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Abstract 

 

Optimists hold positive a priori beliefs about the future. In Bayesian statistical theory, a priori 

beliefs can be overcome by experience. However, optimistic beliefs can at times appear surpris-

ingly resistant to evidence, suggesting that optimism might also influence how new information 

is selected and learned. Here, we use a novel Pavlovian conditioning task, embedded in a norma-

tive framework, to directly assess how trait optimism, as classically measured using self-report 

questionnaires, influences choices between visual targets, as learning about their association 

with reward progresses. We find that trait optimism relates to an a priori belief about the likeli-

hood of rewards, but not losses, in our task. Critically, this positive belief behaves like a proba-

bilistic prior, i.e. its influence reduces with increasing experience. Contrary to findings in the 

literature related to unrealistic optimism and self-beliefs, it does not appear to influence the iter-

ative learning process directly.  

 

 

 

Author Summary  

 

The optimism bias is regarded as one of the most prevalent and robust cognitive biases documented in 

psychology and behavioral economics. In individuals, trait optimism is usually measured using self-

report questionnaires. However, choices in simple behavioral tasks can also be used to infer how op-

timistic people are in practice. We asked human subjects to fill in questionnaires about trait optimism, 

then to participate in a behavioral experiment where they needed to infer the likelihood of visual tar-

gets to be associated with a reward.  Using modeling, we could then quantify the link between self-

report trait optimism and decision or learning biases. We find that people who report that they are op-

timistic have a positive a priori bias on the likelihood of future reward, whose influence reduces with 

experience. In our task, trait optimism doesn’t distort how new information is integrated: subjects up-

date their estimates similarly following information that is better or worse than expected. 
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Introduction 

 

Optimism is known to play an important role in human experience, leading to more happiness, 

greater achievements and better health [1], although inappropriate optimism can also lead to poor 

choices [2].  Low optimism is also closely associated with depression and anxiety [3]. Because of this, 

there has been a recent surge of research interest so as to unveil the underlying mechanisms of opti-

mism, its neural substrate and behavioral consequences [4]. 

Trait optimism is generally measured using questionnaires, the most common of which is the Life 

Orientation Test-Revised (LOT-R) [5].  The LOT-R is a series of six statements (and an additional 

four filler items) with four positively and four negatively worded items (e.g. "In uncertain times, I 

usually expect the best" and "If something can go wrong for me, it will") which subjects have to score 

from 0 to 4 according to how much they agree with it.  

Optimism is thought to affect cognitive processes in at least two ways. First, it biases one’s ex-

pectations in a positive direction: while optimists view the glass as being half-full, pessimists might 

perceive it as half-empty. Formally, such a divergence in the interpretation of the same object could 

result from the influence of different prior beliefs. Second, optimism also appears to impact learning: 

optimists sometimes maintain positive beliefs in defiance of what should be strong evidence, such as 

doctors underestimating the risks of treatments, or people continuing to buy lottery tickets. Recent 

work has shown that this may be due to biases towards more readily learning from  “good news” (i.e. 

outcomes that are better than expected) than from “bad news” [6-9]. This biased learning could serve 

as a way to maintain the biases on the beliefs themselves. However, it is not known whether this im-

pact of optimism on learning generalizes to all settings, or is only restricted to the domain of personal-

ly relevant information and self-beliefs. More generally, how optimism relates to measurable cognitive 

biases is still poorly understood. 

 To approach these questions, we designed a behavioral task in which positive beliefs about 

future outcomes as well as learning biases could be quantified in individuals, independently from 

LOT-R scores and subjective introspection. This paradigm allowed us to disambiguate whether trait 

optimism functions as a prior belief on the likelihood of future outcomes, as a learning bias, or both.  

