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Abstract

We rework parts of the classical relational theory when the underlying domain is a structure
with some interpreted operations that can be used in queries. We identify parts of the classical
theory that go through ‘as before’ when interpreted structure is present, parts that go through
only for classes of nicely-behaved structures, and parts that only arise in the interpreted case.
The first category includes a number of results on language equivalence and expressive power
characterizations for the active-domain semantics for a variety of logics. Under this semantics,
quantifiers range over elements of a relational database. The main kind of results we prove here
are generic collapse results: for generic queries, adding operations beyond order, does not give us
extra power.

The second category includes results on the natural semantics, under which quantifiers range
over the entire interpreted structure. We prove, for a variety of structures, natural-active collapse
results, showing that using unrestricted quantification does not give us any extra power. Moreover,
for a variety of structures, including the real field, we give a set of algorithms for eliminating
unbounded quantifications in favor of bounded ones. Furthermore, we extend these collapse results
to a new class of higher-order logics that mix unbounded and bounded quantification. We give
a set of normal forms for these logics, under special conditions on the interpreted structures. As
a by-product, we obtain an elementary proof of the fact that parity test is not definable in the
relational calculus with polynomial inequality constraints. We also give examples of structures
with nice model-theoretic properties over which the natural-active collapse fails.

1 Introduction

We would like to start with an example that can be found in most database textbooks. When relational
algebra is introduced, the conditions in selection operators are defined to be boolean combinations of
z =y and ¢ < y, where z and y are variables or constants. Typically, a few examples of programming
in relational algebra are given before a relational language, such as SQL or QUEL, is introduced.
Soon after that we will probably see an example of query like “Select employees who make at least
90% of their manager’s salary”. Such an example is likely to be followed by a remark that this query,
strictly speaking, is not definable in relational algebra because it involves arithmetic operations, but
it is definable in SQL or QUEL which allow arithmetic and comparisons of the form z > 0.9 - y.
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Does it mean that the relational algebra is in some sense inadequate as a basic relational query
language? It is certainly so if one has to deal with arithmetic, but database textbooks counter this
criticism by saying that an extension to arithmetic is straightforward. It is indeed true that extending
notations is straightforward, but it is not completely obvious how to extend the fundamental results
and techniques of relational theory to include arithmetic. For example, if arithmetic constraints
are allowed in selection predicates, how would one prove the classical result that parity test and
transitive closure are not definable in relational algebra? It appears that the standard techniques are
not immediately applicable. Some techniques (such as 0-1 laws) are not applicable at all, others are
extremely awkward to apply. This situation extends beyond arithmetic to other interpreted operations
over the items that could be stored in a database.

As noted in [26], the full scope of interaction between finite databases and fixed, possibly infinite,
interpreted structure, has not been fully explored in the database community, although the question
was already raised in the seminal paper of Chandra and Harel [17]. There are some exceptions: in
addition to [26], one exception has been the attention to order relation. This includes well-known
connections between query languages and complexity classes, cf. [1, 21]; also, order constraints have
been studied in the context of DATALOG queries (see, e.g., [37, 51]). In this paper, we explore some of
the nontrivial interaction of interpreted structure with relational structure, hopefully filling in a bit
of the gap mentioned above. We focus on looking at analogs of classical equivalence and expressivity
results, domain of quantification, and on complexity bounds.

Much recent interest in databases over interpreted structures stems from a non-classical model, the
constraint database model introduced by Kanellakis, Kuper and Revesz [36]. They were motivated
by new applications involving spatial and temporal data, which require storing and querying infinite
collections. The constraint model generalizes Codd’s relational model by means of “generalized rela-
tions”. These are possibly infinite sets defined by quantifier-free first-order formulae in the language
of some underlying infinite structure M = (U, Q). Here U is a set (assumed to be infinite), and € is
a signature that consists of a number of interpreted functions and predicates over . For example,
in spatial applications, M is usually the real field (R, +, %, 0, 1, <), and generalized relations describe
sets in R™.

One of the main contributions of [36] is an extension of relational calculus and DATALOG to generalized
relations. The development of constraint query languages made clear some of the ways in which the
interpreted structure adds new issues to the analysis of query languages. For example, although these
extensions do add expressive power, in [10] it was shown that this extension, with the real field as the
underlying structure, does not add relational expressive power: one cannot define parity or transitive
closure, and, more generally, queries that are generic in the sense of [1, 18], other than those already
definable with order. Since it is known that such expressive bounds cannot be obtained for arbitrary
structures [28], these expressiveness results give indication that relational calculi over some interpreted
structures are much more similar to pure relational calculus than others are.

The constraint model also shows how issues concerning quantification that do not arise in the classical
theory come to the fore when interpreted structure is present. The ‘classical’ interpretation of quan-
tifiers such as Jz.¢(x) occurring in relational calculus expressions is that ¢(z) is satisfied by some
element of the database. This is called the active-semantics interpretation of queries (or just active
interpretation). In contrast, the the constraint model interprets Jz.¢(x) as meaning that ¢(x) is
satisfied by some element of the underlying universe ¢. This is called the natural interpretation. The
issue of two semantics arises in the context of pure relational calculus, but Hull and Su [33] proved
that the expressive power of relational calculus is the same under both interpretations. This is what



we call the natural-active collapse. (In fact, an earlier result [3] showed that infinite domains are
unnecessary for pure relational calculus.) This collapse is known not to hold over arbitrary structures,
hence questions concerning the two semantics become much richer in the interpreted setting.

In the first part of the paper, we study active-semantics queries. For those queries, we will review
and extend a technique that has arisen recently [10, 43] in the context of first-order logic: generic
collapse results. These state that generic queries definable over interpreted structures can be defined
without additional interpreted operations. We simplify the proofs so that the generic collapse results
become applicable to a variety of logics, such as fixpoint, second-order, and logics with counting. The
collapse results are then used to show that for active-semantics queries many (but not all!) traditional
relational theory results generalize smoothly to the interpreted setting: in particular, we show that
many of the expressive power results and query equivalence results do extend to the interpreted setting.

To study the constraint model, then, we turn in the second half of this paper to the study of the
natural semantics. It might appear that we have to always develop a completely separate theory for
this new interpretation of quantifiers, unless we can somehow show some version of the natural-active
collapse results in the constraint setting.

Significant progress on the issue of natural semantics expressivity was made in [45], which proved
the analog of the Hull-Su theorem for linear constraints. These results were extended to polynomial
constraints in [10] (only for generic queries) and [11] (for arbitrary queries). Although the above
results show how to reduce questions about natural semantics to ones concerning active semantics
for first-order queries over many structures, there are a number of issues left open. In particular,
the proofs in [10] and [11] are quite involved: they use techniques of nonstandard universes [19] and
o-minimal structures [46, 50]. In addition, the proofs in those papers are nonconstructive. In [33]
(that deals with the pure case) and [45] (that deals with linear constraints), an algorithm is given
that converts a natural query into an active one. However, in [10, 11] (which deal with polynomial
constraints and other o-minimal structures), a mere existence of such a query is proved.

The main result of the second half of this paper is an algorithm for doing the conversion from natural
quantification to active quantification: an effective version of the natural-active collapse. It is hoped
that this algorithm will lay the groundwork for transforming a number of optimization algorithms
that occur in the pure relational calculi to the interpreted setting.

Our investigation of natural semantics expressivity then moves from first-order logic to more expressive
logics (fixpoint, second-order). We observe a new interesting phenomenon here: Even when we identify
structures over which first-order queries have tame behavior under the natural interpretation (for
example, (R, +,%,0,1,<)), fixpoint logics and second-order logic may still be too expressive. Any
recursive query can be expressed in these languages, and under the naive interpretation of second-
order quantifiers many of the standard languages lack closure. There are numerous subclasses, however,
that one can restrict to that do not arise naturally in the pure case, and which have the same closure
properties as active queries, while also admitting interesting expressive bounds. In particular, we
consider a new class of logics that we call hybrid. The idea is that first-order quantification can still
be interpreted naturally (that is, 3z.¢o(z) means p(a) for some a € U), but the higher-order features
are interpreted actively. For instance, for the hybrid second-order logic, second-order quantifiers range
over subsets of the active domain, while first-order quantifiers range over /. Similarly, fixpoints are
only taken within the active domain. Such logics are of interest in the constraint database context,
since the natural versions of the higher-order constructs are not available.

An interesting aspect of hybrid logics is that standard normal forms that hold straightforwardly for



both natural and active interpretation logics become highly nontrivial in the hybrid case. We show in
the second half of the paper that the behavior of hybrid logics is close to the behavior of first-order
logic. In particular, we show that for reasonably-behaved structures we can obtain standard normal
forms for both fixpoint and second-order logic in the hybrid case. For arbitrary interpreted structure
we conjecture that these normal forms fail.

At this point, we have a set of results on normal forms and quantifier-bounding for the natural
semantics; we go on to give some applications of this to the study of constraint queries. We start by
giving a set of corollaries showing expressive bounds on the relational expressive power of constraint
queries. These corollaries give, among other things, an elementary proof that parity can not be defined
using relational calculus with polynomial inequality constraints. This new proof completely avoids
techniques of nonstandard universes, and gives a constructive ‘parameterized quantifier-elimination’
procedure that can be seen as an extension of the work in [45, 6, 7, 14, 48, 47].

Finally, we give corollaries on the complexity of constraint query evaluation. Since the relational
algebra and calculus are equivalent to pure first-order logic, they have AC? data complexity, cf. [1].
Adding constraints increases this complexity. For instance, if multiplication is in the signature, the
AC® complexity bound is lost, cf. [15]. As an upper bound for complexity, it is known that if M =
(R, +,%,0,1,<), then data complexity of first-order queries is NC, see [36, 14]. Since AC* C NC,
one could hope for more precise information about the complexity of constraint queries over the real
field. In the last part of the paper, we use results on bounding-quantification to get tighter bounds on
query evaluation for the real field (the principal result being a TC® bound); we also get complexity
bounds for a variety of other languages.

Organization Notations are introduced in Section 2. In Section 3, we deal with the active-semantics
interpretation. We present the Ramsey technique (which is abstracted from the proofs in [10] and
[45]), and show that it can be uniformly applied to a variety of logics (defined in Section 2), to obtain
generic collapse results. This leads to a number of expressivity results for these logics over interpreted
structures. We then aim to extend these results to study the expresssive power of algebras. We first
show that natural extensions of relational algebra, DATALOG™ and WHILE, are still equivalent with
first-order, least- and partial-fixpoint logic over arbitrary structures. We also look at infinitary logic
with finitely many variables (which subsumes all fixpoint logics), and show how to extend expressivity
bounds to it.

In Section 4, we turn to the natural interpretation. We start by analyzing the pure case, that is, when
no interpreted operations are present. We simplify the proof of the natural-active collapse from [33]
and extend it to variable-bounded fragments of first-order and infinitary logic.

Our main goal is to give a constructive proof of the natural-active collapse for databases over well-
behaved structures. We prove that the natural and active interpretations are equally expressive over
any structure that is o-minimal [46, 50] and has quantifier elimination. Furthermore, if the quantifier-
elimination procedure is effective, an active-semantics formula equivalent to a natural-semantics for-
mula can be effectively computed. We then move to higher-order logics. We introduce hybrid second-
order logic (in which second-order quantifiers range over the subsets of active domain), and hybrid
fixpoint logics (in which fixpoint is taken within the active domain) and prove the natural-active
collapse for them.

In section 5 we give applications of the results of the previous two sections. We derive expressive
bounds on constraints queries in any nicely-behaved structure. We also apply the results of section



4 to prove a TC® complexity bound for first-order logic with polynomial constraints, thus improving
the NC bound of [36].

This paper is based on two extended abstracts that appeared in the Proceedings of the 12th Symposium
on Logic in Computer Science [11] and the Proceedings of the 16th Symposium on Principles of
Database Systems [12].

