′) dθ′ (28)

Where the integral
∫

Θ
p(r|θ′)p(θ′)dθ′ is evaluated by numerical quadrature. We

then calculate the specific information sample:

IkSI(θ) =

∫

Θ

pk(θ′|r) log pk(θ′|r)− p(θ′) log p(θ′) dθ′ (29)

This sampling process is repeated many times, and the SSI is found by averaging
over the samples:

ISSI(θ) =
1

n

n
∑

k=1

IkSI(θ) (30)

Where n is the number of MC samples. The estimate of the SSI is guaranteed
to converge towards the true value as n → ∞. The precision of the estimate was
monitored by computing the standard deviation sSSI(θ) of the MC samples. This
allowed the standard error of the SSI estimate to be found using the equation for
the standard error of the mean:

SESSI(θ) =
sSSI(θ)√

n
(31)

The standard error decreases as the number of samples increases and the sampling
process was halted when the standard error reached a predetermined threshold,



Fisher vs. Shannon Information 41

or when n reached a predetermined limit. In the figures, the final standard error
of the MC estimates are indicated by the error bars.

The Matlab code used to obtain all the results in this article is available online
from ModelDB:
http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=142990
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