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AbstractWe rework parts of the classical relational theory when the underlying domain is a structurewith some interpreted operations that can be used in queries. We identify parts of the classicaltheory that go through `as before' when interpreted structure is present, parts that go throughonly for classes of nicely-behaved structures, and parts that only arise in the interpreted case.The �rst category includes a number of results on language equivalence and expressive powercharacterizations for the active-domain semantics for a variety of logics. Under this semantics,quanti�ers range over elements of a relational database. The main kind of results we prove hereare generic collapse results: for generic queries, adding operations beyond order, does not give usextra power.The second category includes results on the natural semantics, under which quanti�ers rangeover the entire interpreted structure. We prove, for a variety of structures, natural-active collapseresults, showing that using unrestricted quanti�cation does not give us any extra power. Moreover,for a variety of structures, including the real �eld, we give a set of algorithms for eliminatingunbounded quanti�cations in favor of bounded ones. Furthermore, we extend these collapse resultsto a new class of higher-order logics that mix unbounded and bounded quanti�cation. We givea set of normal forms for these logics, under special conditions on the interpreted structures. Asa by-product, we obtain an elementary proof of the fact that parity test is not de�nable in therelational calculus with polynomial inequality constraints. We also give examples of structureswith nice model-theoretic properties over which the natural-active collapse fails.1 IntroductionWe would like to start with an example that can be found in most database textbooks. When relationalalgebra is introduced, the conditions in selection operators are de�ned to be boolean combinations ofx = y and x < y, where x and y are variables or constants. Typically, a few examples of programmingin relational algebra are given before a relational language, such as SQL or QUEL, is introduced.Soon after that we will probably see an example of query like \Select employees who make at least90% of their manager's salary". Such an example is likely to be followed by a remark that this query,strictly speaking, is not de�nable in relational algebra because it involves arithmetic operations, butit is de�nable in SQL or QUEL which allow arithmetic and comparisons of the form x > 0:9 � y.�Contact author. Address: Bell Laboratories, Room 2C-407, 600 Mountain Avenue, Murray Hill, NJ 07974, USA.Phone: (908)582-7647. Fax: (908)582-5857. Email: libkin@research.bell-labs.com.1



Does it mean that the relational algebra is in some sense inadequate as a basic relational querylanguage? It is certainly so if one has to deal with arithmetic, but database textbooks counter thiscriticism by saying that an extension to arithmetic is straightforward. It is indeed true that extendingnotations is straightforward, but it is not completely obvious how to extend the fundamental resultsand techniques of relational theory to include arithmetic. For example, if arithmetic constraintsare allowed in selection predicates, how would one prove the classical result that parity test andtransitive closure are not de�nable in relational algebra? It appears that the standard techniques arenot immediately applicable. Some techniques (such as 0-1 laws) are not applicable at all, others areextremely awkward to apply. This situation extends beyond arithmetic to other interpreted operationsover the items that could be stored in a database.As noted in [26], the full scope of interaction between �nite databases and �xed, possibly in�nite,interpreted structure, has not been fully explored in the database community, although the questionwas already raised in the seminal paper of Chandra and Harel [17]. There are some exceptions: inaddition to [26], one exception has been the attention to order relation. This includes well-knownconnections between query languages and complexity classes, cf. [1, 21]; also, order constraints havebeen studied in the context of Datalog queries (see, e.g., [37, 51]). In this paper, we explore some ofthe nontrivial interaction of interpreted structure with relational structure, hopefully �lling in a bitof the gap mentioned above. We focus on looking at analogs of classical equivalence and expressivityresults, domain of quanti�cation, and on complexity bounds.Much recent interest in databases over interpreted structures stems from a non-classical model, theconstraint database model introduced by Kanellakis, Kuper and Revesz [36]. They were motivatedby new applications involving spatial and temporal data, which require storing and querying in�nitecollections. The constraint model generalizes Codd's relational model by means of \generalized rela-tions". These are possibly in�nite sets de�ned by quanti�er-free �rst-order formulae in the languageof some underlying in�nite structure M = hU ;
i. Here U is a set (assumed to be in�nite), and 
 isa signature that consists of a number of interpreted functions and predicates over U . For example,in spatial applications, M is usually the real �eld hR;+; �; 0; 1; <i, and generalized relations describesets in Rn .One of the main contributions of [36] is an extension of relational calculus and Datalog to generalizedrelations. The development of constraint query languages made clear some of the ways in which theinterpreted structure adds new issues to the analysis of query languages. For example, although theseextensions do add expressive power, in [10] it was shown that this extension, with the real �eld as theunderlying structure, does not add relational expressive power: one cannot de�ne parity or transitiveclosure, and, more generally, queries that are generic in the sense of [1, 18], other than those alreadyde�nable with order. Since it is known that such expressive bounds cannot be obtained for arbitrarystructures [28], these expressiveness results give indication that relational calculi over some interpretedstructures are much more similar to pure relational calculus than others are.The constraint model also shows how issues concerning quanti�cation that do not arise in the classicaltheory come to the fore when interpreted structure is present. The `classical' interpretation of quan-ti�ers such as 9x:'(x) occurring in relational calculus expressions is that '(x) is satis�ed by someelement of the database. This is called the active-semantics interpretation of queries (or just activeinterpretation). In contrast, the the constraint model interprets 9x:'(x) as meaning that '(x) issatis�ed by some element of the underlying universe U . This is called the natural interpretation. Theissue of two semantics arises in the context of pure relational calculus, but Hull and Su [33] provedthat the expressive power of relational calculus is the same under both interpretations. This is what2



we call the natural-active collapse. (In fact, an earlier result [3] showed that in�nite domains areunnecessary for pure relational calculus.) This collapse is known not to hold over arbitrary structures,hence questions concerning the two semantics become much richer in the interpreted setting.In the �rst part of the paper, we study active-semantics queries. For those queries, we will reviewand extend a technique that has arisen recently [10, 43] in the context of �rst-order logic: genericcollapse results. These state that generic queries de�nable over interpreted structures can be de�nedwithout additional interpreted operations. We simplify the proofs so that the generic collapse resultsbecome applicable to a variety of logics, such as �xpoint, second-order, and logics with counting. Thecollapse results are then used to show that for active-semantics queries many (but not all!) traditionalrelational theory results generalize smoothly to the interpreted setting: in particular, we show thatmany of the expressive power results and query equivalence results do extend to the interpreted setting.To study the constraint model, then, we turn in the second half of this paper to the study of thenatural semantics. It might appear that we have to always develop a completely separate theory forthis new interpretation of quanti�ers, unless we can somehow show some version of the natural-activecollapse results in the constraint setting.Signi�cant progress on the issue of natural semantics expressivity was made in [45], which provedthe analog of the Hull-Su theorem for linear constraints. These results were extended to polynomialconstraints in [10] (only for generic queries) and [11] (for arbitrary queries). Although the aboveresults show how to reduce questions about natural semantics to ones concerning active semanticsfor �rst-order queries over many structures, there are a number of issues left open. In particular,the proofs in [10] and [11] are quite involved: they use techniques of nonstandard universes [19] ando-minimal structures [46, 50]. In addition, the proofs in those papers are nonconstructive. In [33](that deals with the pure case) and [45] (that deals with linear constraints), an algorithm is giventhat converts a natural query into an active one. However, in [10, 11] (which deal with polynomialconstraints and other o-minimal structures), a mere existence of such a query is proved.The main result of the second half of this paper is an algorithm for doing the conversion from naturalquanti�cation to active quanti�cation: an e�ective version of the natural-active collapse. It is hopedthat this algorithm will lay the groundwork for transforming a number of optimization algorithmsthat occur in the pure relational calculi to the interpreted setting.Our investigation of natural semantics expressivity then moves from �rst-order logic to more expressivelogics (�xpoint, second-order). We observe a new interesting phenomenon here: Even when we identifystructures over which �rst-order queries have tame behavior under the natural interpretation (forexample, hR;+; �; 0; 1; <i), �xpoint logics and second-order logic may still be too expressive. Anyrecursive query can be expressed in these languages, and under the naive interpretation of second-order quanti�ers many of the standard languages lack closure. There are numerous subclasses, however,that one can restrict to that do not arise naturally in the pure case, and which have the same closureproperties as active queries, while also admitting interesting expressive bounds. In particular, weconsider a new class of logics that we call hybrid. The idea is that �rst-order quanti�cation can stillbe interpreted naturally (that is, 9x:'(x) means '(a) for some a 2 U), but the higher-order featuresare interpreted actively. For instance, for the hybrid second-order logic, second-order quanti�ers rangeover subsets of the active domain, while �rst-order quanti�ers range over U . Similarly, �xpoints areonly taken within the active domain. Such logics are of interest in the constraint database context,since the natural versions of the higher-order constructs are not available.An interesting aspect of hybrid logics is that standard normal forms that hold straightforwardly for3



both natural and active interpretation logics become highly nontrivial in the hybrid case. We show inthe second half of the paper that the behavior of hybrid logics is close to the behavior of �rst-orderlogic. In particular, we show that for reasonably-behaved structures we can obtain standard normalforms for both �xpoint and second-order logic in the hybrid case. For arbitrary interpreted structurewe conjecture that these normal forms fail.At this point, we have a set of results on normal forms and quanti�er-bounding for the naturalsemantics; we go on to give some applications of this to the study of constraint queries. We start bygiving a set of corollaries showing expressive bounds on the relational expressive power of constraintqueries. These corollaries give, among other things, an elementary proof that parity can not be de�nedusing relational calculus with polynomial inequality constraints. This new proof completely avoidstechniques of nonstandard universes, and gives a constructive `parameterized quanti�er-elimination'procedure that can be seen as an extension of the work in [45, 6, 7, 14, 48, 47].Finally, we give corollaries on the complexity of constraint query evaluation. Since the relationalalgebra and calculus are equivalent to pure �rst-order logic, they have AC0 data complexity, cf. [1].Adding constraints increases this complexity. For instance, if multiplication is in the signature, theAC0 complexity bound is lost, cf. [15]. As an upper bound for complexity, it is known that if M =hR;+; �; 0; 1; <i, then data complexity of �rst-order queries is NC, see [36, 14]. Since AC0 � NC,one could hope for more precise information about the complexity of constraint queries over the real�eld. In the last part of the paper, we use results on bounding-quanti�cation to get tighter bounds onquery evaluation for the real �eld (the principal result being a TC0 bound); we also get complexitybounds for a variety of other languages.Organization Notations are introduced in Section 2. In Section 3, we deal with the active-semanticsinterpretation. We present the Ramsey technique (which is abstracted from the proofs in [10] and[45]), and show that it can be uniformly applied to a variety of logics (de�ned in Section 2), to obtaingeneric collapse results. This leads to a number of expressivity results for these logics over interpretedstructures. We then aim to extend these results to study the expresssive power of algebras. We �rstshow that natural extensions of relational algebra, Datalog: and While, are still equivalent with�rst-order, least- and partial-�xpoint logic over arbitrary structures. We also look at in�nitary logicwith �nitely many variables (which subsumes all �xpoint logics), and show how to extend expressivitybounds to it.In Section 4, we turn to the natural interpretation. We start by analyzing the pure case, that is, whenno interpreted operations are present. We simplify the proof of the natural-active collapse from [33]and extend it to variable-bounded fragments of �rst-order and in�nitary logic.Our main goal is to give a constructive proof of the natural-active collapse for databases over well-behaved structures. We prove that the natural and active interpretations are equally expressive overany structure that is o-minimal [46, 50] and has quanti�er elimination. Furthermore, if the quanti�er-elimination procedure is e�ective, an active-semantics formula equivalent to a natural-semantics for-mula can be e�ectively computed. We then move to higher-order logics. We introduce hybrid second-order logic (in which second-order quanti�ers range over the subsets of active domain), and hybrid�xpoint logics (in which �xpoint is taken within the active domain) and prove the natural-activecollapse for them.In section 5 we give applications of the results of the previous two sections. We derive expressivebounds on constraints queries in any nicely-behaved structure. We also apply the results of section4