2 Notations

Databases over infinite structures

In this paper, we study databases over infinite structures. Let M = (U4, Q) be an infinite structure,
where U is an infinite set, called the universe of the structure (in the database literature it is often
called domain), and € is a set of interpreted functions, constants, and predicates. For example, the
real field (R, 4, %,0,1, <) has R (the set of real numbers) as the universe, and the signature consists
of functions 4+ and *, constants 0 and 1, and predicate <.

A (relational) database schema SC is a nonempty set of relation names {Si,...,S;} with associated
arities p1,...,p; > 0. Given a structure M and X C U, an instance of SC over X is a family of finite
sets, {R1,..., R}, where R; C XPi. That is, each schema symbol S; of arity p; is interpreted as a
finite p;-ary relation over X. We use Inst(SC, X) or Inst(SC, M) to denote the set of all instances of
SC over X or M.

Given an instance D, adom (D) denotes its active domain, that is, the set of all elements of U that
occur in the relations in D. If S is a new n-ary symbol not in SC and R is a finite subset of /", then
Dp denotes the instance of SC U {S} where S is interpreted as R.

In Section 4, we will use o-minimal structures [46]. A structure M is ordered if one of the symbols
in  is <, interpreted as a linear order on the universe. Such a structure M is o-minimal, if every
definable set is a finite union of points and open intervals {z | a < < b}, {z | z < a} and {z | z > a}.
Definable sets are those of the form {z | M |= ¢(x)}, where ¢ is a first-order formula in the language
of M, possibly supplemented with symbols for constants from M.

A structure admits quantifier elimination if, for every formula ¢(Z), there is an equivalent quantifier-
free formula 1 (Z) such that M |= VZ.p(Z) <> ¥ (Z). A structure is recursive if its language is recursive
and validity of atomic sentences is decidable. An example of o-minimal, recursive structure having
quantifier elimination is the real field (R, +,*,0,1,<): since it has quantifier elimination [48], it is
decidable, and every formula () is equivalent to a Boolean combination of constraints of the form
p(z) = 0 or p(z) < 0, where p is a polynomial, which implies o-minimality. Some extensions of the
real field are known to be o-minimal, for example, (R, +, x, e®) [54].

Logics

Since our goal is to develop a theory that can be used beyond the first-order case, we consider a
variety of logics here. Fix a structure M = (U, ). By L(SC, ) we denote the language that consists
of the schema predicates and the symbols in Q. By FO(SC, M) (or just FO(M) if the schema is
understood) we denote first-order logic over the language L(SC, 2); we use FQ for first-order logic in
the language of the schema. We also define the semantic notion D = ¢(a), where ¢(Z) is a formula



and @ a vector over U. Note that D |= Jz.¢(x,a) means that for some ag € U, D |= p(ap,a). This
corresponds to the natural interpretation of queries, cf. [1, 33].

Under the active interpretation of first-order logic [1, 33], 3z means that z can be found within the
active domain. To deal with this in the same framework as the natural interpretation (that is, to avoid
introduction of a different notion of satisfaction), we introduce the active quantification of the form
Jdz € adom.¢(z) and Vz € adom.p(x). The semantics is as follows: D |= 3z € adom.p(z,a) if for some
ag € adom(D), D = ¢(ag,d), and likewise for Vz € adom. Note that this restricted quantification can
be expressed in first-order logic. We shall call a formula active if all quantifiers in it are active. For
every language L, its subset consisting of the active formulae is denoted by Lt .

Next, we consider fixpoint extensions of first-order logic. The presentation here differs slightly from
the standard definitions for the finite [18, 21, 31, 2] or infinite [42] case because we have a mix of these
cases: finite structures over an infinite universe. (This corresponds to what we called hybrid logics in
the introduction.) We say that a predicate symbol S occurs negatively in a formula ¢ if it occurs in
S under the scope of an odd number of negations. A formula ¢ is positive in S if S does not occur
negatively in ¢.

The least-fixpoint logic FO+1fp adds the following construction rule: if S is an n-ary relation symbol
not in the schema, and S occurs positively in a formula ¢(z1,...,%,,7,S), and ¢ is an n-vector of
variables or terms, then

[LEPg so(Z, 4, )] (F)

is a formula, whose free variables are ¢ and free variables from #. The semantics is as follows. Given
D € Inst(SC,U) and @ of the same length as 7, define the sequence Rg = (),

RE = {(bi,...,by) € adom(D)" | D = (b, a, RY)}.

It is known that this sequence is monotone: (R“ C R +1) and thus reaches a fixpoint, denoted by Rgo.
Now D [= [LFPz s¢(Z, @, S)](€) iff ¢ € RL,. The least-fixpoint logic over the logical language L(SC, Q)
will be denoted by FO+1fp(M).

Note that we may have instances of first-order quantification in least-fixpoint formulae, which are
interpreted naturally, but the fixpoint itself is always taken within the active domain, which makes
the logic hybrid: it combines both active and natural interpretations. In the pure finite case, it is
unnecessary to add parameters ¢ to the iterated formula, because it does not add power [21]. The
same is true in the pure infinite case, that is, when R§+1 is constructed as the set of all tuples b over
U that satisfy <p(5, d). But it is not clear whether the extra parameters ¢ can be dropped in hybrid
fixpoint logics without losing expressiveness. We shall say that a fixpoint formula is in normal form
if no application of LFP uses these extra parameters 4.

The inflationary-fizpoint logic FO+ifp and the partial-fizpoint logic FO+pfp are defined similarly
to the least-fixpoint logic. They have constructors

PP s0(Z, 5, S)|(])  and  [PFPg g0(Z, 7, )](F)

respectively, with no restriction on occurrences of S. The semantics is as above, where Rgo is con-
structed as follows. For FO+ifp, z‘d-l—l = REU{(b1,...,by) € adom(D)" | Dps = ©(b,@)} (this
sequence is increasing, and hence reaches a fixpoint). For FO+pfp, the sequencez R; is constructed
as for the least-fixpoint, and R, is taken to be its fixpoint, if it exists, and () otherwise.



The concept of a normal form is defined for inflationary- and partial-fixpoint logic in the same way it
was defined for FO+1fp. When formulae of a fixpoint logic are restricted to normal form formulae
only, we call such a fixpoint logic closed. In the case of finite domain, there is no loss of expressiveness
due to restriction to the closed version of a fixpoint logic, cf. [1, 21].

We also consider logic with counting, FO+count(M). The presentation we use follows [23]. This
logic is two-sorted. A finite structure over M is of the form ({ay,...,a,},{1,...,n},Ry,... . R;,1,n,<
,+,%*). Here {ay,...,a,} CU, and the SC-relations R;s are interpreted over {a1,...,a,}, while <, 4, *
refer to the sort of natural numbers. Here we use + and * as ternary predicates. FO+count(M)
extends FO(M) by counting quantifiers Jix where i refers to the sort of natural numbers, and z refers
to the first sort. This quantifier, that binds z but not ¢, says that there are at least i satisfiers of
@. For example, lizp(z) = (Fizp(z)) AVj(Tjze(z) — 5 < i) says that there are exactly i elements
satisfying o(+), and 3i,j(j + j = 1) A (Flizp(z)) says that the number of satisfiers of ¢ is even — this
is known not to be definable in FO.

The hybrid second-order logic HSO permits second-order quantifiers 35 and V.S which are interpreted
as follows: D = 35.¢(S), where S is k-ary, iff there exists a set R C adom(D)* such that Dg = ¢.
Note that this notion is even weaker than weak second-order, where second-order quantifiers range over
finite sets. We use SO for full second-order logic (k-ary second-order quantifiers range over subsets of
U*). Formulae of SO or SO, can be converted into normal form Q;S'...QyS*.¢) where Q;S" are
second-order quantifiers, and 1) is first-order. In the case of HSO, it is not immediately clear if the
same is true (see Corollary 11).

While all these logics are relevant to database query languages (as we shall see shortly), we shall also
consider infinitary logic, which is of interest in finite-model theory, as logic which subsumes fixpoint
logics and possesses nice properties, such as 0-1 law [39]. It is defined exactly as first-order logic,
except that arbitrary disjunctions and conjunctions are allowed. That is, if {y;(Z)} is an arbitrary
collection of formulae, then \/; ¢;(Z) and A, ¢;(Z) are formulae. We use L, to denote infinitary
logic.

Suppose L is one of the logics introduced above, but the formation rules are modified so that only
finitely many variables, z1,..., g, can be used in formulae. The restriction thus obtained is denoted

by L*. For example, £, is infinitary logic with k variables. We use £, for [J,cn L5,

In the absence of interpreted symbols in Q, we speak of a pure logic (over a schema SC).

Queries definable by logics

A query is a mapping from Inst(SCy) to Inst(SC3), where SC; and SCs are two schemas. For
simplicity of exposition, assume that SCy consists of a single p-ary relation. Given a logic L and a
structure M, we say that a query @ is L-definable over M (or L(M)-definable) if there exists an L
formula ¢(z1,...,zp) in the language L(SCy,?) such that Q(D) = {@ | D = ¢(d)}. We denote this

query by Q.
For the special case of M being (U, <), we write L(<) instead of L({U, <)).

As in the case of relational calculus and algebra, we often consider queries that do not extend the
active domain. Thus, we define the query Q%" by Q%*(D) = {@ € adom(D)P | D |= ¢(d)}. Note that
any query () obtained in such a way is domain-preserving: adom(Q(D)) C adom (D).



Query languages

Relational calculus is just first-order logic over the database schema: its expressions are of the form
e = {7 | ¢(Z)} where (%) is a FO formula in the language of the schema relations. By the Hull-Su
theorem, we can use FQO, expressions. We use CALC to denote the family of all calculus queries
under the active interpretation (that is, Qz"t), and ALG to denote relational algebra. It is a classical
result of relational theory that CALC = ALG.

We consider DATALOG ™, which is datalog with negation allowed in bodies of rules. That is, a rule is
of the form H :— By,..., By, n > 0, where each B; is an atom or a negated atom, and H is an atom.
Following [1, 2], we give it a simple inflationary semantics. That is, each iteration infers new facts and
adds them to the facts already inferred; thus, a fixpoint is always reached.

We also consider the WHILE language. It extends ALG by allowing the statement (while change begin
e end) where e is an expression [2, 1, 18]. It iterates e as long as it changes at least one relation.
A WHILE statement is either an assignment of the form V:=FE, where V is a variable and FE is an
expression, or a while expression above. A WHILE program is a sequence of while statements. See
[1, 2] for more details.

Equivalences for the finite domain

Query languages introduced here have been studied in depth in the classical relational theory. Many
equivalence results are known in the pure finite case. By the pure finite case we mean this: the only
free nonlogical symbols are the schema relations, queries are interpreted actively and their outputs
are restricted to the active domain. That is, a query does not extend the active domain, and all
quantification is active. Below we list some of the most important equivalences.

First, CALCc = ALG = FO [1]. Similar equivalences have been obtained in the case of interpreted
operations (with some restrictions) given by abstract datatypes, see [8]. For fixpoint logics, FO+1fp =
FO+ifp = DATALOG™ [2, 31] and WHILE = FO+pfp [2].

In the presence of an order relation, these equivalences continue to hold and, in addition, FO+I1fp
captures all generic PTIME queries, and FO+ pfp captures all generic PSPACE queries [34, 52]. Also,
in the presence of order, FO+count captures uniform TC [5, 23].

FO+count is closely connected to to relational languages with aggregates; this connection, hinted
at in [40], was explicitly shown in [41]. Second-order logic was shown to be relevant to the study
of languages for complex objects, see [32]. L%  is of interest in finite-model theory because it
subsumes fixpoint logics. Variable-bounded logics are studied primarily in (finite) model theory, but

[63] demonstrated nice connections with expression and combined complexity.