 

Results 

 

Fifty-one subjects took part in the main study (30 males and 21 females, age range: 17-45 years 

old). They were first asked to answer a set of questionnaires assessing trait optimism and related per-

sonality traits: the LOT-R as a measure of trait optimism [10], the Barratt Impulsiveness scale [11], 

NEO five-factor inventory [12], Digit Span AB task [13] and MINI International Neuropsychiatric 

Interview questionnaire [14].  
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The subjects then performed the behavioral task. Each trial started with the presentation of one of 

many fractal conditioned stimuli (CS). This was followed by a binary outcome (reward, depicted as a 

full treasure chest or no reward, empty chest) with a probability ci drawn uniformly between 0 and 1, 

that was fixed for each fractal CS but unknown to the subjects (Figure 1a, see Methods). Each CS was 

presented only a few times (four times on average) and presentations were interleaved. After a fractal 

CS had reached its allotted number of presentations, subjects were asked to choose between the fractal 

CS and a colored square to maximize their chance of getting a reward.  They were instructed that the 

reward probability of fractal CSs was constant and as experienced so far. The reward probability of the 

colored square was indicated explicitly by the dots underneath it.  Subjects were not given feedback 

about their instrumental choices but told that the outcomes would determine their final score.  

 

< Figure 1 around here > 

 

Because subjects were given very little information about the true CS reward probability, we expected 

their reward expectations for fractal CSs (but not for the colored squares) to reflect both the infor-

mation they had been exposed to, and subjects’ prior beliefs about the probability of rewards. By vary-

ing the number of presentations before the instrumental choice point, we could probe the learning pro-

cess at various time points. We asked three questions: i) Does trait optimism relate to a prior belief 

about the probability of reward ci associated with each fractal stimulus? ii) Does this influence fade 

with increasing experience, as it should if optimism works as a prior belief, or is maintained or even 

amplified, as it should if optimism affects learning? iii) Are the effects about prior beliefs valence spe-

cific, i.e. do they correspond only to an overestimation of the likelihood of positive events, or also to 

an underestimation of the likelihood of aversive events? 

Optimistic participants (i.e. with LOT-R > mean LOT-R) were biased towards overestimating the 

probability that rewards would follow fractal CSs (Fig 1b).  

To ascertain whether this bias was due to a prior belief related to optimism, we modeled the task 

as an optimal Bayesian inference process. Subjects were assumed to optimally combine the binary 

evidence p(Di|ci) regarding the probability of the observations Di (number of rewards observed over 

trials) given some probability of reward for that fractal ci, with their prior expectations p(ci) that a re-

ward would be given (see Methods). The shape of the prior (Beta distribution) was controlled by 2 

parameters: α and β, with the prior mean being !/(! + !). Choices were modeled as involving the 

comparison of the reward probability associated with the square with the estimated mean of the poste-

rior distribution p(ci|Di), which describes the subjective belief about a reward being associated with 

each fractal. The variability in the decision process was parameterized by a softmax temperature pa-

rameter γ. These parameters were estimated for each subject based on their performances at the task, 

using Maximum Likelihood. Each participant was thus described by 3 free parameters:  α, β and γ.  
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Table 1 shows the correlations between personality traits as measured by the different question-

naires and the parameters extracted from the behavioral task (mean of the prior: α/(α +β) and γ). 

Interestingly, across all participants, the average prior mean was slightly (but statistically significant-

ly) lower than 0.5, i.e. slightly pessimistic according to this measure. However, when participants 

were divided into two groups, “optimists” or “pessimists” based on whether their LOT-R scores were 

higher or lower than the average LOT-R score for the experiment, we found that the mean of the prior 

differed significantly between the two groups, with optimists having a higher prior mean than pessi-

mists.  More generally, the mean of the prior correlated significantly with the LOT-R score (Figure 

1c), and not with any other personality trait. This correlation remained significant after Bonferroni 

correction for 42 comparisons (p=0.042). Thus, in this task, subjects’ a priori beliefs about reward 

probabilities were selectively and parametrically related to their LOT-R optimism score.  

To ascertain more directly whether optimism might also relate to the learning process, we fitted 

reinforcement learning models to the behavior. These models describe the learning process explicitly 

by assuming that subjects maintain an estimate of the value ! of each fractal !!, and update this itera-

tively by adding the prediction error – the difference between the assumed value and the observed out-

come [15]. The models had an initial value !! which plays a role similar to the prior mean belief 

!/(! + !) in the Bayesian model. In addition, the models allowed for selective learning biases by 

having two learning rates: !! for better than expected and !! for worse than expected outcomes. These 

models gave a less parsimonious account of the data than the Bayesian model (worse BIC values– see 

Methods), and LOT-R scores correlated with the initial value !! (p=0.002, r=0.541 in Model RLb), but 

not with either of the learning rates !! or !! or the difference between them (all p>0.1). Moreover, 

models that did not allow for subject-specific !!  did not capture performance differences between op-

timists and pessimists. Thus, optimism is well described in terms of a positive prior belief on the like-

lihood of reward, and does not appear to affect the learning process. 