4 to prove a TC0 complexity bound for �rst-order logic with polynomial constraints, thus improvingthe NC bound of [36].This paper is based on two extended abstracts that appeared in the Proceedings of the 12th Symposiumon Logic in Computer Science [11] and the Proceedings of the 16th Symposium on Principles ofDatabase Systems [12].2 NotationsDatabases over in�nite structuresIn this paper, we study databases over in�nite structures. Let M = hU ;
i be an in�nite structure,where U is an in�nite set, called the universe of the structure (in the database literature it is oftencalled domain), and 
 is a set of interpreted functions, constants, and predicates. For example, thereal �eld hR;+; �; 0; 1; <i has R (the set of real numbers) as the universe, and the signature consistsof functions + and �, constants 0 and 1, and predicate <.A (relational) database schema SC is a nonempty set of relation names fS1; : : : ; Slg with associatedarities p1; : : : ; pl > 0. Given a structure M and X � U , an instance of SC over X is a family of �nitesets, fR1; : : : ; Rlg, where Ri � Xpi . That is, each schema symbol Si of arity pi is interpreted as a�nite pi-ary relation over X. We use Inst(SC ;X) or Inst(SC;M) to denote the set of all instances ofSC over X or M.Given an instance D, adom(D) denotes its active domain, that is, the set of all elements of U thatoccur in the relations in D. If S is a new n-ary symbol not in SC and R is a �nite subset of Un, thenDR denotes the instance of SC [ fSg where S is interpreted as R.In Section 4, we will use o-minimal structures [46]. A structure M is ordered if one of the symbolsin 
 is <, interpreted as a linear order on the universe. Such a structure M is o-minimal, if everyde�nable set is a �nite union of points and open intervals fx j a < x < bg, fx j x < ag and fx j x > ag.De�nable sets are those of the form fx j M j= '(x)g, where ' is a �rst-order formula in the languageof M, possibly supplemented with symbols for constants from M.A structure admits quanti�er elimination if, for every formula '(~x), there is an equivalent quanti�er-free formula  (~x) such thatM j= 8~x:'(~x)$  (~x). A structure is recursive if its language is recursiveand validity of atomic sentences is decidable. An example of o-minimal, recursive structure havingquanti�er elimination is the real �eld hR;+; �; 0; 1; <i: since it has quanti�er elimination [48], it isdecidable, and every formula '(x) is equivalent to a Boolean combination of constraints of the formp(x) = 0 or p(x) < 0, where p is a polynomial, which implies o-minimality. Some extensions of thereal �eld are known to be o-minimal, for example, hR;+; �; exi [54].LogicsSince our goal is to develop a theory that can be used beyond the �rst-order case, we consider avariety of logics here. Fix a structureM = hU ;
i. By L(SC;
) we denote the language that consistsof the schema predicates and the symbols in 
. By FO(SC ;M) (or just FO(M) if the schema isunderstood) we denote �rst-order logic over the language L(SC;
); we use FO for �rst-order logic inthe language of the schema. We also de�ne the semantic notion D j= '(~a), where '(~x) is a formula5



and ~a a vector over U . Note that D j= 9x:'(x;~a) means that for some a0 2 U , D j= '(a0;~a). Thiscorresponds to the natural interpretation of queries, cf. [1, 33].Under the active interpretation of �rst-order logic [1, 33], 9x means that x can be found within theactive domain. To deal with this in the same framework as the natural interpretation (that is, to avoidintroduction of a di�erent notion of satisfaction), we introduce the active quanti�cation of the form9x2adom:'(x) and 8x2adom:'(x). The semantics is as follows: D j= 9x2adom:'(x;~a) if for somea0 2 adom(D), D j= '(a0;~a), and likewise for 8x2adom. Note that this restricted quanti�cation canbe expressed in �rst-order logic. We shall call a formula active if all quanti�ers in it are active. Forevery language L, its subset consisting of the active formulae is denoted by Lact .Next, we consider �xpoint extensions of �rst-order logic. The presentation here di�ers slightly fromthe standard de�nitions for the �nite [18, 21, 31, 2] or in�nite [42] case because we have a mix of thesecases: �nite structures over an in�nite universe. (This corresponds to what we called hybrid logics inthe introduction.) We say that a predicate symbol S occurs negatively in a formula ' if it occurs inS under the scope of an odd number of negations. A formula ' is positive in S if S does not occurnegatively in '.The least-�xpoint logic FO+lfp adds the following construction rule: if S is an n-ary relation symbolnot in the schema, and S occurs positively in a formula '(x1; : : : ; xn; ~y; S), and ~t is an n-vector ofvariables or terms, then [Lfp~x;S'(~x; ~y; S)](~t)is a formula, whose free variables are ~y and free variables from ~t. The semantics is as follows. GivenD 2 Inst(SC ;U) and ~a of the same length as ~y, de�ne the sequence R~a0 = ;,R~ai+1 = f(b1; : : : ; bn) 2 adom(D)n j D j= '(~b;~a;R~ai )g:It is known that this sequence is monotone: (R~ai � R~ai+1), and thus reaches a �xpoint, denoted by R~a1.Now D j= [Lfp~x;S'(~x;~a; S)](~c) i� ~c 2 R~a1. The least-�xpoint logic over the logical language L(SC ;
)will be denoted by FO+lfp(M).Note that we may have instances of �rst-order quanti�cation in least-�xpoint formulae, which areinterpreted naturally, but the �xpoint itself is always taken within the active domain, which makesthe logic hybrid: it combines both active and natural interpretations. In the pure �nite case, it isunnecessary to add parameters ~y to the iterated formula, because it does not add power [21]. Thesame is true in the pure in�nite case, that is, when R~ai+1 is constructed as the set of all tuples ~b overU that satisfy '(~b;~a). But it is not clear whether the extra parameters ~y can be dropped in hybrid�xpoint logics without losing expressiveness. We shall say that a �xpoint formula is in normal formif no application of Lfp uses these extra parameters ~y.The in
ationary-�xpoint logic FO+ifp and the partial-�xpoint logic FO+pfp are de�ned similarlyto the least-�xpoint logic. They have constructors[Ifp~x;S'(~x; ~y; S)](~t) and [Pfp~x;S'(~x; ~y; S)](~t)respectively, with no restriction on occurrences of S. The semantics is as above, where R~a1 is con-structed as follows. For FO+ifp, R~ai+1 = R~ai [ f(b1; : : : ; bn) 2 adom(D)n j DR~ai j= '(~b;~a)g (thissequence is increasing, and hence reaches a �xpoint). For FO+pfp, the sequence Ri is constructedas for the least-�xpoint, and R1 is taken to be its �xpoint, if it exists, and ; otherwise.6



The concept of a normal form is de�ned for in
ationary- and partial-�xpoint logic in the same way itwas de�ned for FO+lfp. When formulae of a �xpoint logic are restricted to normal form formulaeonly, we call such a �xpoint logic closed. In the case of �nite domain, there is no loss of expressivenessdue to restriction to the closed version of a �xpoint logic, cf. [1, 21].We also consider logic with counting, FO+count(M). The presentation we use follows [23]. Thislogic is two-sorted. A �nite structure overM is of the form hfa1; : : : ; ang; f1; : : : ; ng; R1; : : : ; Rl; 1; n;<;+; �i. Here fa1; : : : ; ang � U , and the SC-relations Ris are interpreted over fa1; : : : ; ang, while<;+; �refer to the sort of natural numbers. Here we use + and � as ternary predicates. FO+count(M)extends FO(M) by counting quanti�ers 9ix where i refers to the sort of natural numbers, and x refersto the �rst sort. This quanti�er, that binds x but not i, says that there are at least i satis�ers of'. For example, 9!ix'(x) � (9ix'(x)) ^ 8j(9jx'(x) ! j � i) says that there are exactly i elementssatisfying '(�), and 9i; j(j + j = i) ^ (9!ix'(x)) says that the number of satis�ers of ' is even { thisis known not to be de�nable in FO.The hybrid second-order logic HSO permits second-order quanti�ers 9S and 8S which are interpretedas follows: D j= 9S:'(S), where S is k-ary, i� there exists a set R � adom(D)k such that DR j= '.Note that this notion is even weaker than weak second-order, where second-order quanti�ers range over�nite sets. We use SO for full second-order logic (k-ary second-order quanti�ers range over subsets ofUk). Formulae of SO or SOact can be converted into normal form Q1S1 : : : QkSk: where QiSi aresecond-order quanti�ers, and  is �rst-order. In the case of HSO, it is not immediately clear if thesame is true (see Corollary 11).While all these logics are relevant to database query languages (as we shall see shortly), we shall alsoconsider in�nitary logic, which is of interest in �nite-model theory, as logic which subsumes �xpointlogics and possesses nice properties, such as 0-1 law [39]. It is de�ned exactly as �rst-order logic,except that arbitrary disjunctions and conjunctions are allowed. That is, if f'i(~x)g is an arbitrarycollection of formulae, then Wi 'i(~x) and Vi 'i(~x) are formulae. We use L1! to denote in�nitarylogic.Suppose L is one of the logics introduced above, but the formation rules are modi�ed so that only�nitely many variables, x1; : : : ; xk, can be used in formulae. The restriction thus obtained is denotedby Lk . For example, Lk1! is in�nitary logic with k variables. We use L!1! for Sk2N Lk1!.In the absence of interpreted symbols in 
, we speak of a pure logic (over a schema SC).Queries de�nable by logicsA query is a mapping from Inst(SC1) to Inst(SC2), where SC1 and SC2 are two schemas. Forsimplicity of exposition, assume that SC2 consists of a single p-ary relation. Given a logic L and astructure M, we say that a query Q is L-de�nable over M (or L(M)-de�nable) if there exists an Lformula '(x1; : : : ; xp) in the language L(SC1;
) such that Q(D) = f~a j D j= '(~a)g. We denote thisquery by Q'.For the special case of M being hU ; <i, we write L(<) instead of L(hU ; <i).As in the case of relational calculus and algebra, we often consider queries that do not extend theactive domain. Thus, we de�ne the query Qact' by Qact' (D) = f~a 2 adom(D)p j D j= '(~a)g. Note thatany query Q obtained in such a way is domain-preserving: adom(Q(D)) � adom(D).7



Query languagesRelational calculus is just �rst-order logic over the database schema: its expressions are of the forme = f~x j '(~x)g where '(~x) is a FO formula in the language of the schema relations. By the Hull-Sutheorem, we can use FOact expressions. We use Calc to denote the family of all calculus queriesunder the active interpretation (that is, Qact' ), and Alg to denote relational algebra. It is a classicalresult of relational theory that Calc = Alg.We consider Datalog:, which is datalog with negation allowed in bodies of rules. That is, a rule isof the form H :{ B1; : : : ; Bn, n � 0, where each Bi is an atom or a negated atom, and H is an atom.Following [1, 2], we give it a simple in
ationary semantics. That is, each iteration infers new facts andadds them to the facts already inferred; thus, a �xpoint is always reached.We also consider the While language. It extends Alg by allowing the statement (while change begine end) where e is an expression [2, 1, 18]. It iterates e as long as it changes at least one relation.A While statement is either an assignment of the form V :=E, where V is a variable and E is anexpression, or a while expression above. A While program is a sequence of while statements. See[1, 2] for more details.Equivalences for the �nite domainQuery languages introduced here have been studied in depth in the classical relational theory. Manyequivalence results are known in the pure �nite case. By the pure �nite case we mean this: the onlyfree nonlogical symbols are the schema relations, queries are interpreted actively and their outputsare restricted to the active domain. That is, a query does not extend the active domain, and allquanti�cation is active. Below we list some of the most important equivalences.First, Calc = Alg = FO [1]. Similar equivalences have been obtained in the case of interpretedoperations (with some restrictions) given by abstract datatypes, see [8]. For �xpoint logics, FO+lfp =FO+ifp = Datalog: [2, 31] and While = FO+pfp [2].In the presence of an order relation, these equivalences continue to hold and, in addition, FO+lfpcaptures all generic PTIME queries, and FO+pfp captures all generic PSPACE queries [34, 52]. Also,in the presence of order, FO+count captures uniform TC0 [5, 23].FO+count is closely connected to to relational languages with aggregates; this connection, hintedat in [40], was explicitly shown in [41]. Second-order logic was shown to be relevant to the studyof languages for complex objects, see [32]. L!1! is of interest in �nite-model theory because itsubsumes �xpoint logics. Variable-bounded logics are studied primarily in (�nite) model theory, but[53] demonstrated nice connections with expression and combined complexity.GenericityA query Q (that is, a mapping from Inst(SC1;X) to Inst(SC2;X)) is totally generic [10] if, forany D 2 Inst(SC1) and any injective map � : adom(D) [ adom(Q(D)) ! X, it is the case thatQ(�(D)) = �(Q(D)). A query is locally generic [10] if X is ordered, and the above holds for anyinjective monotone �. Clearly, total genericity implies local genericity. Examples of generic (locally ortotally) queries are any Alg, Datalog: orWhile query, when no interpreted operations are present.Example of a locally but not totally generic query is Q(S1; S2) � 8x8y:S1(x) ^ S2(y) ! x < y.8