Genericity

A query @ (that is, a mapping from Inst(SCq, X) to Inst(SCy, X)) is totally generic [10] if, for
any D € Inst(SCy) and any injective map « : adom (D) U adom(Q(D)) — X, it is the case that
Q(n(D)) = n(Q(D)). A query is locally generic [10] if X is ordered, and the above holds for any
injective monotone 7. Clearly, total genericity implies local genericity. Examples of generic (locally or
totally) queries are any ALG, DATALOG ™ or WHILE query, when no interpreted operations are present.
Example of a locally but not totally generic query is Q(S1,S2) = VaVy.Si(z) A So(y) — x < y.



Also note that totally and locally generic queries that return finite results are domain-preserving:
adom(Q(D)) C adom(D), see [10]. For more of genericity, see [1, 9, 10].

3 Active interpretation

The active interpretation does not allow a query to ask any question about what is outside of the finite
database: while an infinite structure is there, and we can even see a small part of it, we cannot ask
much about it. So, how much more does the mere presence of this structure add to the expressiveness
of query languages? The answer is — practically nothing. We start by proving this result for a variety of
logics. Then we show that many of the equivalences among languages continue to hold, when languages
are appropriately modified. We derive some complexity corollaries, and also consider infinitary logic
as a separate case.

Note: in this section we only deal with active quantification, so we write L instead of L,c¢. Similarly,

we write (), instead of Q;Ct, since the natural semantics case is not considered in this section.

3.1 Ramsey property and expressivity bounds

The main goal of this section is to prove generic collapse results for a number of logics. We say that
a logic L has a locally generic collapse over an ordered structure M = (U, Q) if, for every schema
SC, every I(M)-definable locally generic query on SC-databases, is already I(<)-definable. That is,
M is as expressive as just the order relation, with respect to locally generic queries. A logic L has a
generic collapse over a structure M if every IL(M)-definable totally generic query on SC-databases is
definable in pure L.

This problem of collapsing signatures for the active quantification was considered for first-order logic in
[10] and independently in [43]. However, the techniques in [10] relied heavily on translation into prenex
form, and the extension to second-order logic in [11] was ad hoc. In [43], an elementary extension is
used that possesses a set of indiscernibles, and it is unclear whether this technique works beyond the
first-order case.

However, we show here that the technique of [10, 11] can be modified so that it can be applied to
a variety of other logics. In particular, we show that a proof based on Ramsey’s theorem [27], can
proceed inductively on the structure of a formula, thus making it unnecessary to impose syntactic
restrictions. Consequently, we get a series of results that give us expressivity bounds for logics under
the active interpretation.

Definition 1 Let L be a logic. We say that it has a Ramsey property over an ordered structure
M = (U, Q) if, for any SC, the following is true:

Let o(Z) be an L-formula in the language L(SC, ), and X an infinite subset of U. Then
there exists an infinite set Y C X and a L(SC,<) formula (&) such that for any D €
Inst(SC,Y) and any @ over Y, it is the case that D |= (@) <> (a).

We also speak of a formula ¢ having the Ramsey property if the above is true. We speak of the total
Ramsey property if 1 is a L(SC) formula.



As was shown previously [10, 11], the Ramsey property implies the following collapse for generic
queries:

Lemma 1 (Generic Collapse Lemma)

1. If L has the Ramsey property over M = (U,R), and every IL(<)-query is locally generic, then L
has the locally generic collapse over M.

2. If L has the total Ramsey property over M, and every L-query is totally generic, then I has the
generic collapse over M.

Proof. Let @ be a locally generic query definable in IL(M). By the Ramsey property, we find an infinite
X C U and a L({U, <))-definable Q" that coincide on X. We claim they coincide everywhere. Let
D € Inst(M). Since X is infinite, there exists partial monotone injective map 7 from adom (D) into
X. Since @' is locally generic and thus Q and Q' do not extend active domains, we have 7(Q(D)) =
Q(nD) = Q' (D) = 7(Q'(D)) from which Q(D) = Q'(D) follows. O

The condition that every IL(<)-query is locally generic, and every L-query is totally generic, holds for
all the logics we introduced. Thus, to limit their expressiveness over infinite structures, we have to
prove the Ramsey property. First, we state a simple lemma that is often used as a first step in such
proofs.

Lemma 2 Let (%) be an L formula in the language L(SC,Q), where L is one of the logics introduced
in the previous section. Then there exists an equivalent formula (%) such that every atomic subformula
of ¢ is either an L(SC) formula, or a L(QY) formula. Furthermore, for any set Z C & of free variables
of @, there is an equivalent formula 1 (Z) such that none of variables Z occurs in an L(SC)-atomic
formula.

Proof. Introduce m fresh variables z1,...,2,, where m is the maximal arity of a relation in SC,
and replace any atomic formula of the form R(#1(¥),...,%(y)), where [ < m and the ;s are Q-terms,
by 3z € adom...3z € adom. \,(z; = t;(¥)) A R(z1,...,%). Similarly use existential quantifiers to
eliminate Z-variables from L(SC)-atomic formulae. |

The key in the inductive proofs of the Ramsey property is the case of Q-atomic subformulae. This
was the key idea of the proof for the first-order case in [10], though the lemma below was not stated
explicitly.

Lemma 3 Let M = (U,Q) be an infinite ordered structure, and ¢(Z) an atomic formula. Then ¢
has the Ramsey property.

Proof. We show that any infinite X C I/ contains an infinite sequence indiscernible for ¢ and every
subformula of ¢ obtained by collapsing two or more variables. Let & = (z1,...,%;), and let Part. (&%)
be the set of ordered partitions on {xi,...,;}; that is, partitions with an order relation < on the
blocks. For each P € Part-(Z), let ((P) be a <-formula specifying the partition, and let ¢/P be ¢
in which a representative for a block in P replaces every occurrence of every variable from that block.

Then M = 9(Z) + V pepar,(z) ((P) A 9/ P).
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Let Z C U be an infinite set, and P an ordered partition of {x1,...,2;}. Let y1,...,ys be represen-
tatives of blocks of P such that = ((P) — A, ;(y; <y;). By Ramsey’s theorem [27], there exists an
infinite subset Zp C Z such that either for every ordered tuple (ci,...,¢;s),c1 < ... < ¢, of elements of
Zp it is the case that = ¢/P(¢) «> T, or for every such ordered tuple it is the case that = ¢/P(¢) « F.
Consequently, either = (((P) A ¢/P) < ((P) for every & over Zp, or |= ({(P) A ¢/P) <> F for every
Z over Zp.

Now let Py,..., P, be some enumeration of the (finite) set Part(Z). Let Z° =U, Z' = Z%l, o Zh=

ZEI, AR Zlkgk_l. Then it follows that over Z*, ¢ is equivalent to a Boolean combination of atomic
L(<)-formulae, thus proving the lemma. 0

Now an inductive argument proves:

Proposition 1 The following have the Ramsey property:

o FO;

FO+1fp;

FO+ifp;

FO+pfp;
e FO+count;
e SO.

Proof. Fix a structure M and a schema SC. By Lemma 2 we assume without loss of generality that
every atomic subformula is a L(SC) formula or a L(€2) formula. We prove the theorem by induction
on the formula. We start with the FO case.

The base cases are obvious: for a L(SC) formula, there is no need to change the formula or find a
subset, and for a L({2) atomic formula it is given by Lemma 3.

Let o(Z) = ¢1(Z) A p2(%), and X C U infinite. First, find 41, ¥1 C X such that for any D and @ over
Y1, D = p1(@) < 91(a). Next, by using the hypothesis for p9 and Y7, find an infinite Y5 C Y; such
that for any D and @ over Y, D |= 2(d) <> ¢2(@). Then take 1) = 11 A1pg and Y = Y. The case of
o = = is trivial.

For the existential case, let ¢(Z) = Jy € adom.¢; (y, £). By the hypothesis, find Y C X and ¢4 (y, %)
such that for any D and @ over Y and any b € Y we have D = (b, @) <> 11(b,@). Let (Z) = Jy€
adom.1 (y,Z). Then, for any D and @ over Y, D = ¢(a) iff D |= 1(b, @) for some b € adom(D) iff
D |= p1(b,a) for some b € adom (D) iff D |= ¢1(d@), thus finishing the proof for the FO case.

Before we give the proof for the fixpoint logics, note that if a schema predicate occurs only positively
in ¢, then it occurs only positively in the formula 1 constructed by the above inductive argument.
Also note that the separation Lemma 2 does not change positive occurrences to negative and vice
versa.

Proof for FO+1fp. The proof is by induction on syntactic complexity, that is, the total number of
occurrences of the Boolean connectives, quantifiers, and the LFP operator. Since we are dealing with
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the finite case, we assume that that we only have closed fixpoint formulae. The basis cases and the
cases of Boolean connectives and quantifiers are proved as before.

Let S be a new n-ary relation symbol that occurs positively in a L(SC U {S},Q) formula «(Z),
and let o(y) = LFPz s[a(Z, S)](t1(¥), ..., tn(¥)). We can assume without loss of generality that the
fixpoint formula is applied to a vector of variables, since ¢(%) is equivalent to 3z; € adom...3z, €
adom.LFPz s[a(Z, S)|(Z) A \;(zi = ti(9)).

Given infinite X C U, we use the hypothesis to find an infinite Y C X and a L(SC U {S}, <) formula
B(Z) such that for any SCU{S}-database Dg € Inst(SCU{S},Y) it is the case that Dr = «a(a) < £(a)
for all @ € Y"; also, we see that S occurs positively in .

Now, fix D € Inst(SC,Y) and @ € Y", and define Ry(a) = ), and

-,

Ri(a) = {b| b C adom(D), Dp,_, () = a(b)},
and similarly define R;(().

To show that D |= LFpz s[a(, S)|(d) <+ LFPsz 5[B(Z, S)](@), it is enough to show that R;(a) = R;()
for all 7. We do this by induction on i: first, Ro(a) = Rg(8), and if R;(a) = R;(8) = R;, then
Dpg, = a(b) < B(b) for any b over adom (D) by the hypothesis, so we get Rii1(a) = Riy1(8). This
completes the proof for FO+1fp.

The proof for FO+ifp and FO+pfp follows along the same lines (it is, in fact, simpler, because one
does not need to worry about positiveness).

For FO+count, one has to add a new case to the basis (atomic formulae of the second sort), and two
new cases for the inductive proof. One is the second-sort quantification, which poses no problem, and
the other is Jiz.p(x, 7). For this case one applies the hypothesis to ¢ to get an equivalent formula )
over some infinite set Y, and then Jiz.1)(z,§) is the required formula, because i satisfiers of ¢ over

the active domain also satisfy ).
To prove the statement for SO, one has to add a new case of the second-order quantifiers. We omit
the easy proof. O

Corollary 1 Each of the logics in Proposition 1 has locally generic collapse.

The main technique of the proof can easily be extended to other logics, (e.g., transitive closure logics

[21]).

Total Ramsey property and generic collapse

It is clear from the proof of Proposition 1 that only the case of atomic L(€) formulae requires the
introduction of the order relation. Thus, if atomic L(2) formulae had the total Ramsey property
over M, so would all of the logics in the statement of Proposition 1. We call a signature Q analytic
on R if it consists of real-analytic functions. For example, (4, *) is an analytic signature. For those
signatures, we can prove the generic collapse result. First, we need

Lemma 4 Let F = {fi(Z)}ic1 be a countable family of real-analytic functions, where & = (z1,...,1;).
Assume that none of the functions in F is identically zero. Let X C R be a set of cardinality of the
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continuum. Then it is possible to find a set’ Y C X of cardinality of the continuum such that for any
tuple € of | distinct elements of Y, none of fi(¢),i € I, equals zero.

