Languages for Relational Databases over Interpreted Structures

Michael Benedikt
Bell Laboratories
1000 E. Warrenville Rd
Naperville IL 60566, USA
Email: benedikt@bell-labs.com

Abstract

We rework parts of the classical relational theory when the
underlying domain is a structure with some interpreted op-
erations that can be used in queries. We identify parts of the
classical theory that go through ‘as before’ when interpreted
structure is present, parts that go through only for classes of
nicely-behaved structures, and parts that only arise in the
interpreted case. The first category includes a number of
results on equivalence of query languages, as well as expres-
sive power characterizations for the active-domain semantics
for a variety of logics. The second category includes most
of our results on the natural semantics, including results on
cases where the natural semantics collapses to the active se-
mantics. While these collapse results have been proved by
nonconstructive means for first-order logic in previous work,
we here give a set of algorithms for eliminating unbounded
quantifications in favor of bounded ones. Furthermore, we
show these results for a new class of higher-order logics that
mix unbounded and bounded quantification. We give a set
of normal forms for these logics, under special conditions on
the interpreted structures.

As a by-product, we obtain an elementary proof of the fact
that parity test is not definable in the relational calculus
with polynomial inequality constraints.

1 Introduction

We would like to a start with an example that can be
found in most database textbooks. When relational al-
gebra is introduced, the conditions in selection opera-
tors are defined to be boolean combinations of z = y
and z < y, where z and y are variables or constants.
Typically, a few examples of programming in relational
algebra are given before a relational language, such as
SQL or QUEL, is introduced. Soon after that we will
probably see an example of query like “Select employees
who make at least 90% of their manager’s salary”. Such

Leonid Libkin
Bell Laboratories
600 Mountain Avenue
Murray Hill NJ 07974, USA
Email: 1ibkin@bell-labs.com

an example is likely to be followed by a remark that this
query, strictly speaking, is not definable in relational al-
gebra because it involves arithmetic operations, but it
is definable in SQL or QUEL which allow arithmetic

and comparisons of the form =z > 0.9 - y.

Does it mean that the relational algebra is in some
sense inadequate as a basic relational query language?
It is certainly so if one has to deal with arithmetic,
but database textbooks counter this criticism by saying
that an extension to arithmetic is straightforward. For
example, in his textbook [36], Ullman writes:

Often, atoms in calculus expressions or se-
lections in algebraic expressions can involve
arithmetic computation as well as compar-
isons, e.g., A < B + 3. Note that + and
other arithmetic operators appear in neither
relational algebra nor calculus, but the exten-
sion of those notations to include arithmetic
should be obvious.

It is obvious how to extend these notations, but it
isn’t completely obvious how to extend the fundamen-
tal results and techniques of relational theory to include
arithmetic. For example, if arithmetic constraints are
allowed in selection predicates, how would one prove the
classical result that parity test and transitive closure are
not definable in relational algebra? It appears that the
standard techniques either are not directly applicable
(such as 0-1 laws), or require considerably more com-
plex arguments (such as games). This situation extends
beyond arithmetic to other interpreted operations over
the items that could be stored in a database.

As noted in [18], the proposal to combine finite
databases with an infinite interpreted structure, made
in the seminal paper of Chandra and Harel [11], has not
been fully explored in the database community, despite
the fact that the rest of that paper made enormous im-
pact on the development of database theory. An excep-
tion, in addition to [18], has been the attention to order
relation. This includes well-known connections between
query languages and complexity classes, cf. [1, 15]; also,

order constraints have been studied in the context of
DATALOG queries (see, e.g., [28]).

Let us give a sample of the results we obtain in this
paper. We first look at queries that may use the in-
formation about the underlying model (for example,
they may use arithmetic operations), but only ask ques-
tions about elements that occur in a database. These
are called active-semantics queries, and are the ones in-
tended in the ‘classical database’ context of the quota-
tion above. For those queries, we will review and extend
a technique that has arisen recently [6, 31] for analyzing
interpreted structure: generic collapse results. These
state that generic queries definable by various logics can
be defined without additional interpreted operations.
That is, they do not add extra relational power. The
collapse results show that for active queries many (but
not all!) traditional relational theory results generalize
smoothly to the interpreted setting. We then turn to
queries which may ask questions about elements out-
side of the database (these are called natural-semantics
queries), and prove a number of natural-active collapse
results showing that over a certain class of interpreted
structures, this extension does not add any expressive
power. We prove these results for several logics. We
concentrate not only on proving those results, but we
also continue to refine and generalize a collection of
techniques that are likely to be used as the theory fur-
ther develops.