Also note that totally and locally generic queries that return �nite results are domain-preserving:adom(Q(D)) � adom(D), see [10]. For more of genericity, see [1, 9, 10].3 Active interpretationThe active interpretation does not allow a query to ask any question about what is outside of the �nitedatabase: while an in�nite structure is there, and we can even see a small part of it, we cannot askmuch about it. So, how much more does the mere presence of this structure add to the expressivenessof query languages? The answer is { practically nothing. We start by proving this result for a variety oflogics. Then we show that many of the equivalences among languages continue to hold, when languagesare appropriately modi�ed. We derive some complexity corollaries, and also consider in�nitary logicas a separate case.Note: in this section we only deal with active quanti�cation, so we write L instead of Lact . Similarly,we write Q' instead of Qact' , since the natural semantics case is not considered in this section.3.1 Ramsey property and expressivity boundsThe main goal of this section is to prove generic collapse results for a number of logics. We say thata logic L has a locally generic collapse over an ordered structure M = hU ;
i if, for every schemaSC, every L(M)-de�nable locally generic query on SC-databases, is already L(<)-de�nable. That is,M is as expressive as just the order relation, with respect to locally generic queries. A logic L has ageneric collapse over a structureM if every L(M)-de�nable totally generic query on SC-databases isde�nable in pure L.This problem of collapsing signatures for the active quanti�cation was considered for �rst-order logic in[10] and independently in [43]. However, the techniques in [10] relied heavily on translation into prenexform, and the extension to second-order logic in [11] was ad hoc. In [43], an elementary extension isused that possesses a set of indiscernibles, and it is unclear whether this technique works beyond the�rst-order case.However, we show here that the technique of [10, 11] can be modi�ed so that it can be applied toa variety of other logics. In particular, we show that a proof based on Ramsey's theorem [27], canproceed inductively on the structure of a formula, thus making it unnecessary to impose syntacticrestrictions. Consequently, we get a series of results that give us expressivity bounds for logics underthe active interpretation.De�nition 1 Let L be a logic. We say that it has a Ramsey property over an ordered structureM = hU ;
i if, for any SC, the following is true:Let '(~x) be an L-formula in the language L(SC;
), and X an in�nite subset of U . Thenthere exists an in�nite set Y � X and a L(SC ; <) formula  (~x) such that for any D 2Inst(SC; Y ) and any ~a over Y , it is the case that D j= '(~a)$  (~a).We also speak of a formula ' having the Ramsey property if the above is true. We speak of the totalRamsey property if  is a L(SC) formula. 9



As was shown previously [10, 11], the Ramsey property implies the following collapse for genericqueries:Lemma 1 (Generic Collapse Lemma)1. If L has the Ramsey property over M = hU ;
i, and every L(<)-query is locally generic, then Lhas the locally generic collapse over M.2. If L has the total Ramsey property over M, and every L-query is totally generic, then L has thegeneric collapse over M.Proof. Let Q be a locally generic query de�nable in L(M). By the Ramsey property, we �nd an in�niteX � U and a L(hU ; <i)-de�nable Q0 that coincide on X. We claim they coincide everywhere. LetD 2 Inst(M). Since X is in�nite, there exists partial monotone injective map � from adom(D) intoX. Since Q0 is locally generic and thus Q and Q0 do not extend active domains, we have �(Q(D)) =Q(�D) = Q0(�D) = �(Q0(D)) from which Q(D) = Q0(D) follows. 2The condition that every L(<)-query is locally generic, and every L-query is totally generic, holds forall the logics we introduced. Thus, to limit their expressiveness over in�nite structures, we have toprove the Ramsey property. First, we state a simple lemma that is often used as a �rst step in suchproofs.Lemma 2 Let '(~x) be an L formula in the language L(SC ;
), where L is one of the logics introducedin the previous section. Then there exists an equivalent formula  (~x) such that every atomic subformulaof  is either an L(SC) formula, or a L(
) formula. Furthermore, for any set ~z � ~x of free variablesof ', there is an equivalent formula  (~x) such that none of variables ~z occurs in an L(SC)-atomicformula.Proof. Introduce m fresh variables z1; : : : ; zm, where m is the maximal arity of a relation in SC,and replace any atomic formula of the form R(t1(~y); : : : ; tl(~y)), where l � m and the tis are 
-terms,by 9z1 2 adom : : : 9zl 2 adom:Vi(zi = ti(~y)) ^ R(z1; : : : ; zl). Similarly use existential quanti�ers toeliminate ~z-variables from L(SC)-atomic formulae. 2The key in the inductive proofs of the Ramsey property is the case of 
-atomic subformulae. Thiswas the key idea of the proof for the �rst-order case in [10], though the lemma below was not statedexplicitly.Lemma 3 Let M = hU ;
i be an in�nite ordered structure, and '(~x) an atomic formula. Then 'has the Ramsey property.Proof. We show that any in�nite X � U contains an in�nite sequence indiscernible for ' and everysubformula of ' obtained by collapsing two or more variables. Let ~x = (x1; : : : ; xl), and let Part�(~x)be the set of ordered partitions on fx1; : : : ; xlg; that is, partitions with an order relation � on theblocks. For each P 2 Part�(~x), let �(P ) be a <-formula specifying the partition, and let '=P be 'in which a representative for a block in P replaces every occurrence of every variable from that block.Then M j= '(~x)$ WP2Part�(~x)(�(P ) ^ '=P ). 10



Let Z � U be an in�nite set, and P an ordered partition of fx1; : : : ; xlg. Let y1; : : : ; ys be represen-tatives of blocks of P such that j= �(P )! Vi<j(yi < yj). By Ramsey's theorem [27], there exists anin�nite subset ZP � Z such that either for every ordered tuple (c1; : : : ; cs); c1 < : : : < cs, of elements ofZP it is the case that j= '=P (~c)$ T, or for every such ordered tuple it is the case that j= '=P (~c)$ F.Consequently, either j= (�(P ) ^ '=P )$ �(P ) for every ~x over ZP , or j= (�(P ) ^ '=P )$ F for every~x over ZP .Now let P1; : : : ; Pk be some enumeration of the (�nite) set Part�(~x). Let Z0 = U , Z1 = Z0P1 ; : : : ; Zi =Zi�1Pi ; : : : ; Zk = Zk�1Pk . Then it follows that over Zk, ' is equivalent to a Boolean combination of atomicL(<)-formulae, thus proving the lemma. 2Now an inductive argument proves:Proposition 1 The following have the Ramsey property:� FO;� FO+lfp;� FO+ifp;� FO+pfp;� FO+count;� SO.Proof. Fix a structure M and a schema SC. By Lemma 2 we assume without loss of generality thatevery atomic subformula is a L(SC) formula or a L(
) formula. We prove the theorem by inductionon the formula. We start with the FO case.The base cases are obvious: for a L(SC) formula, there is no need to change the formula or �nd asubset, and for a L(
) atomic formula it is given by Lemma 3.Let '(~x) = '1(~x)^ '2(~x), and X � U in�nite. First, �nd  1, Y1 � X such that for any D and ~a overY1, D j= '1(~a) $  1(~a). Next, by using the hypothesis for '2 and Y1, �nd an in�nite Y2 � Y1 suchthat for any D and ~a over Y2, D j= '2(~a)$  2(~a). Then take  =  1 ^  2 and Y = Y2. The case of' = :'0 is trivial.For the existential case, let '(~x) = 9y2 adom:'1(y; ~x). By the hypothesis, �nd Y � X and  1(y; ~x)such that for any D and ~a over Y and any b 2 Y we have D j= '1(b;~a) $  1(b;~a). Let  (~x) = 9y2adom: 1(y; ~x). Then, for any D and ~a over Y , D j=  (~a) i� D j=  1(b;~a) for some b 2 adom(D) i�D j= '1(b;~a) for some b 2 adom(D) i� D j= '1(~a), thus �nishing the proof for the FO case.Before we give the proof for the �xpoint logics, note that if a schema predicate occurs only positivelyin ', then it occurs only positively in the formula  constructed by the above inductive argument.Also note that the separation Lemma 2 does not change positive occurrences to negative and viceversa.Proof for FO+lfp. The proof is by induction on syntactic complexity, that is, the total number ofoccurrences of the Boolean connectives, quanti�ers, and the Lfp operator. Since we are dealing with11



the �nite case, we assume that that we only have closed �xpoint formulae. The basis cases and thecases of Boolean connectives and quanti�ers are proved as before.Let S be a new n-ary relation symbol that occurs positively in a L(SC [ fSg;
) formula �(~x),and let '(~y) = Lfp~x;S [�(~x; S)](t1(~y); : : : ; tn(~y)). We can assume without loss of generality that the�xpoint formula is applied to a vector of variables, since '(~y) is equivalent to 9z1 2 adom : : : 9zn 2adom:Lfp~x;S[�(~x; S)](~z) ^Vi(zi = ti(~y)).Given in�nite X � U , we use the hypothesis to �nd an in�nite Y � X and a L(SC [ fSg; <) formula�(~x) such that for any SC[fSg-database DR 2 Inst(SC[fSg; Y ) it is the case thatDR j= �(~a)$ �(~a)for all ~a 2 Y n; also, we see that S occurs positively in �.Now, �x D 2 Inst(SC ; Y ) and ~a 2 Y n, and de�ne R0(�) = ;, andRi(�) = f~b j ~b � adom(D);DRi�1(�) j= �(~b)g;and similarly de�ne Ri(�).To show that D j= Lfp~x;S [�(~x; S)](~a)$ Lfp~x;S[�(~x; S)](~a), it is enough to show that Ri(�) = Ri(�)for all i. We do this by induction on i: �rst, R0(�) = R0(�), and if Ri(�) = Ri(�) = Ri, thenDRi j= �(~b) $ �(~b) for any ~b over adom(D) by the hypothesis, so we get Ri+1(�) = Ri+1(�). Thiscompletes the proof for FO+lfp.The proof for FO+ifp and FO+pfp follows along the same lines (it is, in fact, simpler, because onedoes not need to worry about positiveness).For FO+count, one has to add a new case to the basis (atomic formulae of the second sort), and twonew cases for the inductive proof. One is the second-sort quanti�cation, which poses no problem, andthe other is 9ix:'(x; ~z). For this case one applies the hypothesis to ' to get an equivalent formula  over some in�nite set Y , and then 9ix: (x; ~y) is the required formula, because i satis�ers of ' overthe active domain also satisfy  .To prove the statement for SO, one has to add a new case of the second-order quanti�ers. We omitthe easy proof. 2Corollary 1 Each of the logics in Proposition 1 has locally generic collapse.The main technique of the proof can easily be extended to other logics, (e.g., transitive closure logics[21]).Total Ramsey property and generic collapseIt is clear from the proof of Proposition 1 that only the case of atomic L(
) formulae requires theintroduction of the order relation. Thus, if atomic L(
) formulae had the total Ramsey propertyover M, so would all of the logics in the statement of Proposition 1. We call a signature 
 analyticon R if it consists of real-analytic functions. For example, (+; �) is an analytic signature. For thosesignatures, we can prove the generic collapse result. First, we needLemma 4 Let F = ffi(~x)gi2I be a countable family of real-analytic functions, where ~x = (x1; : : : ; xl).Assume that none of the functions in F is identically zero. Let X � R be a set of cardinality of the12