 

Control experiment: reducing the uncertainty.  

 

If optimism really functions like a prior, then its influence should fade the more subjects are giv-

en evidence about the association of stimuli and reward. If the amount of evidence is sufficiently 

large, then subjects’ performance should become independent of their prior biases. For our Bayesian 

analysis, this means that the simplest model that would describe their performance is one with a non-

informative prior. On the contrary, if optimism affects learning, the difference between optimists and 

pessimists should be maintained or even amplified with experience. We conducted a control experi-

ment aimed at testing this directly. This experiment also excluded a potential confound in the previous 

experiment, namely that optimistic subjects might have an a priori preference for fractals. The second 
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experiment was identical to the first one, except for two changes in experimental parameters, designed 

to reduce the level of uncertainty in the task:   

(i) The average number of times a given fractal was shown before a decision was requested was in-

creased from 4 to 10;  

(ii) Instead of being interleaved, the fractals were now presented in blocks. 

 

A total of 51 new participants (28 males and 23 females, age range: 17-46 years old) participated in 

this version of the experiment. One subject (male) was post-hoc excluded from further analysis, be-

cause he did not achieve a 50% performance. In line with our hypothesis, we found that under those 

conditions, the difference of performance between optimistic and pessimistic subjects disappeared 

(Figure 2).  

 

< Figure 2 around here > 

 

No correlation was found between the LOT-R score of individual subjects and the mean of their prior 

(r=0.009, p=0.95; a correlation significantly different from that of experiment 1: Fisher's Z=2.26, 

p=0.02; achieved power: 1-β=0.87 assuming the effect size is the same as in experiment 1). The 

shape of the individual priors extracted from the subjects’ performance was always close to a non-

informative (i.e. Jeffrey’s) prior (α= β=0.5). In fact, in this control experiment, contrary to the main 

experiment, model comparison (BIC) shows that the performance of every single subject was better 

described by the simpler model in which the prior is chosen to be fixed and non-informative rather 

than by a prior with flexible α and β (vs. 45% of the subjects for experiment 1). This suggests that, 

in this case, subjects were able to correctly take into account the evidence and override their prior ex-

pectations: they now behave in a way indistinguishable from that of having unbiased prior beliefs.  

Furthermore, the reinforcement learning models again failed to account for the data better than 

the Bayesian models, while supporting similar conclusions: the LOT-R score correlated neither with 

the learning rates !! or !! nor with the initial value V0 (all p>0.1).  Table 2 and 3 present the group 

averages of the best-fitting parameters for all the models. 

In view of these results and so as to test whether the dependency of the bias with level of uncer-

tainty could also be observed in the same group of participants (vs. between two different groups), we 

also re-analyzed the data of experiment 1. We compared performances (% choices) for the fractals that 

were “over-observed” (observed more than 4 times) compared to the fractals that were “under-

observed” (less than 4 times). We tested whether optimists and pessimists differed in their “under-

observed” and “over-observed” biases using two sample t-tests. Consistent with our hypothesis, we 

found that the differences in performances between optimists and pessimists was statistically signifi-

cant for “under-observed” fractals (p< 0.01), but not for the “over-observed” ones (p=0.135). We used 
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a two-sample, one-tailed t-test to test if one effect is significantly greater than the other, and found that 

this was the case (p=0.0017). 

 

 

 

Punishment avoidance experiment 

 

We finally asked whether optimism could also predict prior beliefs about the likelihood of losses, by 

repeating the experiment with punishments (i.e. losses of points) rather than rewards. The experi-

mental procedure was the same as in Experiment 1, except for the fact that, here, both the CS and the 

square stimuli were associated with a probability of punishment (instead of reward), depicted by a car-

toon of a sad face. Subjects were now asked to estimate the probability of punishment ci associated 

with the CS and to avoid punishment when choosing between the CS and the square stimulus.  