As mentioned above, there are issues concerning inter-
preted structure that are not straightforward, even in
the setting of the relational model. Much recent inter-
est in databases over interpreted structures, however,
stems from the constraint database model introduced
by Kanellakis, Kuper and Revesz [24]. They were mo-
tivated by new applications involving spatial and tem-
poral data, which require storing and querying infinite
collections. The constraint model generalizes Codd’s
relational model by means of “generalized relations”.
These are possibly infinite sets defined by quantifier-free
first-order formulae in the language of some underlying
infinite model M = (U, Q). Here U is a set (assumed to
be infinite), and € is a signature that consists of a num-
ber of interpreted functions and predicates over 4. For
example, in spatial applications, M is usually the real
field {R,+, *,0,1, <}, and generalized relations describe
sets in R™.

One of the main contributions of [24] is an extension
of relational calculus and DATALOG to generalized rela-
tions. The development of constraint query languages
made clear some of the ways in which the interpreted
structure adds new issues to the analysis of query lan-
guages. For example, these extensions do add expres-
sive power: one may ask if there is a pair (z,y) with
zy = 2y + 3. In [6] it was shown that this extension,
with the real field as the underlying model, does not add
relational expressive power: one cannot define parity or
transitive closure, and, more generally, queries that are
generic in the sense of [1, 12], other than those already

definable with order. Since it is known that such ex-
pressive bounds cannot be obtained for arbitrary struc-
tures [20], these results give indication that relational
calculi over some interpreted structures are much more
similar to pure relational calculus than others are.

In addition to questions of expressive power, the con-
straint model also shows how issues concerning quan-
tification that don’t arise in the classical theory come
to the fore when interpreted structure is present. Rela-
tional calculus expressions are first-order formulae that
may use quantifiers. What does 3z.¢(z) mean? It could
mean that ¢ is satisfied by some element of a database
(this is called active interpretation), or by some element
of the underlying universe I (this is called natural in-
terpretation). The issue of two semantics arises in the
context of pure relational calculus, but Hull and Su [23]
proved that the expressive power of relational calculus
is the same under both interpretations. This is what
we call the natural-active collapse. (In fact, an earlier
result [3] showed that infinite domains are unnecessary
for pure relational calculus.) This collapse is known not
to hold over arbitrary structures, hence questions con-
cerning the two semantics become much richer in the in-
terpreted setting. Since constraint database formalisms
aim to give finite means for describing infinite objects,
manipulating natural quantification plays a fundamen-
tal role, forcing us to give much more attention to it
than in the pure case.

It might appear that we have to develop separate theo-
ries for the two interpretations of quantifiers, unless we
show that they coincide. It then constituted significant
progress when [32] proved the analog of the Hull-Su the-
orem for linear constraints. These results were extended
to polynomial constraints in [7].

Although the above results show how to reduce ques-
tions about natural semantics to ones concerning active
semantics for first-order queries over many structures,
there are a number of issues left open. In particular,
the proofs in [6] and [7] are quite involved: they use
techniques of nonstandard universes [13] and o-minimal
structures [33]. In addition, the proofs in those papers
are nonconstructive. In [23] (that deals with the pure
case) and [32] (that deals with linear constraints), an
algorithm is given that converts a natural query into
an active one. However, in [7] (which deals with poly-
nomial constraints and other o-minimal structures), a
mere existence of such a query is proved, but no algo-
rithm is given. One of the main results of the current
paper is an algorithm for doing this conversion. It is
hoped that this will lay the groundwork for transform-
ing a number of optimization algorithms for pure rela-
tional calculi to the interpreted setting.

Going from first-order logic to more expressive logics
(fixpoint, second-order), we observe a new interesting
phenomenon. Even when we identify structures over
which first-order queries have tame behavior under the
natural interpretation (for example, (IR, +,%,0,1, <}),

fixpoint logics and second-order logic may still be too
expressive. More precisely, the set of natural numbers is
definable in those logics over the real field, and then an
encoding with natural numbers shows that any recur-
sive query can be expressed in these languages. In addi-
tion, second-order constructs when interpreted naively
over the natural domain lead to undefined queries as
well as undecidable ones: counting quantifiers and
monotone fixpoints need no longer be well-defined on
infinite sets.