continuum. Then it is possible to �nd a set Y � X of cardinality of the continuum such that for anytuple ~c of l distinct elements of Y , none of fi(~c); i 2 I, equals zero.Proof. We need some notation �rst. Let f be a function, with xi1 ; : : : ; xik being some of its parameters.Let ci1 ; : : : ; cik 2 R. Then f [ci1=xi1 ; : : : ; cik=xik ] denotes the function obtained from f by substitutingcij for xij ; this function has k fewer parameters than f . Since composition of real-analytic functionsis real-analytic again, this function is real-analytic if so is f .Let A � X. We say that A is (F ;X)-nice if A is in�nite and for any tuple ~c of l distinct elements ofA, none of fi(~c) equals zero. We �rst prove that there exists a (F ;X)-nice set. Note that if C � R iscountable andH is a countable collection of real-analytic functions with at most l parameters x1; : : : ; xl,and none of the functions in H is identically zero, then there exists c 2 R � C such that none of thefunctions of form h[c=xi], h 2 H, is identically zero. Indeed, for any function h(xi1 ; : : : ; xik+1), onecan �nd a vector (c1; : : : ; ck) such that h0(xik+1) = h[c1=xi1 ; : : : ; ck=xik ] is not identically zero. Sinceh0 is still analytic, its set of zeros Z(h; k + 1) is at most countable. Similarly de�ne sets Z(h; i)for every 1 � i � l, assuming such set to be empty if xi is not a parameter of h. Now the setZ = Sh2H;1�i�l Z(h; i) is countable, and thus any c 2 R � (Z [ C) proves our observation. Thisobservation gives us a simple inductive construction that leads to a countable (F ;X)-nice set.It is easy to see that the union of a chain of (F ;X)-nice sets is F-nice again; thus there exists amaximal F-nice set by Zorn's lemma. Let Y be a maximal F-nice set. To conclude the proof of thelemma, we will show that Y has the cardinality of the continuum.Let � be the cardinality of Y ; assume that � is less than the cardinality of the continuum. Considerthe set G of all functions of the form g(xi) = f [c1=x1; : : : ; cl=xl] where f 2 F and substitution occursin all positions except the ith one, and all cjs are distinct elements of Y . Then the cardinality of G isstill �.Furthermore, each function in G is real-analytic, and not identically zero, since no f from F is zeroon any vector of distinct elements from Y . Let Zg be the the set of zeros of g 2 G. Since each g 2 Gis real-analytic, Zg is at most countable. Furthermore, the cardinality of Z = Sg2G Zg is at most�. Hence, there exists a 2 X � (Y [ Z). But now it follows from our construction that Y [ fag is(F ;X)-nice, thus contradicting the maximality of Y . This shows that Y has the cardinality of thecontinuum and completes the proof of the lemma.Immediately from here we deriveLemma 5 Let M = hR;
i, where 
 is analytic. Let '(~x) be an atomic L(
) formula. Then '(~x)has the total Ramsey property.Proof. If ' is always true or always false, we are done. Otherwise, it is of the form f1(~x) = f2(~x),where ~x = (x1; : : : ; xl); l > 0. Let �P be a formula specifying a partition of indexes f1; : : : ; lg, e.g.,(x1 = x2) ^ (x3 = x4) ^ :(x1 = x3) speci�es the partition ff1; 2g; f3; 4gg. Rewrite f1 and f2 to fP1and fP2 by replacing each variable with an index belonging to a block of P by one representative ofthis block; thus, fP1 and fP2 are function in mP variables, where mP is the number of blocks of P . Forexample, if f1(x1; : : : ; x4) = x1x2+x3x4, then for the partition P above we have fP1 (x1; x3) = x21+x23.Now, by Lemma 4, if fP1 � fP2 is not identically zero, then for any uncountable X � R, there is anuncountable Y � X such that for every ~c of mP distinct elements over Y , fP1 (~c) 6= fP2 (~c). Thus, usingan argument similar to that in the proof of Lemma 3, we get that over some uncountable set X � R,' is equivalent to W�P where P ranges over some set of partitions of f1; : : : ; lg. 213



We now combine this lemma with the proof of Proposition 1 to obtainCorollary 2 If M = hR;
i, where 
 is analytic, and L is FO, or FO+lfp, or FO+pfp, orFO+ifp, or FO+count, or SO, then L has the total Ramsey property over M. 2From Proposition 1 and corollary 2 we obtain the main result of this section.Theorem 1 Let L be FO, or FO+lfp, or FO+pfp, or FO+ifp, or FO+count, or SO. LetM = hU ;
i be an arbitrary ordered structure. Then L has locally generic collapse over M. IfM = hR;
i, where 
 is analytic, then L has generic collapse over M. 2This can be used to derive expressivity results for higher-order logic under the active-domain semantics.For example, from the 0-1 law for FO+pfp [38], one can getCorollary 3 Parity test is not de�nable in FO+pfp(hR;+; �i). 23.2 In�nitary logicHere we extend our results to in�nitary logic. We are not interested in the full in�nitary logic L1!,nor L!1! over ordered structures, because they express every property of �nite structures [20]. Thus,we concentrate on L!1! over unordered structures.We cannot use the inductive argument of Proposition 1 anymore, because it does not work for in�nitaryformulae. Indeed, for in�nitary disjunction W'i, one would construct a decreasing family of in�nitesets X1 � X2 � : : :, but its intersection TiXi is not guaranteed to be in�nite. Thus, we use theapproach that is closer to the proof of the collapse of generic queries for FO in [43].Proposition 2 Let M = hR;
i where 
 is analytic, and has countably many symbols. Then L!1!has generic collapse over M.Proof. Let '(~x) be a L!1! formula in L(SC;
). Assume it uses k variables. Since the number ofatomic L(SC;
) formulae in �nitely many variables is at most countable, we can assume that all thein�nitary disjunctions and conjunctions are countable, and that the collection of atomic subformulaeof ' is countable. As before, we assume without loss of generality that every atomic subformula of' is either a L(SC) formula or a L(
) formula. (We need at most m extra variable for existentialquanti�ers, where m is the maximum arity of a schema relation.)Let 
i(~z), i 2 I be the collection of all L(
) atomic subformulae of ', where ~z = (z1; : : : ; zk). Eachis of the form f1i(~z) = f2i(~z), where f1i and f1i are 
-terms, that is, real-analytic functions. Letgi(~z) = f1i(~z)� f2i(~z).Now, as in the proof of Lemma 5, let �P (~z) be a formula specifying a partition P on fz1; : : : ; zkg, andlet gP (~z) be a function obtained from g by identifying variables that belong to the block of a partition;the number of parameters of this function equals the number of blocks of P . For each function gi(~z),let Pi = fP j gPi is identically zerog. Let�i(~z) � _P2Pi �P (~z) ^ : _P 62Pi �P (~z):14



Now de�ne a family of functions G as [i2IfgPi j P 62 Pig:Note that all functions in G are real-analytic, and none of them is identically zero. Applying Lemma4 to G, we �nd an in�nite (in fact, uncountable) set X � R such that for any g 2 G and for any ~cconsisiting of distinct elements of X, g(~c) 6= 0. Let '0(~z) be obtained from ' by replacing each 
i(~z)with �i(~z). Now a straightforward induction on the structure of ' shows that for any D 2 Inst(SC;X)and for any ~c over X, D j= '(~c) $ '0(~c). This shows that L!1! has the total Ramsey property overM, and thus it has generic collapse over M. 2Using the 0-1 law for in�nitary logic [39], we obtain:Corollary 4 The parity test is not de�nable as a L!1!(hR;+; �i) query. 23.3 Equivalence results and extensions to algebraWe now want to extend the results above to the setting of relational algebras. In this section we showthat a number of well-known results on equivalence between logics and relational query languagesgeneralize straightforwardly in the presence of interpreted structures. We then use this to extend ourresults on expressivity of languages to relational algebra.As explained before, for every logic L, a L(M) formula '(~x) with n free variables in the languageL(SC ;
), de�nes a query Q' on Inst(SC;U) such that Q(D) = f~a 2 adom(D)n j D j= '(~a)g. Thatis, we consider only active domain quanti�cation, and queries that do not extend the active domain.We de�ne the calculus over M, denoted by Calc(M) simply as FO(M). More precisely, its expres-sions are of the form e = f~x j '(~x)g, where ' is a FOact(M) formula. An algebra over M, denotedby Alg(M), contains all the same operations as relational algebra Alg; the only di�erence is theselection predicates. De�ne selection terms by the grammar st := #i j f(st; : : : ; st) where f rangesover the function symbols in 
. Then, selection conditions are given by sc := C(st; : : : ; st) j st =st j :sc j sc _ sc, where C ranges over the predicates in 
. For example, �#1�#2>#1+#3(R) is analgebra expression that selects triples (x; y; z) from R such that x � y > x+ z. Similar extensions existin the literature, see, for example, [22]. A simple extension of the classical equivalence Calc = Algyields the following.Proposition 3 For any M, Calc(M) = Alg(M).Proof sketch. The proof follows the standard proof of the equivalence of calculus and algebra, cf. [1].The extension of the translation from Alg(M) to Calc(M) is simple: if e is translated into '(~x),then �sc(e) is translated into '(~x)^sc(~x), where sc(~x) is obtained from sc by replacing #i with xi. Forthe reverse translation, we assume without loss of generality that in formula ' atomic subformulae areseparated by Lemma 2. Then we only have to deal with an additional case of L(
) atomic formulae.Given such an atomic formula  (~x) where ~x is of length n, we have to �nd a Alg(M) expressione such that for every D, e(D) = f~a 2 adom(D)n j D j=  (~a)g. Let e0 be an Alg expression thatconstructs the active domain. Then e(D) = �sc(e0(D) � : : : � e0(D)), where the product is taken ntimes, and sc is obtained from  by replacing xi with #i. 215



Next, we consider Datalog:(M), which extends Datalog: by allowing L(
)-atomic formulae inthe bodies of rules. For example, if U = R and 
 contains addition, then the following Datalog:(M)program R(x; y) :{ E(x; y); x > y + yR(x; y) :{ E(x; z); x > z + z;R(z; y)de�nes the transitive closure of a subgraph that consists of the edges (x; y) with x > 2y. We assumethat Datalog: programs are evaluated in
ationarily.Proposition 4 For any M, Datalog:(M) = FO+ifp(M) = FO+lfp(M).Proof. Given a FO+ifp(M) formula '(~x), we �rst transform it into an equivalent formula  (~x)such that every atomic subformula is either a L(SC) formula, or a L(
) formula, and every �xpointformula is applied to a vector of variables, cf. Lemma 2 and the proof of Proposition 1. Let A =f�1(~x1); : : : ; �k(~xk)g be the collection of all L(
) atomic subformulae of  . Let T1; : : : ; Tk be newrelation symbols of the same arities as ~x1; : : : ; ~xk. Let  T (~x) be a L(SC [ ~T ) formula obtained from  by replacing each �i(~xi) with Ti(~xi). Finally, for any database D, let D~T be a SC [ ~T instance whereTi is interpreted by f~a 2 adom(D)arity(~xi) j D j= �(~xi)g. Then D j=  (~a) i� DT j=  T (~a) for every~a 2 adom(D)n.Now, according to [2], there exists a Datalog: program P that uses the schema relations and Ti asedb relations such that for any SC[ ~T instance D, P computes Q T (D). Thus, if P is preceded by therules that �rst de�ne the unary predicate Adom that computes the active domain of the SC relations,and then Ti(x1; : : : ; xl) :{ Adom(x1); : : :Adom(xl); �i(x1; : : : ; xl)for each Ti, then the resulting program P 0 (in which Tis are now idb relations) computes Q (D) for anyD 2 Inst(SC ;M). Since  and ' are equivalent, we obtain that Q' is computed by a Datalog:(M)program.For the reverse inclusion Datalog:(M) � FO+ifp(M), we start with a Datalog:(M) programP . Assume without loss of generality that it computes one relation. Construct a new program P 0 byreplacing each L(
)-atom �i(~xi) in a rule of P by Ti(~xi) where Ti is a new relational symbol. If wede�ne DT as before, then P 0(DT ) = P (D) for every D. By [2], there exists a FO+ifp expression 'in the language L(SC [ ~T ) such that Q'(D) = P 0(D) for every D 2 Inst(SC [ ~T ). Let  be obtainedfrom ' by replacing each occurrence of Ti(~z) with �i(~z). A simple induction on the structure of theformula shows that D j=  (~a) i� DT j= '(~a) for each ~a of elements of adom(D). Then, for everyD 2 Inst(SC ;M) we have: Q (D) = Q'(DT ) = P 0(DT ) = P (D). Thus, P is equivalent to  .Finally, we have to show FO+ifp(M) � FO+lfp(M). The proof follows along the same line: replaceeach L(
)-atomic formulae by a new predicate, and then use the result of [31] to �nd an equivalentleast-�xpoint formula in the extended relational signature. Then replace the new predicates by theL(
) atomic formulae that de�ne them. 2Finally, considerWhile(M) which extends While by allowing Alg(M) expressions in place of Algexpressions. Extending the While = FO+pfp equivalence, we getProposition 5 For any M, While(M) = FO+pfp(M).16