A total of 51 subjects (29 males and 22 females, age range: 17-38 years old) participated in this ver-

sion of the experiment. Four subjects (1 female and 3 males) were post-hoc excluded from further 

analysis, because they did not achieve a 50% performance. We found that under those conditions, op-

timistic and pessimistic subjects had similar performances (Figure 3).  Moreover, subjects’ prior mean 

did not correlate with the LOT-R score  (r=0.049, p=0.74; significantly different from that of experi-

ment 1, Fisher's Z=2.05, p=0.04 and achieved power: 1-β=0.86). The RL models were not as good at 

explaining the data as the Bayesian model (in terms of their BIC values, see Methods) and the extract-

ed model parameters didn’t differ between groups (Table 2 and 3). 

  

< Figure 3 around here > 

 

Discussion 

 

In conclusion, trait optimism as measured by the LOT-R questionnaire is found to correlate with 

performance biases in a simple Pavlovian conditioning task: optimistic subjects over-estimate the 

probability of reward associated with the uncertain target. This bias affects the estimation of future 

rewards, but not of future losses in our task. It conforms to Bayesian principles of optimal inference, 

and disappears when the level of uncertainty decreases.  

Our findings are consistent with intuition about the nature of optimism in humans, as well as evi-

dence that optimistic people are more likely than pessimists to have positive gambling expectations 

[16].  Interestingly in our study the observed estimation biases concern future outcomes for neutral 

stimuli (the fractal shapes). This can be contrasted with studies looking at unrealistic optimism, which 

concern self-beliefs. Unrealistic optimism has been defined as the “favorable difference between the 

risk estimate a person makes for him or herself and the risk estimate suggested by a relevant objective 
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standard” [17]. Compared to such studies, our findings differ in two ways. First, unrealistic optimism 

studies show that participants are biased in their estimates of positive outcomes (such as graduating 

from college, getting married, having a favorable medical outcome) but even more so in their esti-

mates of negative outcomes (suffering from a disease, getting divorced etc.) [17]. In our study, on the 

other hand, optimism corresponded to an overestimation of the probability of positive outcomes (re-

ward), but not to an underestimation of the probability of negative outcomes (punishment, experiment 

3). This was unexpected at first, since the LOT-R contains statements related to predictions of both 

positive and negative events. One possible reason might be that the salience of positive and negative 

outcomes may have differed. Future studies will be needed to assess the generality of the asymmetric 

effect of optimism, in particular by using more salient negative reinforcers.  

Second, in our experiment, participants don’t seem to be biased in the learning process itself. Op-

timists and pessimists differ in their initial biases, but not in how they accumulate new information. 

Moreover, fitting the data with reinforcement models showed that they learned similarly from positive 

prediction errors (“good news”) and negative prediction errors (“bad news”).  Studies looking at up-

dating of beliefs related to one’s personal qualities or future life events [6-9], on the other hand, have 

typically found that people are likely to discount new information that is worse than their current be-

liefs, and as such appeared to be “non-Bayesian” learners. For example, Eil and Rao (2011) find that 

participants tended to discard negative information (“bad news”) when processing personal infor-

mation regarding their IQ or Beauty, whereas “good news” led to a much tighter adherence to Bayesi-

an updating of their beliefs [7]. Wisfall and Zafar (2011) also conclude that college students in their 

study are not Bayesian updaters when they have to form and update their beliefs about their future 

earnings [9]. Similarly, in a task where participants have to estimate the likelihood of a negative future 

life event, such as divorce or cancer, Sharot et al (2011) show that participants updated their beliefs 

more in response to information that was better than expected compared to information that was worse 

[6].   

There are many important differences between the current paradigm and those studies, which 

makes the comparison difficult. As stated above, a crucial difference is whether the quantity to be es-

timated concerns the self or a neutral stimulus. This can lead to large differences in motivation in the 

learning process: when information is personally relevant, participants have a motive to disregard neg-

ative information so that they can keep a rosy view of the future. In our task, on the other hand, there 

is no intrinsic advantage of keeping a biased estimate for the probability of rewards associated with 

the fractals. Consistent with this idea, Eil and Rao found that participants conformed Bayesian ration-

ality in their control (neutral) condition [7]. Mobius et al. provide a theoretical framework that can 

possibly unify all these results: they suggest that the updating asymmetry itself can be explained by 