Proof. We need some notation first. Let f be a function, with z; , ..., z;, being some of its parameters.
Let ¢;,,...,c;, € R. Then f¢;, /i, ..., ¢, /zi,] denotes the function obtained from f by substituting
¢;; for z;;; this function has k fewer parameters than f. Since composition of real-analytic functions
is real-analytic again, this function is real-analytic if so is f.

Let A C X. We say that A is (F, X)-nice if A is infinite and for any tuple & of | distinct elements of
A, none of f;(¢) equals zero. We first prove that there exists a (F, X)-nice set. Note that if C' C R is
countable and H is a countable collection of real-analytic functions with at most [ parameters z1, .. ., z;,
and none of the functions in # is identically zero, then there exists ¢ € R — C such that none of the
functions of form h[c/x;], h € H, is identically zero. Indeed, for any function h(z;,,...,z;,,), one
can find a vector (ci,...,c) such that h'(z;,, ) = hlci/z4,,. .., cx/z;,] is not identically zero. Since
B’ is still analytic, its set of zeros Z(h,k + 1) is at most countable. Similarly define sets Z(h,1)
for every 1 < ¢ < [, assuming such set to be empty if z; is not a parameter of h. Now the set
Z = Unen<i<i Z(h,i) is countable, and thus any ¢ € R — (Z U C) proves our observation. This
observation gives us a simple inductive construction that leads to a countable (F, X)-nice set.

It is easy to see that the union of a chain of (F, X)-nice sets is F-nice again; thus there exists a
maximal F-nice set by Zorn’s lemma. Let Y be a maximal F-nice set. To conclude the proof of the
lemma, we will show that Y has the cardinality of the continuum.

Let x be the cardinality of Y; assume that x is less than the cardinality of the continuum. Consider
the set G of all functions of the form ¢(z;) = fle1/z1,...,¢/x;] where f € F and substitution occurs
in all positions except the ith one, and all ¢;s are distinct elements of Y. Then the cardinality of G is
still .

Furthermore, each function in G is real-analytic, and not identically zero, since no f from F is zero
on any vector of distinct elements from Y. Let Z, be the the set of zeros of g € G. Since each g € G
is real-analytic, Z, is at most countable. Furthermore, the cardinality of Z = |J 9€G Zg4 is at most
k. Hence, there exists a € X — (Y U Z). But now it follows from our construction that Y U {a} is
(F, X)-nice, thus contradicting the maximality of Y. This shows that Y has the cardinality of the
continuum and completes the proof of the lemma.

Immediately from here we derive

Lemma 5 Let M = (R,Q), where Q is analytic. Let (&) be an atomic L(Q) formula. Then (%)
has the total Ramsey property.

Proof. If ¢ is always true or always false, we are done. Otherwise, it is of the form fi (%) = fo(Z),
where & = (z1,...,2;),l > 0. Let xp be a formula specifying a partition of indexes {1,...,l}, e.g.,
(1 = m2) A (73 = m4) A =(z1 = z3) specifies the partition {{1,2},{3,4}}. Rewrite f; and fy to f¥
and f§ by replacing each variable with an index belonging to a block of P by one representative of
this block; thus, flp and f2P are function in mp variables, where mp is the number of blocks of P. For
example, if f1(z1,...,74) = 2172 + 2324, then for the partition P above we have f{ (71, 73) = 2% +z3.
Now, by Lemma 4, if flp — f2P is not identically zero, then for any uncountable X C R, there is an
uncountable Y C X such that for every ¢ of mp distinct elements over Y, fI(¢) # f4(¢). Thus, using
an argument similar to that in the proof of Lemma 3, we get that over some uncountable set X C R,
¢ is equivalent to \/ xp where P ranges over some set of partitions of {1,...,[}. O
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We now combine this lemma with the proof of Proposition 1 to obtain

Corollary 2 If M = (R Q), where Q is analytic, and L is FO, or FO+Ilfp, or FO+pfp, or
FO+ifp, or FO+count, or SO, then L has the total Ramsey property over M. O

From Proposition 1 and corollary 2 we obtain the main result of this section.

Theorem 1 Let L be FO, or FO+I1fp, or FO+pfp, or FO+ifp, or FO+count, or SO. Let
M = (U,Q) be an arbitrary ordered structure. Then L has locally generic collapse over M. If
M = (R, Q), where Q is analytic, then 1L has generic collapse over M. O

This can be used to derive expressivity results for higher-order logic under the active-domain semantics.
For example, from the 0-1 law for O+ pfp [38], one can get

Corollary 3 Parity test is not definable in FO+pfp((R, +, *)). O

3.2 Infinitary logic

Here we extend our results to infinitary logic. We are not interested in the full infinitary logic Loy,
nor L%  over ordered structures, because they express every property of finite structures [20]. Thus,
we concentrate on LY over unordered structures.

We cannot use the inductive argument of Proposition 1 anymore, because it does not work for infinitary
formulae. Indeed, for infinitary disjunction \/ ¢;, one would construct a decreasing family of infinite
sets X; O Xy D ..., but its intersection (), X; is not guaranteed to be infinite. Thus, we use the
approach that is closer to the proof of the collapse of generic queries for FO in [43].

Proposition 2 Let M = (R,Q) where Q is analytic, and has countably many symbols. Then L%,
has generic collapse over M.

Proof. Let ¢(Z) be a L% formula in L(SC,Q). Assume it uses k variables. Since the number of
atomic L(SC, Q) formulae in finitely many variables is at most countable, we can assume that all the
infinitary disjunctions and conjunctions are countable, and that the collection of atomic subformulae
of ¢ is countable. As before, we assume without loss of generality that every atomic subformula of
@ is either a L(SC) formula or a L(Q2) formula. (We need at most m extra variable for existential
quantifiers, where m is the maximum arity of a schema relation.)

Let vi(2), i € I be the collection of all L(f2) atomic subformulae of ¢, where z = (zy,...,2). Each
is of the form f1;(Z) = f9;(Z), where f1; and fi; are Q-terms, that is, real-analytic functions. Let

9i(2) = f1i(2) = f2(2).

Now, as in the proof of Lemma 5, let xp(%) be a formula specifying a partition P on {z1,...,2;}, and
let g¥' (%) be a function obtained from g by identifying variables that belong to the block of a partition;
the number of parameters of this function equals the number of blocks of P. For each function g;(Z),
let P; = {P | gF is identically zero}. Let

Biz) =\ xp(® A -~ xp(@).

PeP; Pgp;
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Now define a family of functions G as

U{gip | P & Pi}.

i€l
Note that all functions in G are real-analytic, and none of them is identically zero. Applying Lemma
4 to G, we find an infinite (in fact, uncountable) set X C R such that for any g € G and for any ¢
consisiting of distinct elements of X, g(¢) # 0. Let ¢'(Z) be obtained from ¢ by replacing each v;(2)
with §;(2). Now a straightforward induction on the structure of ¢ shows that for any D € Inst(SC, X)
and for any ¢ over X, D = ¢(¢) + ¢'(¢). This shows that £% , has the total Ramsey property over
M, and thus it has generic collapse over M. O

Using the 0-1 law for infinitary logic [39], we obtain:

Corollary 4 The parity test is not definable as a L%, ,((R,+,*)) query. O

3.3 Equivalence results and extensions to algebra

We now want to extend the results above to the setting of relational algebras. In this section we show
that a number of well-known results on equivalence between logics and relational query languages
generalize straightforwardly in the presence of interpreted structures. We then use this to extend our
results on expressivity of languages to relational algebra.

As explained before, for every logic I, a I.(M) formula ¢(#) with n free variables in the language
L(SC,Q), defines a query Q,, on Inst(SC,U) such that Q(D) = {@ € adom(D)" | D |= ¢(a)}. That
is, we consider only active domain quantification, and queries that do not extend the active domain.

We define the calculus over M, denoted by CALC(M) simply as FO(M). More precisely, its expres-
sions are of the form e = {Z | p(Z)}, where ¢ is a FOyct(M) formula. An algebra over M, denoted
by ALG(M), contains all the same operations as relational algebra ALG; the only difference is the
selection predicates. Define selection terms by the grammar st := #i | f(st,...,st) where f ranges
over the function symbols in Q. Then, selection conditions are given by sc := C(st,...,st) | st =
st | =sc | scV sc, where C ranges over the predicates in Q. For example, 041495414 #3(R) is an
algebra expression that selects triples (z,y, z) from R such that z xy > z 4 z. Similar extensions exist
in the literature, see, for example, [22]. A simple extension of the classical equivalence CALC = ALG
yields the following.

Proposition 3 For any M, CALC(M) = ALG(M).

Proof sketch. The proof follows the standard proof of the equivalence of calculus and algebra, cf. [1].
The extension of the translation from ALG(M) to CALC(M) is simple: if e is translated into ¢(Z),
then o,.(e) is translated into ¢(%) Asc(f), where sc(Z) is obtained from sc by replacing #7 with z;. For
the reverse translation, we assume without loss of generality that in formula ¢ atomic subformulae are
separated by Lemma 2. Then we only have to deal with an additional case of L(2) atomic formulae.
Given such an atomic formula (%) where # is of length n, we have to find a ALG(M) expression
e such that for every D, e(D) = {@ € adom(D)" | D = ¢(d)}. Let ¢ be an ALG expression that
constructs the active domain. Then e(D) = o4 (¢'(D) x ... x €'(D)), where the product is taken n
times, and sc is obtained from ¢ by replacing z; with #i. O
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Next, we consider DATALOG™ (M), which extends DATALOG™ by allowing L({2)-atomic formulae in
the bodies of rules. For example, if Y = R and 2 contains addition, then the following DATALOG™ (M)
program

R(z,y) = E(zy),z>y+y

R(z,y) = E(z,2),z>z+2zR(z,y)

defines the transitive closure of a subgraph that consists of the edges (z,y) with > 2y. We assume
that DATALOG™ programs are evaluated inflationarily.

Proposition 4 For any M, DATALOG™ (M) = FO+ifp(M) = FO+1fp(M).

Proof. Given a FO+ifp(M) formula ¢(Z), we first transform it into an equivalent formula (%)
such that every atomic subformula is either a L(SC) formula, or a L(€Q) formula, and every fixpoint
formula is applied to a vector of variables, c¢f. Lemma 2 and the proof of Proposition 1. Let A =
{a1(Z1),...,ak(Zk)} be the collection of all L(€2) atomic subformulae of 1. Let Ti,...,T; be new
relation symbols of the same arities as Z1, ..., Z. Let ¢p(Z) be a L(SCUf) formula obtained from 1)
by replacing each «;(#;) with T;(Z;). Finally, for any database D, let Dz be a SCU T instance where
T; is interpreted by {@ € adom(D)*™(@) | D |= a(#)}. Then D = (a@) iff Dy = ¢7(a) for every
a € adom(D)™.

Now, according to [2], there exists a DATALOG™ program P that uses the schema relations and T; as
edb relations such that for any SCUT instance D, P computes Qy, (D). Thus, if P is preceded by the
rules that first define the unary predicate Adom that computes the active domain of the SC relations,
and then

Ti(z1,...,z;) = Adom(z1),... Adom(x;), o;(z1, ..., 2))

for each Tj, then the resulting program P’ (in which T;s are now idb relations) computes @, (D) for any
D € Inst(SC, M). Since 9 and ¢ are equivalent, we obtain that @, is computed by a DATALOG™ (M)
program.