Proof sketch. We follow the main idea of the proof of Proposition 4. To translate from While(M)into FO+pfp(M), consider a While program P . Get a new While program P 0 by replacing eachoccurrence of �sc(e) in P , where e is n-ary, with e\Tsc, where Tsc is a new relational symbol. Extendany SC-database D to DT over a new schema that contains all Tscs by interpreting Tsc as a set ofall n-ary tuples over the active domain that satisfy sc. Then P (D) = P 0(DT ). By [2], there exists aFO+pfp expression ' such that P 0(DT ) = Q'(DT ). Now, as before, replace Tsc in ' by a �rst-orderformula that de�nes it, to get a FO+pfp(M) formula  such that Q (D) = Q'(DT ) = P 0(DT ) =P (D). The reverse inclusion is similar. 2We now combine these results with the Ramsey technique to get expressivity bounds on the active-semantics queries over interpreted structures.Corollary 51. Let M be an arbitrary ordered in�nite structure. Then, for locally generic queries, Alg(M) =Alg(<), Datalog:(M) = Datalog:(<), and While(M) =While(<).2. If M = hR;
i where 
 consists of real-analytic functions, then every totally generic queryin Alg(M), Datalog:(M) and While(M) is de�nable in Alg, Datalog: and While,respectively. Furthermore, the parity test is not de�nable in any of these languages. 2The above results indicate that, with some e�ort, many of the results for pure calculi extend to activesemantics in the presence of arbitrary interpreted structure. However, there are cases where extensionsare dependent on speci�c properties of the interpreted structure, even in the case of active-semanticsqueries. One area where this happens in query safety over interpreted structures, explored in detailin [13]. We call an active formula '(~x) in L(SC;
) is safe for an instance D if Q'(D) is �nite. In [13]it is shown that if M = hR;+; �; 0; 1; <i, then there is a recursive function that takes such a formula'(~x), and outputs another active-semantics formula 'safe(~z) such that Q'safe(D) equals Q'(D) if ' issafe for D, and ; otherwise. However, there are structures of N with all computable predicates in thesignature for which no such translation { recursive or not { can exist.4 Natural semanticsSo far we have produced a set of techniques that can be applied to analyze expressiveness and com-plexity of `classical' active-semantics queries in a variety of languages. We now want to consider how toapproach natural semantics queries, which are essential for constraint databases. It appears that thiscase is \in�nitely" harder than the active case, because now we can ask questions about any elementin the universe. Thus, the proviso of the previous section that only active formulae are considered andthat L is used in place of Lact is not in force in this section.The main kind of result we prove here is that for certain structuresM, there is no gain in expressivenessby going from the active interpretation to the natural interpretation. That is, we say that a logic Ladmits the natural-active collapse over M if L(M) = Lact(M); in other words, for every schema andevery L-formula '(~x) in the language L(SC;
), there exists an equivalent active formula  (~x) in thesame language. 17



The Hull-Su theorem mentioned in the introduction states that pure FO admits the natural-activecollapse. But this result is not robust: if N = hN;+; �; 0; 1i, then every recursive query is de�nable inFO(N ) [28], but FOact(N ) cannot express parity (see Theorem 1); thus FOact(N ) 6= FO(N ).It was further shown that FO admits the natural-active collapse over hR;+;�; 0; 1; <i [45]. One mightask whether a similar result holds for other structures, and for other logics. Our main goal here isto give positive answers to both questions. We extend the natural-active collapse for structures thathave same model-theoretic properties as the real �eld hR;+; �; 0; 1; <i, and to some higher-order logics.In addition to proving such results, we are also interested in �nding algorithms that convert naturalqueries into active queries.We start by giving a new simple proof of the Hull-Su theorem, that can then be extended to show thatFOk collapses to FOkact. We extend this result to in�nitary logic. We then present our main result,which is a constructive proof that FO(M) = FOact(M) when M is o-minimal and admits quanti�erelimination; the transformation from a natural-semantics formula into an equivalent active-semanticsone is e�ective if so is the quanti�er elimination for the underlying structure. We then extend thisresult to some higher-order logics. This must be done with care, as for unrestricted �xpoint logicsand second-order logics, the set of natural numbers is de�nable in nice structures such as the real�eld. However, by restricting them to their hybrid versions, we recover the natural-active collapse.We conclude by giving an example of a structure with a decidable �rst-order theory over which thenatural-active collapse fails. This answers an open question from [28].4.1 Natural-active collapse in the pure caseOur goal is to have a set of general algorithms for collapsing natural queries to active over interpretedstructures. We start with the pure case, and give new algorithms for several logics. We also give asimple constructive proof of the Hull-Su theorem. Theorem 3 re�nes it to work with variable-boundedlogics. These ideas will be expanded upon to deal with interpreted structures. The original proofin [33] is algorithmic but quite complex. In a recent paper [16], a simpler proof is given that usesmany-sorted logic. Below we sketch a simple direct proof.Theorem 2 (Hull-Su) FO = FOact.Proof sketch. The proof is by induction on the structure of the formula. The cases of atomic formulaeand Boolean connectives are obvious. For the existential case, we de�ne a transformation [
]x thateliminates all free occurrences of variable x:� If 
 is (x = x), then [
]x = T;� If 
 is (x = y) or R(: : : ; x; : : :), then [
]x = F;� If 
 is any other atomic formula, then [
]x = 
;� If 
 = 
1 _ 
2, then [
]x = [
1]x _ [
2]x;� If 
 = :
0, then [
]x = :[
0]x;� If 
 = 9y2adom:
0, then [
]x = 9y2adom:[
0]x.18



Let '(~z) = 9x:�(x; ~z) where z = (z1; : : : ; zn). By the hypothesis, � is equivalent to an active formula�0(x; ~z). Assume without loss of generality that �0 is in prenex form, and x is not a bound variable inany subformula of �0.De�ne '0(~z) = 9x 2 adom:�0(x; ~z), 'i(~z) = �0(zi; ~z) and '1(~z) = [�0(x; ~z)]x. Let '0(~z) = '0 _(Wni=1 'i)_'1. Then a straightforward proof shows that D j= '(~a)$ '0(~a) for every instance D and~a 2 Un. 2The idea behind this proof can be implemented a bit more carefully to yield the following strongerresult:Theorem 3 FOk and Lk1! admit the natural-active collapse: FOk = FOkact and Lk1! = (Lk1!)act.Proof is again by induction on formulae. We do the proof for in�nitary formulae, and then the resultfor FOk follows as a special case (when all disjunctions are �nite). The base case of atomic formulae(y = z) or R(x1; : : : ; xp) is obvious, and so are the cases of the Boolean connectives as well as in�nitedisjunction Wi 'i. We extend the de�nition of [
]x from the previous proof to in�nitary formulae by[Wi 
i]x = Wi[
i]x.Now let '(~z) = 9x:�(x; ~z) where � is, by induction, an active Lk1! formula. First, do the followingwith �: introduce new variables x0 and z0i for each zi in ~z. For every quanti�er Qx or Qzi in �, replaceit with Qx0 or Qz0i, and replace all occurrences of x or zi bound by this quanti�er by x0 and z0i. It iseasy to see that we get an equivalent formula �(x; ~z) that uses at most 2k variables. Note that in �, xand ~z are not used as bound variables; also, x and ~z do not occur under the scope of quanti�ers thatbind x0 and z0i.Below is the key claim, that is proved by straightforward induction on the complexity of the formula.Claim 1 Let �(x; ~z; ~w) be an active L!1! formula such that x and ~z are not used as bound variables.Given a D with A = adom(D), a vector ~a over U and a vector ~c over A, then for any b not in A andnot in ~a we have: D j= �(b;~a;~c) i� D j= [�]x(~a;~c)Proof of claim: For atomic formulae, it follows from the de�nition of [
]x and the fact that b isnot in A and not in ~a. The proof for the connectives : and W is obvious. Let �(x; ~z; ~w) = 9v 2adom:�0(x; ~z; ~w; v); then [�]x = 9v 2 adom:[�0]x. Fix D with A = adom(D) and ~a and ~c as in theclaim. Let b be an arbitrary element not in A and not in ~a. Assume that D j= �(b;~a;~c); thenD j= �0(b;~a;~c; a0) for some a0 2 A and by the hypothesis, D j= [�0]x(~a;~c; a0). Thus, D j= [�]x(~a;~c).The converse is proved similarly. Thus, the claim is proved.Going back to the proof for the existential case, we now have a formula 9x:�(x; ~z) which is equivalentto '(~z) = 9x:�(x; ~z). De�ne '0(~z) as 9x2adom:�(x; ~z) and 'i(~z) = �(zi; ~z). Let'act(~z) = '0(~z) _ ( n_i=1'i(~z)) _ [�]x(~z);where ~z = (z1; : : : ; zn). Then it follows immediately from the claim above that D j= 9x:�(x; ~z) i�D j= 'act(~z); also, 'act is an active formula. 19



The only problem is that 'act may use extra variables x0 and z0is; in fact, this is so because [�]x usesthem. (Note that '0 and 'is do not use these new variables, because we used � instead of � inthe de�nition of these formulae.) But now we look at any quanti�er Qx0 in [�]x and note (which isimmediate from the property of � and the de�nition of [�]x) that x may not occur in the scope of thisquanti�er; thus, we replace it back with Qx. Similarly, we replace each Qz0i with Qzi because zi maynot occur in the scope of Qz0i { this again follows from the properties of � and the translation [�]x.Hence, we get an active formula �0(~z) that is equivalent to [�]x(~z) and does not use the variables x0and z0i. That is, �0 is a Lk1! formula. Now '0act = '0 _ (Wi 'i) _ �0 is an active k-variable formulaequivalent to '. This completes the proof. 2Corollary 6 Pure L!1! admits the natural-active collapse. 24.2 Natural-active collapse over interpreted structures: The algorithmThe algorithm for converting natural-semantics queries into active-semantics queries is based on someproperties of o-minimal structures, which are summarized next. After that, we present the maintechnical lemma, which lends itself to an algorithm for converting queries.Precisely, the statement of the main result of this section is as follows.Theorem 4 (Natural-active collapse) Let M = hU ;
i be an o-minimal structure that admitsquanti�er elimination. Then FO(M) admits the natural-active collapse over M. That is, for everyschema SC, and for every FO-formula '(~x) in the language L(SC;
), there exists an equivalent activeFO-formula 'act(~x) in the same language. Moreover, if M is recursive and the quanti�er eliminationprocedure is e�ective, then the transformation from ' to 'act is e�ective. 2O-minimality Recall that an ordered structure M = hU ;
i is o-minimal if every de�nable set is a�nite union of points and open intervals. De�nable sets are those of the form fx 2 U j M j= '(x)gwhere ' is a �rst-order formula in the language of 
 and constants for elements of U .Let us make a comment about terminology. In the literature on o-minimality, an interval is givenby its endpoints, a and b, and it is either an open interval (a; b) = fc j a < c < bg, or closed[a; b] = fc j a � c � bg, or one of half-open half-closed versions [a; b) or (a; b]. (We also include cases ofintervals (�1; b); (�1; b]; [a;1); (a;1).) Thus, we can always speak of endpoints of intervals. Also,an equivalent de�nition of o-minimality is that every de�nable set is a �nite union of intervals.The following classical result establishes uniform bounds on the number of intervals in de�nable sets.Fact 1 (see [46]) If M is o-minimal, and 
(~y; x) is a �rst-order formula in the language of M,possibly supplemented with symbols for constants from M, then there is an integer K
 such that, foreach vector ~a from M, the set fx j M j= 
(~a; c)g is composed of fewer than K
 intervals. 2For every 
(~y; c) in the language of M and constants, and every ~a over M, 
(~a;M) = fc 2 U j M j=
(~a; c)g is a �nite union of intervals. By the ith interval of 
(~a; �) we shall mean the ith interval of
(~a;M), in the usual ordering on U . 20