Bayesian principles in a model where agents derive utility from their beliefs. This model includes the 

fact that believing that one has a higher than average IQ, for example, even if it is untrue, has an in-

trinsically “rewarding” value, in that it helps self-confidence [8].   
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Other differences in experimental design between these studies and ours are worth mentioning. In 

[6], for example, the information given about the occurrence probability (e.g. “actual likelihood cancer 

30%”) is explicit, high-level, provided only once and open to interpretation (i.e. participants can de-

cide whether this should apply to them or not) whereas our study involves actual experienced out-

comes that have to be integrated over time for the occurrence probability to be estimated. Despite the-

se differences, our results combined with those mentioned above suggest that that there might be at 

least two distinct computational expressions of optimism: one, corresponding to very general initial 

biases for simple associations of stimuli and outcomes that can be overcome by learning; and a second 

one directly affecting the learning process in the domain of personally relevant beliefs with strong 

emotional content (such as one’s qualities, future health or success). It will be important in the future 

to clarify the boundaries between these domains.  

The experimental paradigm opens the door to a number of investigations. For example, our exper-

imental paradigm offers new routes to the differentiation between optimism and pessimism, and opti-

mism and hope, which are sometimes believed to be different constructs [18, 19]. There is a docu-

mented link between depression and (the lack of) unrealistic optimism [20, 21]. For example, Strunk 

et al investigated how participants estimate the likelihood of positive and negative future life events 

and found that depressed individuals exhibit a pessimistic bias by over-estimating the likelihood of 

negative future events [21]. It will be important to see how participants with depressive symptoms per-

form in our task. It will also be interesting to examine the impact of pharmacological manipulations 

particularly of dopamine or serotonin [22].  

Finally, optimistic biases have also been reported in animals and it has been proposed that those 

biases could be used as an indicator of affective state [23]. For example, Harding et al have found that 

rats can display optimistic or pessimistic biases when interpreting ambiguous stimuli. Moreover, such 

biases correlated with the quality of their housing (unpredictable -- which induces symptoms of a mild 

depression-like state -- or predictable) [24]. In this context, it is interesting that our paradigm can also 

be adapted for use with animals. It would be very interesting to investigate the relation between cogni-

tive biases observed in such situations of ambiguity with the ones we report.  Adapting our paradigm 

for use with animals will also allows the translational investigation of the underlying neural substrate 

[25]. 

  

Methods 

 

1. Ethics Statement 

 

All participants gave informed written consent and the University of Edinburgh Ethics Committee ap-

proved the methods used in this study, which was conducted in accordance with the principles ex-

pressed in the Declaration of Helsinki. 
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2. Behavioral Task 

 

All experiments took place at the Perception lab at the University of Edinburgh. 51 naive subjects 

took part in each experiment and were recruited mainly among students of the University of Edin-

burgh. First, subjects were asked to sign a consent form and to fill in the questionnaires. Then, a short 

trial version of the behavioral task was presented, during which verbal and text instructions were giv-

en. Once subjects had confirmed that they were comfortable with the task, they were presented with 

the full version of the experiment. 

Visual stimuli were generated using the Matlab programming language and displayed using 

Psychophysics Toolbox [27; 28]. Participants viewed the display in a darkened room on a 20” monitor 

at a viewing distance of approx. 100 cm. Stimulus sizes on the screen were 8x8cm and 5x5cm for frac-

tals and chests respectively. 

The experiment contained two types of screens (Figure 1a): i) a series of observation screens 

which subjects had to passively observe. On each of these screens a fractal stimulus (or conditioned 

stimulus, CS) was shown to be associated with a binary reward (the presentation of the fractal was 

followed after 700 ms. by the presentation of a full treasure chest) or not (the fractal led to an empty 

chest); intermixed with ii) 60 decision screens, where the subject was asked to choose between a frac-

tal stimulus that he had observed before and a blue square, by clicking on it with the mouse. The task 

of the subjects was to maximize reward gain.  