For higher-order logics, however, there are numerous
subclasses that one can restrict to that do not arise
naturally in the pure case, and which have the same
closure properties as active queries, while also admit-
ting interesting expressive bounds. In particular, we
consider a new class of logics that we call hybrid. The
idea is that first-order quantification can still be inter-
preted naturally (that is, 3z.¢(z) means ¢(a) for some
a € U), but the higher-order features are interpreted ac-
tively. For instance, for the hybrid second-order logic,
second-order quantifiers range over subsets of the active
domain, while first-order quantifiers range over . Simi-
larly, fixpoints are only taken within the active domain.
Such logics are of interest in the constraint database
context, since the natural versions of the higher-order
constructs are not available. We show that the behav-
ior of such hybrid logics is close to the behavior of first-
order logic.

For logics that use a consistent semantics (active or nat-
ural) for all quantifiers, it is possible to adapt the nor-
mal forms known in the pure case. An interesting as-
pect of hybrid logics is that standard normal forms that
hold straightforwardly for both natural and active inter-
pretation logics become highly nontrivial in the hybrid
case. We will show that for reasonably-behaved models
we can obtain standard normal forms for both fixpoint
and second-order logic in the hybrid case. For arbitrary
interpreted structure we conjecture that these normal
forms fail.

Goals of the paper The main goal of this paper is to
study a number of issues of the classical relational the-
ory for databases and languages over interpreted struc-
tures. These include equivalence of traditional query
languages and various logics, expressive power of query
languages, the relationship between the active and the
natural interpretation and data complexity.

Included in this examination will be an elementary
proof that parity can not be defined using relational
calculus with polynomial inequality constraints. This
new proof completely avoids techniques of nonstan-
dard universes, and gives a constructive ‘parameterized
quantifier-elimination’ procedure that can be seen as an
extension of the work in [32, 9, 35, 34].

In addition to proving a number of results, this paper
also provides a set of techniques that can be used for
other logics and query languages.

Organization Notations are introduced in Section 2.
In Section 3, we deal with the active interpretation.
We present the Ramsey technique (which is abstracted
from the proofs in [6] and [32]), and show that it can be
uniformly applied to a variety of logics (defined in Sec-
tion 2), to obtain generic collapse results. This leads to
a number of expressivity results for these logics over in-
terpreted structures. We show that natural extensions
of relational algebra, DATALOG™ and WHILE, are still
equivalent with first-order, least- and partial-fixpoint
logic over arbitrary models. We look at infinitary
logic with finitely many variables (which subsumes all
fixpoint logics), and show how to extend the proof tech-
niques to deal with it. Finally, we give a flavor of the
kind of result about the active semantics which does
depend nontrivially on the particular interpreted struc-
ture: the ability to guard against unsafe queries.

In Section 4, we deal with the natural interpretation.
Our main goal is to give a constructive proof of the
natural-active collapse for databases over the reals. We
prove a more general result, showing that the natural
and active interpretations are equally expressive over
any structure that is o-minimal [33] and has quantifier
elimination. We prove this for the hybrid second-order
logic (second-order quantifiers range over the subsets of
active domain). This result was proved for first-order
logic by us earlier [7] in a nonconstructive way; now we
give a recursive translation from the natural formulae
into active formulae, provided the model is recursive
and quantifier elimination is effective. We derive the
natural-active collapse for first-order logic, hybrid fix-
point logics, and also give normal forms for formulae
in these hybrid logics. We also give a much simplified
proof of the Hull-Su theorem in the pure case, and show
a tighter result: the Hull-Su theorem holds for variable-
bounded logics.

Concluding remarks are given in section 5. Proofs can
be found in the full version [8].

2 Notations

Databases over infinite models In this paper, we
study databases over infinite models. Let M = (U, Q)
be an infinite model, where U/ is an infinite set, called
a carrier (in the database literature it is often called
domain), and Q is a set of interpreted functions, con-
stants, and predicates. For example, the real field
(R, +,*,0,1, <) has carrier R (the set of real numbers),
functions 4+ and *, constants 0 and 1, and predicate <.