For the reverse inclusion DATALOG™ (M) C FO+ifp(M), we start with a DATALOG™ (M) program
P. Assume without loss of generality that it computes one relation. Construct a new program P’ by
replacing each L(f2)-atom «;(Z;) in a rule of P by T;(#;) where T; is a new relational symbol. If we
define Dy as before, then P'(Dy) = P(D) for every D. By [2], there exists a FO+ifp expression ¢
in the language L(SC UT) such that Q,(D) = P'(D) for every D € Inst(SC U T). Let 1 be obtained
from ¢ by replacing each occurrence of T;(2) with «;(Z). A simple induction on the structure of the
formula shows that D = (@) iff Dy = ¢(d@) for each @ of elements of adom (D). Then, for every
D € Inst(SC, M) we have: Qy(D) = Qu(Dr) = P'(Dr) = P(D). Thus, P is equivalent to 1.

Finally, we have to show FO+ifp(M) C FO+1fp(M). The proof follows along the same line: replace
each L(Q)-atomic formulae by a new predicate, and then use the result of [31] to find an equivalent
least-fixpoint formula in the extended relational signature. Then replace the new predicates by the
L(Q) atomic formulae that define them. 0

Finally, consider WHILE(M) which extends WHILE by allowing ALG(M) expressions in place of ALG
expressions. Extending the WHILE = FO+ pfp equivalence, we get

Proposition 5 For any M, WHILE(M) = FO+pfp(M).

16



Proof sketch. We follow the main idea of the proof of Proposition 4. To translate from WHILE(M)
into FO+pfp(M), consider a WHILE program P. Get a new WHILE program P’ by replacing each
occurrence of o4.(e) in P, where e is n-ary, with e N Ts., where Ty, is a new relational symbol. Extend
any SC-database D to Dt over a new schema that contains all Ts.s by interpreting T, as a set of
all n-ary tuples over the active domain that satisfy sc. Then P(D) = P'(Dr). By [2], there exists a
FO+pfp expression ¢ such that P'(D7) = Q,(Dr). Now, as before, replace Ty, in ¢ by a first-order
formula that defines it, to get a FO+pfp(M) formula ¢ such that Qu(D) = Qu(Dr) = P'(Dr) =
P(D). The reverse inclusion is similar. O

We now combine these results with the Ramsey technique to get expressivity bounds on the active-
semantics queries over interpreted structures.

Corollary 5

1. Let M be an arbitrary ordered infinite structure. Then, for locally generic queries, ALG(M) =
ALG(<), DATALOG™ (M) = DATALOG (<), and WHILE(M) = WHILE(<).

2. If M = (R, Q) where Q consists of real-analytic functions, then every totally generic query
in ALG(M), DATALOG™ (M) and WHILE(M) is definable in ALG, DATALOG™ and WHILE,
respectively. Furthermore, the parity test is not definable in any of these languages. O

The above results indicate that, with some effort, many of the results for pure calculi extend to active
semantics in the presence of arbitrary interpreted structure. However, there are cases where extensions
are dependent on specific properties of the interpreted structure, even in the case of active-semantics
queries. One area where this happens in query safety over interpreted structures, explored in detail
in [13]. We call an active formula ¢(Z) in L(SC, Q) is safe for an instance D if Q,(D) is finite. In [13]
it is shown that if M = (R, +, *,0,1, <), then there is a recursive function that takes such a formula
¢(Z), and outputs another active-semantics formula ¢sase(2) such that Q. (D) equals Q,(D) if ¢ is
safe for D, and () otherwise. However, there are structures of N with all computable predicates in the
signature for which no such translation — recursive or not — can exist.

4 Natural semantics

So far we have produced a set of techniques that can be applied to analyze expressiveness and com-
plexity of ‘classical’ active-semantics queries in a variety of languages. We now want to consider how to
approach natural semantics queries, which are essential for constraint databases. It appears that this
case is “infinitely” harder than the active case, because now we can ask questions about any element
in the universe. Thus, the proviso of the previous section that only active formulae are considered and
that L is used in place of L, is not in force in this section.

The main kind of result we prove here is that for certain structures M, there is no gain in expressiveness
by going from the active interpretation to the natural interpretation. That is, we say that a logic L.
admits the natural-active collapse over M if L(M) = Lact (M); in other words, for every schema and
every L-formula (%) in the language L(SC,Q), there exists an equivalent active formula (%) in the
same language.
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The Hull-Su theorem mentioned in the introduction states that pure FO admits the natural-active
collapse. But this result is not robust: if N' = (N, +, %, 0, 1), then every recursive query is definable in
FO(N) [28], but FOyuct(N) cannot express parity (see Theorem 1); thus FOuct(N) # FO(N).

It was further shown that FO admits the natural-active collapse over (R, +, —, 0,1, <) [45]. One might
ask whether a similar result holds for other structures, and for other logics. Our main goal here is
to give positive answers to both questions. We extend the natural-active collapse for structures that
have same model-theoretic properties as the real field (R, 4, %, 0, 1, <), and to some higher-order logics.
In addition to proving such results, we are also interested in finding algorithms that convert natural
queries into active queries.

We start by giving a new simple proof of the Hull-Su theorem, that can then be extended to show that
FOF collapses to .7-"(’)];“. We extend this result to infinitary logic. We then present our main result,
which is a constructive proof that FO(M) = FOact (M) when M is o-minimal and admits quantifier
elimination; the transformation from a natural-semantics formula into an equivalent active-semantics
one is effective if so is the quantifier elimination for the underlying structure. We then extend this
result to some higher-order logics. This must be done with care, as for unrestricted fixpoint logics
and second-order logics, the set of natural numbers is definable in nice structures such as the real
field. However, by restricting them to their hybrid versions, we recover the natural-active collapse.
We conclude by giving an example of a structure with a decidable first-order theory over which the
natural-active collapse fails. This answers an open question from [28].

4.1 Natural-active collapse in the pure case

Our goal is to have a set of general algorithms for collapsing natural queries to active over interpreted
structures. We start with the pure case, and give new algorithms for several logics. We also give a
simple constructive proof of the Hull-Su theorem. Theorem 3 refines it to work with variable-bounded
logics. These ideas will be expanded upon to deal with interpreted structures. The original proof
in [33] is algorithmic but quite complex. In a recent paper [16], a simpler proof is given that uses
many-sorted logic. Below we sketch a simple direct proof.

Theorem 2 (Hull-Su) FO = FOy;.

Proof sketch. The proof is by induction on the structure of the formula. The cases of atomic formulae
and Boolean connectives are obvious. For the existential case, we define a transformation [y]® that
eliminates all free occurrences of variable x:

e If yis (z = z), then [y]* =T;

o Ifyis(z=y)or R(...,z,...), then [y]* = F;

If 7y is any other atomic formula, then [y]* = ~;

¢ If’y =N \Y% Y25 then [")/}I = [f}/l]m Vi [,72]&?7

If v = =/, then [y]* = =[y]*;

If v = Jy € adom.', then [y]* = Ty € adom.[y']*.
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Let ¢(Z) = Jz.a(x, Z) where z = (z1,...,2,). By the hypothesis, « is equivalent to an active formula

o/(z, 7). Assume without loss of generality that o is in prenex form, and z is not a bound variable in
any subformula of o'.

— —

Define ¢((2) = Jz € adom.o(z,7), i(Z) = o'(z;,7) and ¢oo(Z) = [o/(z,2)]*. Let ¢'(2) = ¢o V
(Vi_, ¢i) V@so. Then a straightforward proof shows that D = (@) <> ¢'(@) for every instance D and
acu”. 0

The idea behind this proof can be implemented a bit more carefully to yield the following stronger
result:

Theorem 3 FOF and LE,, admit the natural-active collapse: FO¥ = FOX  and £F_, = (LE. ) act.

Proof is again by induction on formulae. We do the proof for infinitary formulae, and then the result
for FOF follows as a special case (when all disjunctions are finite). The base case of atomic formulae
(y = z) or R(x1,...,zp) is obvious, and so are the cases of the Boolean connectives as well as infinite
disjunction \/; ¢;. We extend the definition of [y]* from the previous proof to infinitary formulae by

[Vz vil* = Vz[%]x

Now let (%) = 3z.a(z, Z) where « is, by induction, an active £ formula. First, do the following
with a: introduce new variables 2’ and 2! for each z; in Z. For every quantifier Qz or Qz; in «, replace
it with Qz’ or Qz], and replace all occurrences of = or z; bound by this quantifier by 2’ and z]. It is
easy to see that we get an equivalent formula ((z, Z) that uses at most 2k variables. Note that in 3, x
and Z are not used as bound variables; also,  and Z do not occur under the scope of quantifiers that
bind 2’ and z..

Below is the key claim, that is proved by straightforward induction on the complexity of the formula.

Claim 1 Let x(z,Z, W) be an active LY, , formula such that © and Z are not used as bound variables.
Given a D with A = adom(D), a vector @ over U and a vector € over A, then for any b not in A and
not in @ we have:

D |: x(b, @, ) if D ‘: [X]I(C_iaé')

Proof of claim: For atomic formulae, it follows from the definition of [y]* and the fact that b is
not in A and not in @. The proof for the connectives — and \/ is obvious. Let x(z,z, @) = Jv €
adom.xo(z, Z,w,v); then [x]* = Jv € adom.[xo]*. Fix D with A = adom(D) and @ and ¢ as in the
claim. Let b be an arbitrary element not in A and not in @. Assume that D | x(b,d,¢); then
D = xo(b, @, c, ag) for some ag € A and by the hypothesis, D = [x0]*(d, ¢, ag). Thus, D = [x]*(@,c).
The converse is proved similarly. Thus, the claim is proved.

Going back to the proof for the existential case, we now have a formula 3z.5(z, Z) which is equivalent
to p(2) = 3z.a(z, Z). Define ¢g(2) as Iz € adom.a(x, Z) and ¢;(Z) = a(z;, Z). Let

n

act (2) = wo(2) V (\/ @i(2) V [B" (%),

=1

where 7 = (z1,...,2,). Then it follows immediately from the claim above that D = 3z.08(x, ?) iff
D = @act (2); also, @act is an active formula.

19



The only problem is that @,. may use extra variables z' and z[s; in fact, this is so because [(]* uses

them. (Note that ¢y and ¢;s do not use these new variables, because we used « instead of 8 in
the definition of these formulae.) But now we look at any quantifier @z’ in [3]* and note (which is
immediate from the property of 5 and the definition of [-]*) that z may not occur in the scope of this
quantifier; thus, we replace it back with Qz. Similarly, we replace each Qz, with Qz; because z; may
not occur in the scope of @z, — this again follows from the properties of 3 and the translation [-].
Hence, we get an active formula §'(Z) that is equivalent to [5]*(Z) and does not use the variables z’
and zl. That is, 8 is a £, formula. Now ¢}, = w0 V (V; i) V B is an active k-variable formula
equivalent to . This completes the proof. O

Corollary 6 Pure L%, , admits the natural-active collapse. O

4.2 Natural-active collapse over interpreted structures: The algorithm

The algorithm for converting natural-semantics queries into active-semantics queries is based on some
properties of o-minimal structures, which are summarized next. After that, we present the main
technical lemma, which lends itself to an algorithm for converting queries.

Precisely, the statement of the main result of this section is as follows.

Theorem 4 (Natural-active collapse) Let M = (U,Q) be an o-minimal structure that admits
quantifier elimination. Then FO(M) admits the natural-active collapse over M. That is, for every
schema SC, and for every FO-formula ¢(Z) in the language L(SC,Q), there exists an equivalent active
FO-formula pact (Z) in the same language. Moreover, if M is recursive and the quantifier elimination
procedure s effective, then the transformation from ¢ to pac is effective. O

O-minimality Recall that an ordered structure M = (U, Q) is o-minimal if every definable set is a
finite union of points and open intervals. Definable sets are those of the form {z € U | M = p(z)}
where ¢ is a first-order formula in the language of Q and constants for elements of U/.