We shall also need the following easy observations.Observation 1: For every formula 
(~y; x), and every i, there exists a �rst-order formula denoted by
̂i(~y; x) such that M j= 
̂i(~a; c) i� c is in the ith interval of 
(~a; �). In what follows, we always assumethat the distinguished variable x is the last one.Observation 2: If M is in addition recursive, and quanti�er elimination is e�ective, then K
 is com-putable for each 
. Indeed, for each i, write a sentence �i � 9x9~y 
̂i(~y; x) and check if it is true inM, using quanti�er-elimination and recursiveness of M. Eventually, we �nd i such that �i is false;this follows from the Fact above. Thus, K
 can be taken to be this i.Observation 3: Since intervals are �rst-order de�nable, we can use them in formulae. For example,given a formula 
(~y; x), a number i, and another formula �(~z; x), we can write a �rst-order formula�(~y; ~z; x) saying that every x from the ith interval of 
(~y; �) satis�es �(~z; x). This of course is just8x (
̂i(~y; x)! �(~z; x)), but we shall ocasionally use the interval notation in formulae, to simplify thepresentation.The main lemma Consider a �rst-order active-semantics formula in the language of L(SC ;M):�(~x; z) � Q1y12adom : : : Qmym2adom �(~x; ~y; z)where �(~x; ~y; ~z) is quanti�er-free, and has the following properties:� every atomic subformula of � is either a L(SC) formula, or a L(M) formula;� there exists at least one L(M) atomic subformula of �, and m > 0, and� z does not occur in L(SC) subformulae.Let 	 be the collection of all L(
) atomic subformulae of �, and their negations.For formulae �(~x; ~y; z), �(~x; ~y; z) and �0(~x; ~y; z) from 	, i � K� , and j � K�0 , we let ���0ij (~x; ~y; ~s;~t),where j~s j=j~t j=j~y j, be the formula de�ned as follows:���0ij (~x; ~y; ~s;~t) � 8u �(�̂i(~x;~s; u) ^ �̂0j(~x;~t; u))! �(~x; ~y; u)� :Let '(~x) be 9z �(~x; z).Lemma 6 Let D be a nonempty SC-database over M. Let ', �, � and 	 be as above. Let ~a be avector over U . Then D j= '(~a) if and only if there exist ~b;~c 2 adom(D)m, two formulae �(~x; ~y; z) and�0(~x; ~y; z) in 	 and i � K�; j � K�0 such that for the ith interval of �(~a;~b; �) and the jth interval of�0(~a;~c; �), denoted by I0 and I1 respectively, the following three conditions hold:1. I0 \ I1 6= ;.2. For all ~e 2 adom(D)m, and all c; c0 2 I0 \ I1, we have M j= �(~a;~e; c) $ �(~a;~e; c0) for every� 2 	. 21



3. D j= �0(~b;~c;~a), where �0(~s;~t; ~x) is obtained from �(~x; z) by replacing each subformula �(~x; ~y; z)from 	 by ���0ij (~x; ~y; ~s;~t).Proof. For the only if part, assume that D j= '(~a). That is, D j= 9z�(~a; z). Let d witness this; that is,D j= �(~a; d). For every ~e over adom(D), of the same length as ~y, and every atomic L(
) subformula�(~x; ~y; z) of �, we de�ne Id(~e; �) to be the maximal interval of �(~a;~e;M) = fc j M j= �(~a;~e; c)gcontaining d, in the case when M j= �(~a;~e; d), or the the maximal interval of :�(~a;~e;M) containingd, in the case whenM j= :�(~a;~e; d). Let Id be the (�nite) collection fId(~e; �) j ~e 2 adom(D)j~yj; � 2 	g.Since for each ~e and � we have d 2 Id(~e; �), we obtain that T Id 6= ;.Now note that for any �nite collection of intervals I1; : : : ; Ip, there are two indices i and j such thatTpl=1 Il = Ii \ Ij . This is because each interval Il is the intersection Al \Bl of an ideal and coideal inhU ; <i. Since ideals (and coideals) of a chain form a chain, we get that Tpl=1Al = Ai and Tpl=1Bl = Bjfor some i and j, and from this the equation above follows.>From this it follows that there are two intervals, I0 and I1 in Id such that I0 \ I1 = T Id. Let ~b besuch that I0 is the ith interval of �(~a;~b;M), and ~c be such that I1 is the jth interval of �0(~a;~c;M),where �; �0 2 	 (that is, �; �0 are either atomic L(
) subformulae of ', or negations of such atomicsubformulae).Let ~e 2 adom(D)j~yj. Pick any � 2 	 and any c; c0 2 I0 \ I1. Since I0 \ I1 = T Id, we obtain thatc; c0 2 I0 \ I1 � Id(~e; �), which impliesM j= �(~a;~e; c)$ �(~a;~e; c0). This proves conditions 1 and 2 inthe Lemma. (Note that the assumptions D j= '(~a) was not used to prove these two conditions.)To prove condition 3, notice that for every L(
) atomic subformula �(~x; ~y; z) of ', and for every~e 2 adom(D)j~yj, we have �(~a;~e; d) $ 8u 2 I0 \ I1: �(~a;~e; u)since I0 \ I1 = T Id.Now, for any subformula 
(~x; ~y; z) of �(~x; z), let 
0(~s;~t; ~x; ~y) be the result of replacing each �(~x; ~y; z)from 	 by ���0ij (~x; ~y; ~s;~t).We can now restate the above equivalence as:(�) D j= �(~a;~e; d)$ �0(~a;~e;~b;~c)for every ~e 2 adom(D)j~yj (where ~b and ~c are the tuples necessary to de�ne I0 \ I1 above), where�(~x; ~y; z) is atomic or negated atomic (i.e. � 2 	).But the above equivalence is preserved under Boolean combinations and active quanti�cation overvariables from ~y in �, hence we obtain (�) for every � that is a subformula of �. Finally, this gives usD j= �(~a; d)$ �0(~a;~b;~c):Since D j= �(~a; d), we conclude D j= �0(~a;~b;~c), proving 3).To prove the if part, assume that there exist ~b;~c 2 adom(D)m, �; �0 2 	, and i � K�; j � K�0 suchthat for I0; I1 de�ned as in the statement of the Lemma, conditions 1, 2, and 3 hold. Let d be anarbitrary element of I0 \ I1. We claim that D j= �(~a; d), thus proving D j= '(~a).22



Indeed, for every L(
) atomic subformula �(~x; ~y; z) of �, we have�(~a;~e; d) $ 8u 2 I0 \ I1: �(~a;~e; u)for every ~e over adom(D) { this follows from 2. That is, �(~a;~e; d) $ ���0ij (~a;~e;~b;~c). As before, sincethis equivalence is preserved under Boolean combinations with L(SC) atomic formula, and underactive-domain quanti�cation over variables from ~y, we obtainD j= �(~a; d)$ �0(~b;~c; a)thus proving D j= �(~a; d). The lemma is proved. 2Remark Note that it is not required that � be in prenex normal form. The proof will work forany formula � that satis�es the following properties: every atomic subformula is either an L(
)formula, or L(SC) formula, z only occurs in L(
) atomic formulae, and variables used in active-domain quanti�cation in � are all distinct. It is clear that any active-semantics formula can beconverted into an equivalent formula that satis�es these requirements.The algorithm The algorithm that converts natural-semantics formulae into active-semantics for-mulae works by induction on the structure of the formula. To eliminate an existential quanti�er9z 2 U , we use the lemma above, by translating its statement into �rst-order logic. We then noticethat in the resulting translation, every quanti�er not bounded by the active domain occurs only insubformulae which do not mention the SC predicates, that is, in L(
) subformulae. Since M admitsquanti�er elimination, this implies that every such occurrence of unbounded quanti�cation can beeliminated, thus giving us an active-semantics formula.The algorithm Natural{Active is shown on the next page. We can state the following.Proposition 6 Let M be o-minimal and admit quanti�er-elimination. Let '(~x) be any L(SC ;
)�rst-order formula, and let 'act be the output of Natural{Active on '. Then, for every nonemptyD 2 Inst(SC;M), D j= 8~x: '(~x) $ 'act(~x). Furthermore, if M is recursive and the quanti�er-elimination procedure is e�ective, then all steps 4.1 { 4.10 are e�ective.Proof. This follows straightforwardly from Lemma 6, as Step 4 just encodes the conditions of thelemma in �rst-order logic, the quanti�er-free formulae produced in steps 4.4, 4.5, and 4.8 exist dueto quanti�er-elimination in M, and the existence of K follows from Fact 1. For Step 4.1, any active-semantics formula can be transformed into the required form by taking a conjunction with 8x 2adom:x = x to guarantee m > 0 and the existence of at least one atomic L(
) formula (notice thatthis does not change the truth value on nonempty databases).The e�ectiveness follows from the e�ectiveness of quanti�er-elimination, and computability of K
 foreach 
 over a recursive M admitting e�ective quanti�er-elimination. 2To conclude the proof of Theorem 4, we have to deal with the case of adom(D) being empty. Let'(~x) be a �rst-order L(SC;
) formula. Let '0;(~x) be obtained from ' by replacing each occurrence ofR(� � �), where R 2 SC, by false. Note that '0; is a L(
) formula. Let '; be a quanti�er-free formulaequivalent to '0;. A simple induction on formulae shows that for the empty SC-instance, ;SC , it is thecase that ;SC j= '(~a) i� M j= ';(~a), for every ~a. Thus, an active-semantics formula'0(~x) � [(9x2adom: x = x) ^ 'act(~x)] _ [(:9x2adom: x = x) ^ ';(~x)];23