More precisely, there were 60 different fractal stimuli in total. They were generated using 

Matlab code available from the C.I.R.A.M. Research center in Applied Mathematics at the University 

of Bologna.   The probability ci for each fractal CS to lead to a reward was drawn randomly between 0 

and 1 at the start of the experiment and kept unknown to the subject. As described above, CSs were 

then shown in random sequences of observation and decision screens. More precisely, in the main ex-

periment, each CS was assigned to a group of 5 fractals and those were presented in randomly inter-

leaved observation screens before they were shown in decision screens (Figure 1a – inset).  In the 

main experiment, each CS was observed on average 4 times before it appeared on a decision screen 

(the exact number was drawn from a Poisson distribution with mean 4 and truncated to be greater than 

2). Each CS was involved in only one decision screen.  On each decision screen, the reward probabil-

ity of the square stimulus was drawn randomly from 0 and 1 (binned with steps of 0.1). This probabil-

ity was explicitly indicated to the subjects, and depicted as a proportion of full circles out of a set of 10 

circles (Figure 1a). The side on which the CS appeared in the decision screen was chosen randomly on 

each trial. Decision screens were displayed until the subject chose one stimulus by clicking on the 

mouse. The behavioral experiment lasted about 30 minutes.  

Feedback was not given after each decision screen but each subject was given a final score at 

the end of the experiment. Due to funding changes, the first 42 subjects of experiment 1 were unpaid 
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but participated in a draw with a £20 voucher prize, while subjects of experiment 2 and 3 and the last 

11 subjects in the main experiment were paid £6 for participation (unrelated to their performance at 

the task). No significant differences were found between paid and unpaid participants' performances. 

 

3. Bayesian Model 

 

 

We assumed that subjects behave as Bayesian observers, and estimated the probability of reward, de-

noted ci, associated with a given fractal i by computing the posterior distribution p(ci |Di), using Bayes 

rule:    

 

 

(1) 

 

where Di denotes the series of observations related to fractal i (series of rewards observed, or not, on 

all observed trials) and p(ci) denotes the subject’s prior belief that CS i will be associated with a re-

ward.  

We further assumed that subjects formed their decision by extracting the mean of this posterior distri-

bution, so as to obtain an estimate ĉi of ci: 

 

 
 

(2) 

We modeled the prior distribution p(ci) using a beta distribution, which is the conjugate prior of the 

binomial distribution. This prior has the form:  

 

 
(3) 

where Γ denotes the gamma function and parameters α and β control the shape of the prior and are 

assumed to be the same for all CSs. A prior centered on values lower than chance was considered as a 

‘pessimistic prior’, whereas a prior centered on values greater than chance was considered as an ‘op-

timistic prior’ in the experiment (Fig 1d).  Under this model, it can be shown that, for each fractal, the 

posterior mean ĉi is: 

 

 

 

 



 - In press in PLOS Computational Biology - 

 

12 

           (4) 

 

where Ni is the number of time fractal i was shown, and ni the number of times it was associated with a 

reward in the observation screens.  

We assumed that subjects’ decision results from a ‘softmax’ comparison between their estimate ĉi of 

the probability that the CS should lead to a reward with the probability bi (explicitly given) that the 

square stimulus should lead to a reward on trial t. Subjects would then choose the CS with probability 

p(choose fractal): 

 (5) 

where parameter γ controls how closely the subjects’ responses follow the internal estimates and is 

assumed to be fixed during the whole session. Under this decision-making model, each subject was 

thus described by 3 free parameters:  α, β and γ. These parameters were estimated for each subject 

based on their task performances, using Maximum Likelihood and numerical optimization methods in 

Matlab (fmincon).  

 

4. Reinforcement learning models. 

 

We also fitted various reinforcement learning (RL) models to our data. Our idea was to assess whether 

RL models could capture the differences in performance between optimists and pessimists in experi-

ment 1, and if so, to identify the parameters which would explain those differences. We were particu-

larly interested in assessing whether optimists and pessimists would differ most in the parameters gov-

erning value update as a function of the sign of the prediction error or in those parameters setting the 

initial biases (consistent with the alternative account of optimism as a prior belief). We used a simple 

temporal-difference (TD) learning algorithm. In these models, subjects learn a value V(si) for each CS 

i, which is initialized at vo (identical for each CS) and then updated after each observation of that CS, 

according to:  

 

        (6) 

 

where δt= rt –Vt(si) denotes the prediction error,  rt denotes the binary reward, t represents the observa-

tion number, and the learning rate ε(δt) is set to hold either the same value ( ε +=  ε -) for  better- than- 

expected (i.e. δt >0) and worse-than-expected outcomes (δt <0), or different values ( ε +≠  ε -). The 

Vt+1(si) = Vt(si) + �(δt)δt

 

p(choose fractal) =
exp(γĉi)

exp(γĉi) + exp(γbi)
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selection between targets 1 and 2 is governed by a softmax action selection, with additional parameter 

τ . 