Let us make a comment about terminology. In the literature on o-minimality, an interval is given
by its endpoints, a and b, and it is either an open interval (a,b) = {c¢ | a < ¢ < b}, or closed
[a,b] = {c| a < ¢ < b}, or one of half-open half-closed versions [a, b) or (a,b]. (We also include cases of
intervals (—oo, b), (—o0, b], [a, ), (a,00).) Thus, we can always speak of endpoints of intervals. Also,
an equivalent definition of o-minimality is that every definable set is a finite union of intervals.

The following classical result establishes uniform bounds on the number of intervals in definable sets.

Fact 1 (see [46]) If M is o-minimal, and ~y(y,x) is a first-order formula in the language of M,
possibly supplemented with symbols for constants from M, then there is an integer K, such that, for
each vector @ from M, the set {x | M |= y(d,c)} is composed of fewer than K., intervals. 0

For every 7(¥,¢) in the language of M and constants, and every @ over M, y(@, M) ={ceU | M [
v(@,c)} is a finite union of intervals. By the ith interval of v(d@,-) we shall mean the ith interval of
v(@, M), in the usual ordering on U.
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We shall also need the following easy observations.

Observation 1: For every formula (¥, z), and every i, there exists a first-order formula denoted by
%i (7, z) such that M = 4,(@, c) iff ¢ is in the ith interval of (@, -). In what follows, we always assume
that the distinguished variable z is the last one.

Observation 2: If M is in addition recursive, and quantifier elimination is effective, then K, is com-
putable for each . Indeed, for each i, write a sentence ?7; = Jz3y ¥;(¥, z) and check if it is true in
M, using quantifier-elimination and recursiveness of M. Eventually, we find ¢ such that 7; is false;
this follows from the Fact above. Thus, K, can be taken to be this 7.

Observation 3: Since intervals are first-order definable, we can use them in formulae. For example,
given a formula (%, ), a number 4, and another formula (2, z), we can write a first-order formula
a(y, Z,z) saying that every = from the ith interval of (¢, ) satisfies 3(Z,z). This of course is just
Va (% (¥, z) — B(Z,xz)), but we shall ocasionally use the interval notation in formulae, to simplify the
presentation.

The main lemma Consider a first-order active-semantics formula in the language of L(SC, M):

a(Z,z) = @iy €adom...QnYm € adom B(Z, 1, 2)

—

where B(Z, 7, Z) is quantifier-free, and has the following properties:

e every atomic subformula of 3 is either a L(SC) formula, or a L(M) formula;
e there exists at least one L(M) atomic subformula of 8, and m > 0, and

e 2 does not occur in L(SC) subformulae.

Let ¥ be the collection of all L(€) atomic subformulae of 3, and their negations.

For formulae o(Z, 7, 2), p(Z,7,2) and p'(Z, 7, 2) from U, i < K, , and j < K, , we let afjpl(f, 7,5, 1),
where | 5|=|%]=| 7|, be the formula defined as follows:

/

off (#,5.51) = Vu ((pu(7.5,u) APy(F Tw) = 0@, 7.u))
Let ¢(Z) be 3z a(Z, 2).

Lemma 6 Let D be a nonempty SC-database over M. Let v, a, B and ¥V be as above. Let @ be a
vector over U. Then D = (@) if and only if there exist g, ¢ € adom (D)™, two formulae p(Z,7, z) and
P'(Z,7,2) in ¥ and i < K,,j < Ky such that for the ith interval of p(a, b,-) and the jth interval of
p'(a@,c,-), denoted by Iy and I respectively, the following three conditions hold:

1. Ioﬁfl#w.

-

2. For all € € adom (D)™, and all ¢,d' € Iy N I, we have M = o(d,€,c) < o(d, e, c) for every
oe V.
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—

’z)

3. D= a'(g, ¢,d), where o/ (5,t,Z) is obtained from o(Z,z) by replacing each subformula o(Z,

Proof. For the only if part, assume that D |= ¢(a@). That is, D |= 3za(d, z). Let d witness this; that is,
D = «a(d,d). For every € over adom(D), of the same length as 7, and every atomic L(€2) subformula
p(Z,7,2) of B, we define I(€,p) to be the maximal interval of p(d,é, M) = {c | M [ p(d,e,c)}
containing d, in the case when M = p(d, €, d), or the the maximal interval of —p(d, €, M) containing
d, in the case when M = —p(@, €,d). Let I; be the (finite) collection {I4(€, p) | € € adom (D), p € ¥},
Since for each € and p we have d € I4(€, p), we obtain that (I # 0.

Now note that for any finite collection of intervals Iy,..., I, there are two indices 7 and j such that
ﬂle I} = I; N I;. This is because each interval I; is the intersection A; N B; of an ideal and coideal in
(U, <). Since ideals (and coideals) of a chain form a chain, we get that ()_, 4 = A; and (\)_, B; = B;
for some ¢ and j, and from this the equation above follows.

JFrom this it follows that there are two intervals, Iy and I in I such that Io NI = ()14. Let b be
such that Iy is the ith interval of p(a, E,M), and ¢ be such that I; is the jth interval of p'(d, ¢, M),
where p,p’ € U (that is, p, p’ are either atomic L(Q) subformulae of ¢, or negations of such atomic
subformulae).

Let € € adom(D)¥. Pick any 0 € ¥ and any ¢,¢ € Iy N 1I;. Since Iy N I; = ()14, we obtain that

¢,d € IyNnT C 14(€ o), which implies M = o(d, €,¢) < o(d, €, ¢'). This proves conditions 1 and 2 in
the Lemma. (Note that the assumptions D |= ¢(@) was not used to prove these two conditions.)

—

To prove condition 3, notice that for every L() atomic subformula o(Z, 7, 2) of ¢, and for every

€ € adom (D)9, we have
old@ed) + Yuelynl. o(d,é u)
since [pN I} = ﬂId

—

Now, for any subformula (%, 7, z) of (&, z), let 7/(5,%, &, ) be the result of replacing each o(&, 7, z)

from ¥ by Ufjp’ (Z,7,5,1).

We can now restate the above equivalence as:

(%) D & 0(d,é,d) < o'(@,¢é,b,é)
for every & € adom(D)!¥ (where b and @ are the tuples necessary to define Iy N I; above), where
o(Z,9, z) is atomic or negated atomic (i.e. o € U).

But the above equivalence is preserved under Boolean combinations and active quantification over
variables from ¢ in o, hence we obtain () for every o that is a subformula of a. Finally, this gives us

D E a(@,d) < (@b, ).

—

Since D |= (@, d), we conclude D = o/ (@, b, ), proving 3).

To prove the if part, assume that there exist E,EE adom (D)™, p,p' € ¥, and i < K,,j < K, such
that for Iy, I; defined as in the statement of the Lemma, conditions 1, 2, and 3 hold. Let d be an
arbitrary element of Iy N I;. We claim that D = «(ad, d), thus proving D = ¢(a).
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Indeed, for every L(2) atomic subformula o(Z, ¥, z) of o, we have
o(a,e,d) <« YuelyNnIl.o(a,é, u)

for every € over adom (D) — this follows from 2. That is, 0(a@, &,d) < a%”l(&', €,b,7). As before, since
this equivalence is preserved under Boolean combinations with L(SC) atomic formula, and under

active-domain quantification over variables from ¢/, we obtain
D & a(@,d) < o« (b, a)

thus proving D = a(d,d). The lemma is proved. O

Remark Note that it is not required that a be in prenex normal form. The proof will work for
any formula « that satisfies the following properties: every atomic subformula is either an L(Q)
formula, or L(SC) formula, z only occurs in L(€2) atomic formulae, and variables used in active-
domain quantification in « are all distinct. It is clear that any active-semantics formula can be
converted into an equivalent formula that satisfies these requirements.

The algorithm The algorithm that converts natural-semantics formulae into active-semantics for-
mulae works by induction on the structure of the formula. To eliminate an existential quantifier
Jz € U, we use the lemma above, by translating its statement into first-order logic. We then notice
that in the resulting translation, every quantifier not bounded by the active domain occurs only in
subformulae which do not mention the SC predicates, that is, in L(2) subformulae. Since M admits
quantifier elimination, this implies that every such occurrence of unbounded quantification can be
eliminated, thus giving us an active-semantics formula.

The algorithm NATURAL—-ACTIVE is shown on the next page. We can state the following.

Proposition 6 Let M be o-minimal and admit quantifier-elimination. Let p(Z) be any L(SC,)
first-order formula, and let pact be the output of NATURAL-ACTIVE on ¢. Then, for every nonempty
D € Inst(SC,M), D |= Vi. o(Z) < @act(Z). Furthermore, if M is recursive and the quantifier-
elimination procedure is effective, then all steps 4.1 — 4.10 are effective.

Proof. This follows straightforwardly from Lemma 6, as Step 4 just encodes the conditions of the
lemma in first-order logic, the quantifier-free formulae produced in steps 4.4, 4.5, and 4.8 exist due
to quantifier-elimination in M, and the existence of K follows from Fact 1. For Step 4.1, any active-
semantics formula can be transformed into the required form by taking a conjunction with Vz €
adom.z = x to guarantee m > 0 and the existence of at least one atomic L(Q2) formula (notice that
this does not change the truth value on nonempty databases).

The effectiveness follows from the effectiveness of quantifier-elimination, and computability of K., for
each v over a recursive M admitting effective quantifier-elimination. O

To conclude the proof of Theorem 4, we have to deal with the case of adom(D) being empty. Let
¢(Z) be a first-order L(SC, Q) formula. Let ¢j(¥) be obtained from ¢ by replacing each occurrence of
R(---), where R € SC, by false. Note that ¢ is a L(Q2) formula. Let ¢y be a quantifier-free formula
equivalent to <p6. A simple induction on formulae shows that for the empty SC-instance, (Js¢, it is the
case that Osc = ¢(a) iff M |= ¢g(a@), for every @. Thus, an active-semantics formula

¢'(f) = [(Bzeadom. z=12) A pact(F)] V [(-Iz€adom. x = x) A @y(T)],
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Algorithm NATURAL-ACTIVE

INPUT: L(SC, ) formula ¢(Z)
OutpuT: L(SC,Q) active-semantics formula @, (Z)

1.

2.

If ¢ is an atomic formula, then @, = .

If @ = 1) * X, then @act = Pact * Xact Where * € {V, /\}; if © = ), then @acy = —Pact-

. If p = dx €adom 1, then @, = dx € adom Pyact.

Let o(%) = 3z o (Z, 2).

4.1 Let a(Z, 2) be a formula equivalent to al., which is of the form

Q1y1 €adom. .. Qmym € adom [(Z, 7, 2)

where B(Z, 7, Z) is quantifier-free, and has the following properties: every atomic subformula
of 3 is either a L(SC) formula, or a L(M) formula; there exists at least one L(M) atomic
subformula of 3, m > 0, and z does not occur in L(SC) subformulae.