Algorithm Natural{ActiveInput: L(SC ;
) formula '(~x)Output: L(SC ;
) active-semantics formula 'act(~x)1. If ' is an atomic formula, then 'act = '.2. If ' =  � �, then 'act =  act � �act where � 2 f_;^g; if ' = : , then 'act = : act.3. If ' = 9x2adom  , then 'act = 9x2adom  act.4. Let '(~x) = 9z �0(~x; z):4.1 Let �(~x; z) be a formula equivalent to �0act which is of the formQ1y12adom : : : Qmym2adom �(~x; ~y; z)where �(~x; ~y; ~z) is quanti�er-free, and has the following properties: every atomic subformulaof � is either a L(SC) formula, or a L(M) formula; there exists at least one L(M) atomicsubformula of �, m > 0, and z does not occur in L(SC) subformulae.4.2 Let 	 be the collection of all atomic L(
) subformulae of �, and their negations.4.3 Let K = max
2	K
 .4.4 For every pair of formulae �; � 2 	, and every i; j < K, de�ne ���ij (~x;~s;~t) to be thequanti�er-free L(
) formula equivalent to9u: �̂i(~x;~s; u) ^ �̂j(~x;~t; u)Note that j ~s j=j ~t j= m.4.5 For each �; � 2 	, each i; j < K, and each � 2 	, de�ne ���ij (~x; ~y; ~s;~t) as a quanti�er-freeformula equivalent to 8u: �̂i(~x;~s; u) ^ �̂j(~x;~t; u)! �(~x; ~y; u)4.6 For each �; � 2 	, each i; j < K, de�ne ���ij (~x;~s;~t) as � in which every L(
) atomicsubformula �(~x; ~y; z) 2 	 is replaced by ���ij (~x; ~y; ~s;~t).4.7 Let same�(~x;~r; u; v) be ^(�(~x;~r; u)$ �(~x;~r; v))where the conjunction is taken over all the L(
) atomic subformulae � of �.4.8 For each �; � 2 	, each i; j < K, de�ne ���ij (~x;~s;~t; ~r) as a quanti�er-free formula equivalentto 8u; v: (�̂i(~x;~s; u) ^ �̂j(~x;~t; u) ^ �̂i(~x;~s; v) ^ �̂j(~x;~t; v))! same�(~x;~r; u; v)4.9 For each �; � 2 	, each i; j < K, de�ne ���ij (~x;~s;~t) as 8~r2adom: ���ij (~x;~s;~t; ~r).4.10 Output, as 'act(~x), the formula9~s2adom 9~t2adom: _�;�2	 _i;j<K(���ij (~x;~s;~t) ^ ���ij (~x;~s;~t) ^ ���ij (~x;~s;~t))24



where 'act is produced by the algorithm Natural{Active, has the property that D j= 8~x: '(~x)$'0(~x), for every D 2 Inst(SC;M). This concludes the proof of Theorem 4. 2From Tarski's quanti�er-elimination, Theorem 4 and locally generic collapse, we get:Corollary 7 a) There is an algorithm that converts any FO(hR;+; �; 0; 1; <i)-query into an equivalentFOact(hR;+; �; 0; 1; <i)-query.b) Parity test cannot be de�ned as a relational calculus query with polynomial inequality constraintsover the reals. 2It follows from Lemma 6 that one only needs quanti�er-elimination in Steps 4.4, 4.5 and 4.8 to obtainquanti�er-free formulae equivalent to certain L(
) formulae. If we leave those formulae intact, weobtain, instead of a formula 'act, a di�erent formula '0 with the properties that it is equivalent to ',and that in every subformula 9x
 or 8x
 of '0, 
 is a L(
) formula. From this, we conclude:Corollary 8 (Natural Generic Collapse) Let M = hU ;
i be an o-minimal structure. Then forevery locally generic query '(~x) in FO(M;SC), there exists an equivalent active-semantics �rst-orderquery  (~x) in the language L(<;SC).Proof. Indeed, consider '0 as above, and for every L(
) subformula 
 of '0, de�ne a predicate P
 byletting P
(~x) i� j= 
(~x). Let 
0 expand 
 by all such predicates P
 , and let M0 be the expansion ofM to 
0. Thus, overM0, '0 is equivalent to an active-semantics formula '00 in the extended language,and hence, by the locally generic collapse, to an active L(SC; <)-formula  . It then follows, sinceM0is a de�nable extension of M, that ' is equivalent to  over M. 24.2.1 Counterexamples to collapse results for �rst-order logicWe have shown that �rst-order logic behaves particularly nicely with respect to natural quanti�cationwhen we make some restrictions on the structure. O-minimality is one such restriction, and we haveshown above that this leads to natural-active collapse, and hence to expressive bounds on genericqueries. Are restrictions on the interpreted structure, such as o-minimality, necessary in order to getsuch results? We have mentioned earlier that over the structure N = hN;+; �; <i, parity (and in factevery computable query) is de�nable by a natural semantics sentence [28]. Thus, the natural-activecollapse and generic collapse both fail for this structure.However, the structure N is highly undecidable, and one can ask whether there are more tractablestructures for which collapse results and expressivity bounds fail. In [28] it was conjectured that theparity query cannot be de�ned by a natural semantics sentence over any structureM with a decidabletheory. This conjecture was further studied in [6, 7].The conjecture seems likely to be false, as an example of a structure with decidable theory for whichthe natural-active collapse fails was given in [43]. Namely, [43] considered the random graph, andshowed that with natural quanti�cation one can simulate monadic second-order logic. However, toexpress parity in monadic second-order, one seems to needs a linear order on the universe, and it isknown that no in�nite linear order is de�nable in the random graph. We now show how to circumventthis problem, and produce a structure with a decidable �rst-order theory for which parity is expressibleas natural-semantics query. 25



More speci�cally, letRT = hU ; Ri be the random ternary relation on a countably in�nite set U : that is,any model that satis�es every sentence that is true in almost all �nite 3-hypergraphs. Here `almost all'is with respect to the uniform probability distribution: R(a; b; c) holds of nodes a; b; c with probabilityone half, independently for each triple a; b; c. It is known [24] that the set of all such sentences formsa complete theory with in�nite models, and that this theory is decidable.Proposition 7 There is a �rst-order natural semantics sentence that de�nes parity over RT .Proof: A model of the random ternary relation has the property [24] that for every quanti�er-freeformula '(~x; ~y) that is consistent in predicate logic, we haveRT j= 8~x 9~y '(~x; ~y):We next consider, for every 1 � k � n < !, a formula 'n;k(x1; : : : ; xn; y1; : : : ; yn; x; y; w) de�ned as[(x; y) = (x1; y1) _ : : : _ (x; y) = (xn; yn)]! ([(x; y) = (x1; y1) _ : : : _ (x; y) = (xk; yk)]$ R(w; x; y))where (x; y) = (x0; y0) is an abbreviation for (x = x0) ^ (y = y0). Applying the above, we see thatRT j= 8x1; : : : ; xn8y1; : : : ; yn8x8y9w 'n;k(~x; ~y; x; y; w):Thus, for every �nite collection S of ordered pairs from U , and any T � S there is a c 2 U such that8(a; b) 2 S: ((a; b) 2 T $ R(c; a; b)).For any c 2 U and set A � U , let Rc;A be f(a; b) 2 A2 : R(c; a; b)g. The property above says exactlythat every �nite collection of pairs from A is of the form Ra;A for some c 2 U .Now consider a database schema SC that has one unary relation R0, and the query q that returnstrue of database D 2 Inst(SC ;RT ) (that is, a �nite subset of U) exactly when there exists c 2 U suchthat the binary relation Rc;adom(D) de�nes a partial function on adom(D), and this partial functionmaps its domain bijectively onto the complement of its domain within adom(D). It is easy to showthat this is expressible as the �rst-order query:9w8y2adom8z2adom8y02adom 0@ 9u2adom (R(w; y; u) _R(w; u; y))^ (y0 6= y ! :(R(w; y; z) ^R(w; y0; z))^ (y0 6= y ! :(R(w; z; y) ^R(w; z; y0)) 1AIt is clear that if q(D) is true, then the parity of adom(D) is even, since Rc;adom(D) witnesses this.From the property mentioned in the �rst paragraph we see that any bijection on adom(D) is of theform Rc;adom(D) for some c in U , and hence q is implied by the parity query. Hence parity is expressibleas a �rst-order formula over RT . 2Corollary 9 (see also [43]) There exists a structure M with a decidable �rst-order theory such thatthe natural-active collapse fails for �rst-order queries over M. 24.3 Natural-active collapse for higher-order logicsNote that even for very well-behaved structures, one cannot guarantee the natural-active collapse forthe full second-order logic: 26



Proposition 8 Let M be hR;+; �; 0; 1; <i. Then second-order logic does not have the natural-activecollapse over M. This continues to hold for any fragment of second-order that allows existentialquanti�ers over unary predicates (e.g., existential second-order, monadic �11).Proof. The set of natural numbers can be de�ned by a second-order formula with one unary existentialsecond order quanti�er in the language of +; 0; <:'(n) = 9P:[P (0)^(8x:P (x)! (x = 0_P (x�1)))^(8x8y:P (x)^x < y < x+1! :P (y))] ^ P (n):Then it follows from [28] that any total recursive query on databases whose active domain consistsonly of natural numbers is in SO(R;+; �; 0; 1; <). On the other hand, every locally generic active-semantics query in SO(R;+; �; 0; 1; <) is expressible in SO over L(SC; <) and thus has PSPACE datacomplexity, which proves the proposition. 2 2An analagous result could be given for �xpoint logics. However, we show below that for hybrid logics,the natural-active collapse can easily be recovered.Theorem 5 Let M be an o-minimal structure that admits quanti�er elimination. Then FO+ifp,FO+lfp, FO+pfp and HSO admit the natural-active collapse overM. Moreover, the transformationfrom a natural formula to an active formula is e�ective ifM is recursive and the quanti�er eliminationprocedure is e�ective.Proof. We use an inductive argument on complexity, as in the proof of Theorem 4. We will give asingle algorithm that witnesses the natural-active transformation for all of the logics above. In orderto have this algorithm work for �xed point logic, we will maintain the following invariant in thisalgorithm: if a relation symbol (�xed or bound) occurs positively in ', it occurs positively in 'act.The algorithms for atomic formulae and the boolean connectives are identical to the �rst-order case.Since the second-order and �xed point operators are done under the active interpretation, the inductionfor these operators themselves is trivial:If '(~y;~t) = [Lfp~x;S�(~x; ~y; S)](~t) then 'act = [Lfp~x;S�act(~x; ~y; S)](~t).The resulting formula is well-formed given that, by induction, positivity is preserved by the transfor-mations given here.If '(~y;~t) = [Ifp~x;S�(~x; ~y; S)](~t) then 'act = [Ifp~x;S�act(~x; ~y; S)](~t), andIf '(~y;~t) = [Pfp~x;S�(~x; ~y; S)](~t) then 'act = [Pfp~x;S�act(~x; ~y; S)](~t)Finally, for hybrid second order we have the analogous rule:If '(~x) = 9S2adom �(~x), then 'act = 9S2adom �act(~x).Note that the inductive rules for boolean connectives, �xed-point, and second-order quanti�cation allpreserve the invariant. It su�ces, then, to specify how the algorithm deals with converting a formula27



of the form '(~x) = 9z�(~x; z) to an active formula 'act , given that we know how to convert �(~x; z) toan equivalent active-semantics �act(~x; z).We have that �(~x; z) is an active formula which possibly has free predicate symbols T from outsideof 
 in it. We normalize it so that: every atomic subformula of � is either a L(SC 0) formula | whereSC 0 = SC [ T | or an L(
) formula, so that there exists at least one L(
) atomic subformula of �,and so that z does not occur in L(SC 0) subformulae. It is easy to see that we can do this withoute�ecting the positivity of any SC 0 relation in any subformula of �. We now perform the exact samecomputation on � as we did in the algorithm of Theorem 4. Namely, we let 	 be the collectionof all atomic L(
) subformulae of �, and their negations, and let K = max
2	K
 , ���ij (~x;~s;~t) and���ij (~x; ~y; ~s;~t) be de�ned exactly as in 4.4 of the �rst-order algorithm. Note that these last are all L(
)formulae, and they are de�ned without reference to the relational operators in �.We now de�ne ���ij (~x;~s;~t) as the result of replacing in � every L(
) atomic subformula �(~x; ~y; z) 2 	by ���ij (~x; ~y; ~s;~t), just as in 4.6. Note that since we are only substituting L(
) subformulae by otherL(
) formulae, positivity of SC 0 predicates is again not a�ected.The formulae same�(~x;~r; u; v), ���ij (~x;~s;~t; ~r), ���ij (~x;~s;~t) are syntactically identical to the formulaede�ned in steps 4.7-4.9 of the �rst-order algorithm.Finally, we output as 'act, as in 4.10, the formula9~s2adom 9~t2adom:9~s _�;�2	 _i;j<K(���ij (~x;~s;~t) ^ ���ij (~x;~s;~t) ^ ���ij (~x;~s;~t)):The proof that this algorithm is correct results from showing that Lemma 6 still holds when ' isallowed to contain active second-order operators (�xed-point, second-order existential, etc.). This inturn follows simply by noting that the proof of Lemma 6 goes through verbatim in the presence of thesecond-order operators: the only thing necessary is to con�rm (immediately from the de�nition of the� to �0 transformation) that the equivalence (�) in Lemma 6 is preserved under active second-orderquanti�cation, and that (�) is also preserved under the �xpoint operations. 2Recall that by closedness of a �xpoint formula we mean that no application of a �xpoint operatorinvolves extra free variables, that is, it is of the form [Lfp~x;S'(~x; S)](~t), or similarly for Ifp andPfp. As mentioned in Section 2, it is known that the closed normal form holds when all quanti�ersare restricted to be active-semantics, or when all quanti�ers are restricted to be natural. >From thenormal form for active queries, plus the previous collapse result, we see that hybrid �xpoint queriescan also be converted to closed normal form, provided that the underlying structure is nice.Corollary 10 (Normal form for �xpoint) IfM is o-minimal and has quanti�er elimination, thenFO+lfp(M) = closed FO+lfp(M)FO+ifp(M) = closed FO+ifp(M)FO+pfp(M) = closed FO+pfp(M):As a second application, we see that hybrid second-order formulae over o-minimal structures (notethe absence of the quanti�er-elimination requirement) can be converted into the normal form de�nedin Section 2. 28