                                                                                  (7)  

where bi corresponds to the reward probability of the colored square. We first examined model RL2b 

which had 2 free learning rates ε+,  ε-  and free vo. We additionally examined simplified versions of 

this model, which differed in the number of parameters kept free in addition to to τ: 

• RLε has only one learning rate ε  (= ε +=  ε -) as free parameter, vo is set to 0.5;  

• RL2 has 2 free learning rates ε+,  ε-, vo is set to 0.5;  

• RL 2b has 2 free learning rates ε+,  ε- and free  vo; 

• RLb  has only free v0, the learning rate ε  (= ε +=  ε -) is set to 0.1. 

 

Each model was fitted to the data of each participant using maximum-likelihood estimation. Ta-

ble 2 and 3 present the group averages of the best-fitting parameters for all the models. 

We found that: i) only the models with free bias term vo captured the difference in performance be-

tween optimists and pessimists in experiment 1 (i.e. led to significantly different parameters for opti-

mists and pessimists); ii) in line with the hypothesis that optimism functions as a initial bias, the bias 

vo correlated with LOT-R scores in experiment 1 (significantly so for RLb;: r=0.541, p=0.002); iii) the 

RL models were worse at fitting the data than the Bayesian models, both in terms of log likelihood and 

BIC values in all experiments (BIC for experiment 1: RLε=71.83; RL2=74.57; RL2b=77.83; 

RLb=75.53, Bayesian model=60.92; BIC for experiment 2: RLε=80.71; RL2=83.36; 

RL2b=86.71;RLb=81.16, Bayesian model=71.38; BIC for experiment 3: RLε=90.52; RL2=93.88; 

RL2b=97.49;RLb=90.14, Bayesian model=83.12). We concluded that, in our data, optimism is well 

described in terms of a positive prior belief on the likelihood of reward, and is not significantly ac-

companied by selective updating during the learning process. 
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Figure 1. a) Cartoon of the task: subjects are presented with a sequence of stimuli (here: O1, O2, O1) 

followed by a decision screen (D1). Here the subject needs to choose between the yellow fractal and 

the square for which the reward probability is given by the number of blue dots (6 dots, indicating a 

probability of 60%). Inset: Example of a longer sequence of interleaved observation screens and deci-

sion screens. b) Performance of the subjects (% trials in which they chose the fractal stimulus) as a 

function of the difference between the observed reward rate of the fractal being considered and the 

reward probability of the square.  Compared to pessimistic people (red, LOT-R ≤ mean LOT-R), op-

timistic people (blue, LOT-R > mean LOT-R) tend to overestimate the probability of reward associat-

ed with the uncertain fractal stimulus. Errors bars denote standard deviation. c) Correlation between 

subjects’ LOT-R scores and the mean of their prior distribution p(c) that the fractal stimulus will lead 

to a reward (r=0.438, p = 0.001). d) Examples of the prior distributions that were extracted for subjects 

10 (pessimistic, LOT-R = 3) and 11 (optimistic, LOT-R = 22) based on their task performance. 
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Figure 2. Reduced uncertainty experiment. a) Performance of the subjects (percentage of trials in 

which they chose the fractal stimulus) as a function of the difference between the observed reward rate 

of the fractal being considered and the reward probability of the square. Pessimistic (red, LOT-R ≤ 

mean LOT-R) and optimistic people (blue, LOT-R > mean LOT-R) behave similarly.  Errors bars de-

note standard deviation. b) Correlation between subjects’ LOT-R scores and the mean of their prior 

distribution p(c) that the fractal stimulus will lead to a reward (r=0.009, p=0.95). 
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Figure 3. Punishment avoidance experiment. a) Cartoon of the task. The CS can either lead to a 

punishment (indicated by a sad face) or nothing. b) Performance of the subjects (percentage of trials in 

which they chose the fractal stimulus) as a function of the difference between the observed reward rate 

of the fractal being considered and the reward probability of the square.  Pessimistic (red, LOT-R ≤ 

mean LOT-R) and optimistic people (blue, LOT-R > mean LOT-R) behave similarly. c) Correlation 

between subjects’ LOT-R scores and the mean of their prior distribution p(c) that the fractal stimulus 

will lead to a reward (r=-0.049; p=0.74). 
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Table 1: Correlations between personality traits as measured by the different questionnaires and pa-

rameters extracted from the behavioral task. Values in bold have correlation coefficients higher than 