4.2 Let ¥ be the collection of all atomic L(€2) subformulae of a, and their negations.
4.8 Let K = max,cy K,.

4.4 For every pair of formulae p,o0 € ¥, and every i,5 < K, define X #,5,1) to be the
quantifier-free L(Q2) formula equivalent to

Su. (. 5.u) A 6(3,Fu)

Note that | 5 |=| £ |=m

4.5 For each p,o € U, each 7,7 < K, and each 7 € U, deﬁneT 7(Z,1,5
formula equivalent to

§,1) as a quantifier-free

VU p’L( )AUJ( FU)%T(fagau)

4.6 For each p,o € U, each i,5 < K, define afj §,t) as a in which every L(Q) atomic

subformula 7(Z, 7, z) € ¥ is replaced by 7/ (Z, ¥, 3,

Ao(@ p(Z, T, v))

Fu)
where the conjunction is taken over all the L(2) atomic subformulae p of £.

f‘;l

4.7 Let sameg(Z,7,u,v) be

4.8 For each p,o0 € U, each i,j < K, define nij 7(Z,5,t,7) as a quantifier-free formula equivalent
to

Yu,v. (pi(Z, 5,u) A 6j(Z,1,u) A pi(T,5,0) A 6;(,F,0)) — sameg (T, 7, u, v)

—

4.9 For each p,o € U, each i,j < K, define 7r 7(&,5,1) as Vi€ adom. 77 7(Z,5,t,7).
4.10 Output, as @act(Z), the formula

35¢ adom 3t€ adom. \/ \/ (x5 (7, 5,1) Al (Z, 5,t) A7 (Z,5,1))
p,oeV i j<K
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where @,¢ is produced by the algorithm NATURAL-ACTIVE, has the property that D |= VZ. ¢(Z) <
¢ (%), for every D € Inst(SC, M). This concludes the proof of Theorem 4. O

From Tarski’s quantifier-elimination, Theorem 4 and locally generic collapse, we get:

Corollary 7 a) There is an algorithm that converts any FO((R, +, *,0, 1, <))-query into an equivalent
FOact ((R, +,%,0,1, <)) -query.

b) Parity test cannot be defined as a relational calculus query with polynomial inequality constraints
over the reals. O

It follows from Lemma, 6 that one only needs quantifier-elimination in Steps 4.4, 4.5 and 4.8 to obtain
quantifier-free formulae equivalent to certain L(£2) formulae. If we leave those formulae intact, we
obtain, instead of a formula ,., a different formula ¢’ with the properties that it is equivalent to ¢,
and that in every subformula 3z or Vzy of ', v is a L(Q) formula. From this, we conclude:

Corollary 8 (Natural Generic Collapse) Let M = (U,Q) be an o-minimal structure. Then for
every locally generic query ¢(Z) in FO(M, SC), there exists an equivalent active-semantics first-order
query (Z) in the language L(<,SC).

Proof. Indeed, consider ¢’ as above, and for every L(f2) subformula y of ¢, define a predicate P, by
letting P, (Z) iff |= y(Z). Let Q' expand € by all such predicates P,, and let M’ be the expansion of
M to Q. Thus, over M', ¢’ is equivalent to an active-semantics formula ¢” in the extended language,
and hence, by the locally generic collapse, to an active L(SC, <)-formula 1. It then follows, since M’
is a definable extension of M, that ¢ is equivalent to 1 over M. O

4.2.1 Counterexamples to collapse results for first-order logic

We have shown that first-order logic behaves particularly nicely with respect to natural quantification
when we make some restrictions on the structure. O-minimality is one such restriction, and we have
shown above that this leads to natural-active collapse, and hence to expressive bounds on generic
queries. Are restrictions on the interpreted structure, such as o-minimality, necessary in order to get
such results? We have mentioned earlier that over the structure N’ = (N, +, x, <), parity (and in fact
every computable query) is definable by a natural semantics sentence [28]. Thus, the natural-active
collapse and generic collapse both fail for this structure.

However, the structure A is highly undecidable, and one can ask whether there are more tractable
structures for which collapse results and expressivity bounds fail. In [28] it was conjectured that the
parity query cannot be defined by a natural semantics sentence over any structure M with a decidable
theory. This conjecture was further studied in [6, 7].

The conjecture seems likely to be false, as an example of a structure with decidable theory for which
the natural-active collapse fails was given in [43]. Namely, [43] considered the random graph, and
showed that with natural quantification one can simulate monadic second-order logic. However, to
express parity in monadic second-order, one seems to needs a linear order on the universe, and it is
known that no infinite linear order is definable in the random graph. We now show how to circumvent
this problem, and produce a structure with a decidable first-order theory for which parity is expressible
as natural-semantics query.
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More specifically, let RT = (U, R) be the random ternary relation on a countably infinite set U: that is,
any model that satisfies every sentence that is true in almost all finite 3-hypergraphs. Here ‘almost all’
is with respect to the uniform probability distribution: R(a,b,c) holds of nodes a, b, ¢ with probability
one half, independently for each triple a, b, c. It is known [24] that the set of all such sentences forms
a complete theory with infinite models, and that this theory is decidable.

Proposition 7 There is a first-order natural semantics sentence that defines parity over RT .

Proof: A model of the random ternary relation has the property [24] that for every quantifier-free
formula ¢(Z, ) that is consistent in predicate logic, we have

RT |=VZ 37 (%, 7).
We next consider, for every 1 <k <n < w, a formula ¢y, ;(z1,...,%Zn, Y1, ..,Yn, T,y, w) defined as

[(z,y) = (@1, 91) V... V(2,y) = (@n,y0)] = ([(2,y) = (z1,91) V...V (2,y) = (28 5k)] ¢ R(w, 7,7))
where (z,y) = (z',y') is an abbreviation for (z = 2') A (y = ¢'). Applying the above, we see that
RT = VYzi,....¢.Vy1, ..., ypVeVy3Iw @, 1 (2,7, 2, y, w).

Thus, for every finite collection S of ordered pairs from U, and any T' C S there is a ¢ € U such that
V(a,b) € S. ((a,b) € T < R(c,a,b)).

For any ¢ € U and set A CU , let R. 4 be {(a,b) € A?: R(c,a,b)}. The property above says exactly
that every finite collection of pairs from A is of the form R, 4 for some c € Y.

Now consider a database schema SC that has one unary relation Ry, and the query ¢ that returns
true of database D € Inst(SC,RT) (that is, a finite subset of /) exactly when there exists ¢ € U such
that the binary relation R, 44om(p) defines a partial function on adom (D), and this partial function
maps its domain bijectively onto the complement of its domain within adom (D). It is easy to show
that this is expressible as the first-order query:

Jueadom (R(w,y,u) V R(w,u,y))
JwVy € adomVz € adomVy' € adom AN (Y £y — —(R(w,y,2) N R(w,y', 2))
AN (Y #y— =(Rw, 2,y) A R(w, 2,y'))
It is clear that if g(D) is true, then the parity of adom(D) is even, since R 440m(p) Witnesses this.
From the property mentioned in the first paragraph we see that any bijection on adom(D) is of the

form R ,q4om(p) for some c in U, and hence g is implied by the parity query. Hence parity is expressible
as a first-order formula over RT. 0

Corollary 9 (see also [43]) There exists a structure M with a decidable first-order theory such that
the natural-active collapse fails for first-order queries over M. O

4.3 Natural-active collapse for higher-order logics

Note that even for very well-behaved structures, one cannot guarantee the natural-active collapse for
the full second-order logic:

26



Proposition 8 Let M be (R,+,%,0,1,<). Then second-order logic does not have the natural-active
collapse over M. This continues to hold for any fragment of second-order that allows existential
quantifiers over unary predicates (e.g., existential second-order, monadic %1 ).

Proof. The set of natural numbers can be defined by a second-order formula with one unary existential
second order quantifier in the language of +,0, <:

p(n) = 3IP[PO)A(Vz.P(z) - (t =0V P(z—1)))A(VzVy.P(x) Az <y < z+1— =P(y))] A P(n).

Then it follows from [28] that any total recursive query on databases whose active domain consists
only of natural numbers is in SO(R, +,*,0,1,<). On the other hand, every locally generic active-
semantics query in SO(R, +, %,0, 1, <) is expressible in SO over L(SC, <) and thus has PSPACE data
complexity, which proves the proposition. O O

An analagous result could be given for fixpoint logics. However, we show below that for hybrid logics,
the natural-active collapse can easily be recovered.

Theorem 5 Let M be an o-minimal structure that admits quantifier elimination. Then FO+ifp,
FO+I1fp, FO+pfp and HSO admit the natural-active collapse over M. Moreover, the transformation
from a natural formula to an active formula is effective if M is recursive and the quantifier elimination
procedure is effective.

Proof. We use an inductive argument on complexity, as in the proof of Theorem 4. We will give a
single algorithm that witnesses the natural-active transformation for all of the logics above. In order
to have this algorithm work for fixed point logic, we will maintain the following invariant in this
algorithm: if a relation symbol (fixed or bound) occurs positively in ¢, it occurs positively in @,t.

The algorithms for atomic formulae and the boolean connectives are identical to the first-order case.
Since the second-order and fixed point operators are done under the active interpretation, the induction
for these operators themselves is trivial:

If o(§,t) = [LFPz sa(Z, §, S)]() then wact = [LFPz sqtact (%, 7, 9)](£).

The resulting formula is well-formed given that, by induction, positivity is preserved by the transfor-
mations given here.

If o(i7,t) = [IFPz s (Z, 7, S)](f) then @t = [IFPz stact (£, ¥, S))(#), and

If (7,1) = [PFPgz sa(Z, 7, )](t_) then @ac; = [PFPg gQact (7, 7, S)](t_)
Finally, for hybrid second order we have the analogous rule:

If p(Z) = IS € adom a(F), then pact = IS € adom ayet(T).

Note that the inductive rules for boolean connectives, fixed-point, and second-order quantification all
preserve the invariant. It suffices, then, to specify how the algorithm deals with converting a formula
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of the form ¢(#) = Jza(F, z) to an active formula p,et , given that we know how to convert a(Z, z) to
an equivalent active-semantics act (7, 2).

We have that a(Z,z) is an active formula which possibly has free predicate symbols T' from outside
of Q in it. We normalize it so that: every atomic subformula of « is either a L(SC’) formula — where
SC'" = SCUT — or an L(Q) formula, so that there exists at least one L(€) atomic subformula of 3,
and so that z does not occur in L(SC') subformulae. It is easy to see that we can do this without
effecting the positivity of any SC’ relation in any subformula of a. We now perform the exact same
computation on a as we did in the algorithm of Theorem 4. Namely, we let ¥ be the collection
of all atomic L(£2) subformulae of «, and their negations, and let K = max,cy K, Xff(f, 5,1) and

T{;-U(f, 77,5, 1) be defined exactly as in 4.4 of the first-order algorithm. Note that these last are all L(f2)
formulae, and they are defined without reference to the relational operators in a.

We now define of (&3, t) as the result of replacing in a every L(Q) atomic subformula 7(Z, 7, z) € ¥

by Ti’}g(f, 77,8,1), just as in 4.6. Note that since we are only substituting L(2) subformulae by other
L(Q) formulae, positivity of SC' predicates is again not affected.

- 7

The formulae sameg(Z,7,u,v), n}; (Z,5,,7), 7} (Z, §,t) are syntactically identical to the formulae

defined in steps 4.7-4.9 of the first-order algorithm.

Finally, we output as @,ct, as in 4.10, the formula

dscadom Ftcadom.35 \/ \/ (X7 (%, 5,8) A7l (Z,5,8) Aol (£,5,1)).
p,o€Wi,j<K

The proof that this algorithm is correct results from showing that Lemma 6 still holds when ¢ is
allowed to contain active second-order operators (fixed-point, second-order existential, etc.). This in
turn follows simply by noting that the proof of Lemma 6 goes through verbatim in the presence of the
second-order operators: the only thing necessary is to confirm (immediately from the definition of the
o to o' transformation) that the equivalence (%) in Lemma 6 is preserved under active second-order
quantification, and that (*) is also preserved under the fixpoint operations. O

Recall that by closedness of a fixpoint formula we mean that no application of a fixpoint operator
involves extra free variables, that is, it is of the form [LFPzg¢(Z, S)](#), or similarly for IFP and
PFP. As mentioned in Section 2, it is known that the closed normal form holds when all quantifiers
are restricted to be active-semantics, or when all quantifiers are restricted to be natural. ;From the
normal form for active queries, plus the previous collapse result, we see that hybrid fixpoint queries
can also be converted to closed normal form, provided that the underlying structure is nice.

Corollary 10 (Normal form for fixpoint) If M is o-minimal and has quantifier elimination, then

FO+Ifp(M) = closed FO+1fp(M)
FO+ifp(M) = closed FO+ifp(M)
FO+pfp(M) = closed FO+pfp(M).