Corollary 11 (Normal form for HSO) IfM is o-minimal, then every HSO(M;SC) is equivalentto a HSO(M;SC) formula in the normal form.Proof. Let M0 be a de�nitional expansion of M that admits quanti�er-elimination. Let ' be aHSO(M;SC) formula. Then it is equivalent to an active HSO(M0;SC) formula '0. Convert '0 intothe normal form, and replace each new symbol in M0 by its M-de�nition. Since those occur only inthe �rst-order part, we can convert the result into a normal form HSO(M;SC) formula. 2Analogous results can be proved showing the tame behavior of other fragments of second-order logicsvia the same method, provided that the second-order constructs are again given the active interpre-tation.5 Complexity applications and summaryIn this section, we use the results on both natural and active-semantics queries to derive their datacomplexity. Recall that in order to de�ne data complexity of a query Q, one �rst de�nes a languageLQ = fenc(D)#enc(t) j t 2 Q(D)g where enc is an encoding of tuples and databases in some �nitealphabet �, and # is a special marker. Then, for a complexity class C, we say that the data complexityof Q is C if LQ 2 C; similarly, the data complexity of a language is C if so is the data complexity ofevery query in the language.As we need to encode databases over interpreted structures, in particular, the reals, we restrict ourattention to the case when database elements are integers, as in [29]. Equivalently, we could alsoassume that databases store rational numbers represented as pairs of integers. In such a setting, tworesults are known. First, the data complexity of FO(hR;+;�; 0; 1; <i) is AC0 [29]. (Recall that AC0is the class of problems de�nable with unbounded fan-in constant depth circuits that use and, or andnot gates, and the number of gates is polynomial in the size of input, cf. [15].) This is the same as thebound on data complexity of FOact(<), cf. [1]. Second, the data complexity of FO(hR;+; �; 0; 1; <i)is NC [36].Note that the AC0 bound of [29] implies some expressivity bounds, such as inexpressibility of parityin FO(hR;+;�; 0; 1; <i), as parity is not in AC0 [25]. We also know that the data complexity ofFO(hR;+; �; 0; 1; <i) cannot be AC0, since multiplication is not in AC0 [25]. Still, we are able tolower the bound of [36]. In fairness to [36], we remark here that their bound applies to �nitely-representable databases as well, and so does the bound of [29]. We only deal with �nite databaseshere.The class TC0 extends AC0 by allowing threshold gates, or equivalently majority gates [5, 44]. It isknown that AC0 � TC0 � NC1 � L � NL � NC and all � inclusions are conjectured to be strict[5].Proposition 9 Every query in FO(hR;+; �; 0; 1; <i) has TC0 data complexity.Proof: Let M = hR;+; �; 0; 1; <i. Fix a database schema SC, and let '0(~x) be a query inFO(hR;+; �; 0; 1; <i). By the natural-active collapse, there exists an equivalent active-semantics query'(~x). Let S be a relational symbol, not in SC, of arity j~x j, and let � be the sentence 8~x (S(~x)! '(~x)).Let D be a SC database, and t a tuple of arity j~x j. De�ne a SC[fSg database D0 by interpreting S asftg. Then D0 j= � i� D j= '(t). Thus, it su�ces to show that enc(D0) for D0 j= � can be recognized in29



TC0. If we can show this, then to recognize enc(D)#enc(t) one transforms it into enc(D0) in constanttime (by replacing the marker # by the marker used for separating relations) and checks if D0 j= �.We next show that there is an expression e of Alg(hR;+; �; 0; 1; <i) such that e(D0) = f()g if D0 j= �and e(D0) = fg if D0 j= :�, where () is the empty tuple. To do this, transform � to a prenex active-semantics sentence Q1y1 : : : Qnyn �(~y) where � is quanti�er-free; we also assume, as before, that everyatomic subformula of � is either a L(SC [ fSg) formula or a L(M) formula.Let Adom be a relational algebra expression such that for every D, Adom(D) evaluates to adom(D).We now translate subformulae of � into algebra expressions as follows. Each subformulaR(yi1 ; : : : ; yik)is translated as follows. Let eR be e1R� : : :�enR, where elR is Adom if l 62 fi1; : : : ; ikg and elR is �#s(R)if l = is. Let c be the conjunction of #is = #(s + n) for all s = 1; : : : ; k. Then the translation ofR(yi1 ; : : : ; yik) is �#1;:::;#n(�c(eR �R)):Each atomic L(M) formula 
(~y) is translated into �c(
)(Adom� : : :�Adom), where the product istaken n times, and c(
) is the selection condition obtained from 
 by replacing each yi by #i. If  1and  2 are translated into e1 and e2, then  1 _ 2 is translated into e1 [ e2,  1 ^ 2 is translated intoe1\ e2, and : 1 is translated into (Adom� : : :�Adom)� e1. Finally, if we have a subformula  thattranslates into an expression e returning an m-ary relation, 9y translates into �#1;:::;#m�1(e), and8y translates into Adomm�1 � (�#1;:::;#m�1(Adomm � e)). It is now routine to verify that whenapplied to � in the prenex form as above, this translation yields the required Alg(M) expression.Now it remains to be proved that any Alg(M) query has TC0 data complexity. This proof proceedsexactly as the proof of AC0 data complexity for relational algebra (see [1]) with one exception: everytime the �c operator is encountered, we have to compute the condition c. Each such c is of formp1(~y)f=; <; 6=; 6<gp2(~z) where p1; p2 are polynomials. Since integer arithmetic (addition, multiplica-tion, comparison) can be done in TC0 [5, 44], we construct circuits that compute p1 and p2 �rst andthen make the comparison. This shows that we can construct a threshold circuit that computes �c.The proof that all other operations can be computed by TC0 circuits (in fact, by AC0 circuits) isexactly the same as in [1]. The theorem is proved. 2In the following proposition we give complexity bounds for queries against databases overhR;+; �; 0; 1; <i expressible in higher-order logics. Again, we assume that database elements areintegers (so that they can be encoded). We restrict our attention to generic queries that do not extendthe active domain of their input.Proposition 10 Let M = hR;+; �; 0; 1; <i. Let Q be a query expressible in hybrid FO+ifp(M)(or FO+lfp(M), or HSO(M), or FO+pfp(M)). Assume that Q is locally generic and does notextend the active domain of its input. Then its data complexity is PTIME (respectively, PTIME, PH,PSPACE).Proof sketch: Suppose Q is given by a formula '(~x) in hybrid FO+ifp(M). By Theorem 5, thereexists an equivalent formula 'act(~x) in FO+ifpact(M). From generic collapse and local genericity ofQ, we get that there is a formula  (~x) in FO+ifpact(<) equivalent to '.Given a database D and a tuple t, let fn1; : : : ; nkg be adom(D), where n1 < : : : < nk. Let D0 andt0 be obtained from D and t by changing ni to i, for each i = 1; : : : ; k. By generiticy, D j= '(t)i� D0 j=  (t0). Since the encodings enc(D0) and enc(t0) can be obtained from enc(D) and enc(t) in30



FO(M) = FOact(M) dp= Alg(M)FO+lfp(M) = closed FO+lfp(M) = FO+lfpact(M) dp= Datalog:(M)FO+ifp(M) = closed FO+ifp(M) = FO+ifpact(M) dp= Datalog:(M)HSO(M) = normal form HSO(M) = HSOact(M)FO+pfp(M) = closed FO+pfp(M) = FO+pfpact(M) dp= While(M)Note: C dp= C0 means that the class of domain preserving (adom(Q(D)) � adom(D)) queries in C isC0.Figure 1: Summary of the expressiveness results for M = hR;+; �; 0; 1; <i or any other o-minimalstructure that admits quanti�er eliminationLogic ComplexityFO(M) AC0FO+lfp(M) PTIMEFO+ifp(M) PTIMEHSO(M) PHFO+pfp(M) PSPACENote: in this table, a line (L; C) means that the data complexity of domain-preserving locally genericqueries in L(M) is in C.Figure 2: Data complexity for queries over M = hR;+; �; 0; 1; <ipolynomial time, and D0 j=  (t0) can be tested in polynomial time (due to classical results on datacomplexity, cf. [1, 21]), we conclude that D j= '(t) can be tested in polynomial time. The proof forother logics is similar. 2We can now summarize the main results of the paper. Figure 1 puts together results about bothactive and natural semantics. Roughly, each line in Figure 1 shows the equivalence of a logic L, itsactive-semantics version Lact , and a procedural language (if one exists).Figure 2 summarizes the results on data complexity for databases over the reals. Note that the �rstline follows from the results of [29] (since the classes of locally generic domain-preserving queries inFO(h;R;+; �; 0; 1; <i) and FO(h;R;+;�; 0; 1; <i) are the same); others follow from Proposition 10.Figure 3 sumamrizes the collapse results in the paper, for the three main kinds of collase: active-generic, natural-active, and natural-generic. Note that for the natural-generic collapse, some exten-sions have recently appeared in the literature [4, 9].As was mentioned before, techniques developed here make it easy to prove similar results for otherlogics. For example, one can show that for the hybrid version of the transitive closure logic (see [35, 21]for the de�nition of transitive closure logics), the natural and the active interpretations coincide overthe real �eld, and by the Ramsey property, the class of generic queries de�nable in it under the activeinterpretation does not depend on the set of operations 
, and thus the data complexity of genericqueries is NLOGSPACE. 31
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Figure 3: Summary of collapse results6 ConclusionOur main goal was to delineate the extent to which standard results from the pure relational case `gothrough as before' when interpreted structures are present. We have distinguished several aspects ofthe standard theory that extend routinely, as well as several whose extension requires special techniquesand/or special assumptions on the interpreted structure. That is, we have three categories of results.First, extensions of results from pure relational theory to any interpreted structure. We show thatmost of the standard language equivalences, expressive bounds and complexity results continue tohold with interpreted structures, assuming the active-domain semantics. Second, extensions of resultsfrom the pure case that hold with interpreted structure under special assumptions on the structure.We show that most statements about the natural semantics continue to hold for reasonably-behavedinterpreted structures. Third, results that arise in the interpreted case that either do not arise or arenot of interest in the pure case. We introduced a class of hybrid logics, that arise naturally in theinterpreted case: those with `mixed' quanti�cation. These logics admit the same normal forms as theirunmixed counterparts, if the structures are reasonably behaved.This is only the tip of the iceberg for each of these classes. The understanding of appropriate algebrasfor queries with interpreted structures is still incomplete. We are working on algebras and range-restricted calculi for safe queries, other normal forms for nonboolean queries and operations thatpreserve safety. Although we have shown that for nicely-behaved structures we get very satisfyingextensions of results about the natural semantics, we do not characterize the class of structures forwhich this holds. For some recent progress in that direction, see [4, 9]. It is also open whether thenormal forms results for hybrid logics hold in general.The algorithm for converting natural quanti�cation to active is of interest in its own right. It extendswork done in the constraint community (e.g., in [45] for linear constraints), and can also be seen asextending quanti�er elimination algorithms, that originate with Tarski [48], to handle large parametersets. We would like to have a uni�ed picture of the relation between the algorithm presented here andthose in, for example, [14, 45], as well as with uniform quanti�er-elimination for the real �eld [6, 7],where a detailed complexity analysis was given. We plan to study the integration of such algorithmsinto optimization systems for constraint queries. 32
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