0.3. Values marked with ** have p-values less than 0.01, values marked with * have p-values less than 

0.05. These p values are obtained after applying the Bonferroni correction for 42 comparisons. Two 

subjects had one/several disorders ticked in the M.I.N.I., however their results do not show any signif-

icant differences from other subjects' results. The correlation between LOT-R and neuroticism and 

extraversion has been reported before [26]. 

Ne = Neuroticism, Ex = Extroversion, Op = Openness, Ag = Agreeableness, Con =Conscientiousness, 

Att = Attention, Mot = Motor, S-C = Self-Control, CC = Cognitive Complexity, 
P = Perseverance, CI = Cognitive instability, TI = Total Impulsiveness, DSAB = Digit Span AB score, 
and LOT-R = Life Orientation Test - Revised. 
 
 
 
  

 
α /(α+β)  LOT-R Ne Ex Op Ag Con Att. Motor S-C C-C P C-In TI DSAB 

γ  0.190 -0.076 0.117 -0.166 -0.094 0.022 -0.184 0.112 0.025 0.243 0.194 0.216 0.204 0.257 -0.031 

α /(α+β)   *0.438 -0.295 0.285 0.147 0.205 0.295 -0.106 0.031 -0.152 0.061 0.061 -0.092 -0.061 -0.003 

LOT-R *0.438  *-0.453 **0.533 0.308 -0.065 0.287 -0.126 0.375 0.007 -0.205 -0.128 0.106 0.047 -0.110 
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Table 2: Best-fitting parameters for the Bayesian model summarized per experiment, and averaged for 

the entire group of subjects and per subgroup (optimists and pessimists). Each column presents the 

mean value, with the standard deviation between brackets. Significance of the differences is shown on 

the right of the table: an asterisk in the corresponding column (left to right: LOT-R; α/(α+β) which 

defines where the prior is centered; γ is the softmax decision parameter) indicates a p value less than 

0.05 for a t-test between optimists and pessimists.  

  

!/(!+") #

Experiment 1 Mean 14.70 (4.42) 0.42 (0.23) 7.88 (3.93)

Optimists (N=31) 17.30 (2.36) 0.47 (0.21) 8.01 (4.09)

Pessimists (N=20) 10.60 (3.69) 0.33 (0.25) 7.75 (3.78)

Experiment 2 Mean 15.65 (4.27) 0.49 (0.37) 4.03 (1.64)

Optimists (N=26) 18.96 (2.30) 0.50 (0.40) 3.82 (1.69)

Pessimists (N=21) 12.33 (4.02) 0.48 (0.38) 4.18 (1.61)

Experiment 3 Mean 15.44 (3.60) 0.56 (0.32) 6.71 (5.30)

Optimists (N=30) 18.32 (3.13) 0.56 (0.37) 6.76 (4.62)

Pessimists (N=20) 12.55 (3.87) 0.55 (0.31) 6.67 (5.40)
* / n.s. / n.s

Group LOT-R
Bayesian Model

Sig.

* / * / n.s

* / n.s. / n.s
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Table 3:  Best-fitting parameters for the RL models summarized per experiment and averaged per 

group. Each value reported in the column shows mean values for different RL models (left to right: 

RLε ; RL2; RL2b; RLb) and X means that the variable is not used in a model.  Significance of the differ-

ences is shown on the right of the table: an asterisk in the corresponding column indicates a p value 

less than 0.05 for a t-test between optimists and pessimists. Parameters ε+,  ε- denote the learning rates 

for positive and negative errors respectively, vo is the initial value of all CS, and τ is the softmax deci-

sion parameter. 

 

 