As a second application, we see that hybrid second-order formulae over o-minimal structures (note
the absence of the quantifier-elimination requirement) can be converted into the normal form defined
in Section 2.
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Corollary 11 (Normal form for HSO) If M is o-minimal, then every HSO(M, SC) is equivalent
to a HSO(M, SC) formula in the normal form.

Proof. Let M’ be a definitional expansion of M that admits quantifier-elimination. Let ¢ be a
HSO(M, SC) formula. Then it is equivalent to an active HSO(M', SC) formula ¢'. Convert ¢ into
the normal form, and replace each new symbol in M’ by its M-definition. Since those occur only in
the first-order part, we can convert the result into a normal form HSO(M, SC) formula. O

Analogous results can be proved showing the tame behavior of other fragments of second-order logics
via the same method, provided that the second-order constructs are again given the active interpre-
tation.

5 Complexity applications and summary

In this section, we use the results on both natural and active-semantics queries to derive their data
complexity. Recall that in order to define data complexity of a query @), one first defines a language
Lo = {enc(D)#enc(t) | t € Q(D)} where enc is an encoding of tuples and databases in some finite
alphabet X, and # is a special marker. Then, for a complexity class C, we say that the data complexity
of @ is C if Ly € C; similarly, the data complexity of a language is C if so is the data complexity of
every query in the language.

As we need to encode databases over interpreted structures, in particular, the reals, we restrict our
attention to the case when database elements are integers, as in [29]. Equivalently, we could also
assume that databases store rational numbers represented as pairs of integers. In such a setting, two
results are known. First, the data complexity of FO((R, +, —,0, 1, <)) is AC® [29]. (Recall that AC®
is the class of problems definable with unbounded fan-in constant depth circuits that use and, or and
not gates, and the number of gates is polynomial in the size of input, cf. [15].) This is the same as the
bound on data complexity of FOqct(<), cf. [1]. Second, the data complexity of FO((R, +,*,0,1, <))
is NC [36].

Note that the ACY bound of [29] implies some expressivity bounds, such as inexpressibility of parity
in FO((R, +,—,0,1,<)), as parity is not in AC® [25]. We also know that the data complexity of
FO((R,+,%,0,1,<)) cannot be AC?, since multiplication is not in ACY [25]. Still, we are able to
lower the bound of [36]. In fairness to [36], we remark here that their bound applies to finitely-
representable databases as well, and so does the bound of [29]. We only deal with finite databases
here.

The class TC? extends AC® by allowing threshold gates, or equivalently majority gates [5, 44]. It is
known that AC® ¢ TC® C NC!' C L. C NL C NC and all C inclusions are conjectured to be strict

[5].

Proposition 9 Every query in FO((R, +,,0,1,<)) has TC® data complezity.

Proof: Let M = (R +,%,0,1,<). Fix a database schema SC, and let ¢'(Z#) be a query in
FO(R,+,%,0,1,<)). By the natural-active collapse, there exists an equivalent active-semantics query
©(Z). Let S be a relational symbol, not in SC, of arity ||, and let ® be the sentence Vi (S(Z) — ¢(Z)).
Let D be a SC database, and t a tuple of arity |Z|. Define a SCU{S} database D' by interpreting S as
{t}. Then D' = ® iff D |= (). Thus, it suffices to show that enc(D’) for D' = ® can be recognized in
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TCP. If we can show this, then to recognize enc(D)#enc(t) one transforms it into enc(D') in constant
time (by replacing the marker # by the marker used for separating relations) and checks if D' = ®.

We next show that there is an expression e of ALG((R, +,%,0, 1, <)) such that e(D') = {()} if D' = ®
and e(D') = {} if D' = —~®, where () is the empty tuple. To do this, transform ® to a prenex active-
semantics sentence Q1y1 . .. Qnyn a(y) where « is quantifier-free; we also assume, as before, that every
atomic subformula of « is either a L(SC U {S}) formula or a L(M) formula.

Let ADOM be a relational algebra expression such that for every D, ADOM(D) evaluates to adom(D).
We now translate subformulae of ® into algebra expressions as follows. Each subformula R(y;,,...,v:,)
is translated as follows. Let eg be ek, x ... x €'y, where elR is Apom if i & {i1,..., i} and elR is Iy (R)
if | = is. Let ¢ be the conjunction of #is; = #(s + n) for all s = 1,...,k. Then the translation of
R(yiu tee ayik) is

Wy, pn(oc(er X R)).

Each atomic L(M) formula () is translated into o..,)(ADOM X ... x ADOM), where the product is
taken n times, and c(7) is the selection condition obtained from « by replacing each y; by #i. If 1y
and 19 are translated into e; and es, then 1)1 V 19 is translated into eq U eq, 11 A 7)o is translated into
e1Neg, and —py is translated into (ADOM X ... x ADOM) —e;. Finally, if we have a subformula 1) that
translates into an expression e returning an m-ary relation, 3y translates into ITy;  4m-—1(e), and
Vy1) translates into ADoM™ ! — (Ig1,... #m—1(ADOM™ — e)). It is now routine to verify that when
applied to @ in the prenex form as above, this translation yields the required ALG(M) expression.

Now it remains to be proved that any ALG(M) query has TC? data complexity. This proof proceeds
exactly as the proof of AC? data complexity for relational algebra (see [1]) with one exception: every
time the o, operator is encountered, we have to compute the condition ¢. Each such ¢ is of form
p1(9){=, <, #, £}p2(Z) where p1,ps are polynomials. Since integer arithmetic (addition, multiplica-
tion, comparison) can be done in TC? [5, 44], we construct circuits that compute p; and ps first and
then make the comparison. This shows that we can construct a threshold circuit that computes o..
The proof that all other operations can be computed by T'C? circuits (in fact, by AC? circuits) is
exactly the same as in [1]. The theorem is proved. O

In the following proposition we give complexity bounds for queries against databases over
(R, +,%,0,1,<) expressible in higher-order logics. Again, we assume that database elements are
integers (so that they can be encoded). We restrict our attention to generic queries that do not extend
the active domain of their input.

Proposition 10 Let M = (R, +,%,0,1,<). Let Q be a query expressible in hybrid FO+ifp(M)
(or FO+1Up(M), or HSO(M), or FO+pfp(M)). Assume that Q is locally generic and does not
extend the active domain of its input. Then its data complexity is PTIME (respectively, PTIME, PH,
PSPACE).

Proof sketch: Suppose @ is given by a formula ¢(Z) in hybrid FO+ifp(M). By Theorem 5, there
exists an equivalent formula @, (%) in FO+ifp,.(M). From generic collapse and local genericity of
@, we get that there is a formula ¢(Z) in FO+ifp, (<) equivalent to ¢.

Given a database D and a tuple ¢, let {nq,...,nx} be adom(D), where ny < ... < nj. Let D’ and
t' be obtained from D and t by changing n; to i, for each i = 1,...,k. By generiticy, D = ¢(t)
iff D' = 4)(¢'). Since the encodings enc(D') and enc(t') can be obtained from enc(D) and enc(t) in
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FO(M) = Foact(M) dp = ALG(M)
FO+1fp(M) = closed FO+1fp(M) = FO+Up, (M) qp= DATALOG (M)
FO+ifp(M) = closed FO+ifp(M) = FO+ifp, (M) qp= DATALOG (M)
HSO(M) = normal form HSO(M) = HSOact (M)
FO+pfp(M) = closed FO+pfp(M) = FO+pfp, (M) ap= WHILE(M)
Note: C gp= C' means that the class of domain preserving (adom(Q(D)) C adom(D)) queries in C is

C'.

Figure 1: Summary of the expressiveness results for M = (R, +,%,0,1, <) or any other o-minimal
structure that admits quantifier elimination

Logic Complexity

FO(M) ACY
FO+1fp(M) PTIME
FO+ifp(M) PTIME

HSO(M) PH
FO+pfp(M) | PSPACE
Note: in this table, a line (£,C) means that the data complexity of domain-preserving locally generic
queries in £(M) is in C.

Figure 2: Data complexity for queries over M = (R, +,%*,0, 1, <)

polynomial time, and D' = 1 (t') can be tested in polynomial time (due to classical results on data
complexity, cf. [1, 21]), we conclude that D |= ¢(t) can be tested in polynomial time. The proof for
other logics is similar. O

We can now summarize the main results of the paper. Figure 1 puts together results about both
active and natural semantics. Roughly, each line in Figure 1 shows the equivalence of a logic L, its
active-semantics version L,., and a procedural language (if one exists).

Figure 2 summarizes the results on data complexity for databases over the reals. Note that the first
line follows from the results of [29] (since the classes of locally generic domain-preserving queries in
FO((, R, +,%,0,1,<)) and FO((,R,+,—.,0,1,<)) are the same); others follow from Proposition 10.

Figure 3 sumamrizes the collapse results in the paper, for the three main kinds of collase: active-
generic, natural-active, and natural-generic. Note that for the natural-generic collapse, some exten-
sions have recently appeared in the literature [4, 9].

As was mentioned before, techniques developed here make it easy to prove similar results for other
logics. For example, one can show that for the hybrid version of the transitive closure logic (see [35, 21]
for the definition of transitive closure logics), the natural and the active interpretations coincide over
the real field, and by the Ramsey property, the class of generic queries definable in it under the active
interpretation does not depend on the set of operations €2, and thus the data complexity of generic
queries is NLOGSPACE.
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o-minimal, QF

natural-active

collapse
FOaet(SC, M) FO(SC, M)
active natural ..
all . ) o-minimal
structures senerc senerc structures
collapse collapse
FOat (SC, <) FO(SC, <)

Figure 3: Summary of collapse results

6 Conclusion

Our main goal was to delineate the extent to which standard results from the pure relational case ‘go
through as before’ when interpreted structures are present. We have distinguished several aspects of
the standard theory that extend routinely, as well as several whose extension requires special techniques
and/or special assumptions on the interpreted structure. That is, we have three categories of results.

First, extensions of results from pure relational theory to any interpreted structure. We show that
most of the standard language equivalences, expressive bounds and complexity results continue to
hold with interpreted structures, assuming the active-domain semantics. Second, extensions of results
from the pure case that hold with interpreted structure under special assumptions on the structure.
We show that most statements about the natural semantics continue to hold for reasonably-behaved
interpreted structures. Third, results that arise in the interpreted case that either do not arise or are
not of interest in the pure case. We introduced a class of hybrid logics, that arise naturally in the
interpreted case: those with ‘mixed’ quantification. These logics admit the same normal forms as their
unmixed counterparts, if the structures are reasonably behaved.

This is only the tip of the iceberg for each of these classes. The understanding of appropriate algebras
for queries with interpreted structures is still incomplete. We are working on algebras and range-
restricted calculi for safe queries, other normal forms for nonboolean queries and operations that
preserve safety. Although we have shown that for nicely-behaved structures we get very satisfying
extensions of results about the natural semantics, we do not characterize the class of structures for
which this holds. For some recent progress in that direction, see [4, 9]. It is also open whether the
normal forms results for hybrid logics hold in general.

The algorithm for converting natural quantification to active is of interest in its own right. It extends
work done in the constraint community (e.g., in [45] for linear constraints), and can also be seen as
extending quantifier elimination algorithms, that originate with Tarski [48], to handle large parameter
sets. We would like to have a unified picture of the relation between the algorithm presented here and
those in, for example, [14, 45], as well as with uniform quantifier-elimination for the real field [6, 7],
where a detailed complexity analysis was given. We plan to study the integration of such algorithms
into optimization systems for constraint queries.
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We are interested in understanding the connection between our results and metafinite model theory

[26].

Some of the motivations for [26] are very close to those for our work, but it does not appear that

we can use any of the results in [26] to derive any of our results.
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