A (relational) database schema SC is a nonempty
set of relation names {Sy,..., S} with associated ar-
ities p1,...,p > 0. Given a model M and X C U,
an instance of SC over X is a family of finite sets,
{Ry,..., R/}, where R; C XP:. That is, each schema
symbol S; of arity p; is interpreted as a finite p;-ary re-
lation over X. We use Inst(SC, X) or Inst(SC, M) to
denote the set of all instances of SC over X or M.

Given an instance D, adom(D) denotes its active do-
main, that is, the set of all elements that occur in the
relations in D. If S is a new n-ary symbol not in SC
and R is a finite subset of U™, then Dgr denotes the
instance of SC U {S} where S is interpreted as R.

In Section 4, we will use o-minimal models [33]. Recall
that an ordered model M is o-minimal, if every defin-
able set is a finite union of points and open intervals
{z | @ < z < b}. Definable sets are those of the form
{z | M = ¢(z)}, where ¢ is a first-order formula in the
language of M, possibly supplemented with symbols for
constants from M.

A model admits quantifier elimination if, for every for-
mula ¢(Z), there is an equivalent quantifier-free formula
P(&) such that M = VZ.0(Z) & ¥(F). A model is re-
cursive if its language is recursive and validity of atomic
sentences is decidable. An example of o-minimal, recur-
sive model having quantifier elimination is the real field

(R, +,%,0,1,<).

Logics Since our goal is to develop a theory that
can be used beyond the first-order case, we consider
a variety of logics here. Fix a model M = U, Q).
By L(SC,) we denote the language that consists of
the schema predicates and the symbols in Q. By
FO(SC, M) (or just FO(M) if the schema is under-
stood) we denote the first-order logic over the language
L(SC,Q); we use FO for first-order logic in the lan-
guage of the schema. We also define the semantic no-
tion D |= ¢(d), where ¢(Z) is a formula and @ a vector
over U. Note that D |= Jz.p(z, d) means that for some
ao € U, D |= p(ag, @). This corresponds to the natural
interpretation of queries, cf. [1, 23].

Under the active interpretation of first-order logic [1,
23], Jz means that z can be found within the active
domain. To deal with this in the same framework as
the natural interpretation (that is, to avoid introduction
of a different notion of satisfaction), we introduce the
active quantification of the form 3z € adom.¢(z) and
Ve € adom.gp(z). The semantics is as follows: D =3z €
adom.p(z, &) if for some ag € adom(D), D = ¢(ao, @),
and likewise for V& € adom. Note that this restricted
quantification can be expressed in first-order logic. We
shall call a formula active if all quantifiers in it are
active. For every language I, its subset consisting of
the active formulae is denoted by L.

Next, we consider fixpoint extensions of first-order logic.
The presentation here differs slightly from the standard
definitions for the finite [15, 21, 2] or infinite [30] case
because we have a mix of these cases: finite structures
over an infinite universe. (This corresponds to what we
called hybrid logics in the introduction.) The least-
fixpoint logic FO+1fp adds the following construction
rule: if § is an n-ary relation symbol not in the schema,

o(z1,...,2n,%,9) 1s a L(SC U {5},Q) formula where

S occurs positively, and ¢ is an n-vector of variables or

terms, then
[LFPa: S‘P) ya E)

is a formula, whose free variables are y and free vari-
ables from ¢. The semantics is as follows. Given
D € Inst(SC,U) and & of the same length as ¥, define

the sequence Rg‘ =0,
#r1={(b1,..-,ba) € adom(D)" | Dgs k= (b,)}.

It is known that this sequence increases, and thus
reaches a fixpoint, denoted by R%. Now D |
[LrpPz s¢(Z, @, S)](¢) iff ¢ € R%. The least-fixpoint
logic over the logical language L(SC, Q) will be denoted
by FO+1fp(M).

Note that we may have instances of first-order quantifi-
cation in least-fixpoint formulae, which are interpreted
naturally, but the fixpoint itself is always taken within
the active domain, which makes the logic hybrid: it
combines both active and natural interpretations. In
the pure finite case, it is unnecessary to add parame-
ters 4 to the iterated formula, because it does not add
power [15]. The same is true in the pure infinite case,
that is, when R1+1 is constructed as the set of all vec-

tors b over U that satisfy <p(l_;, @). But it is not clear
whether the extra parameters 4 can be dropped in hy-
brid fixpoint logics without losing expressiveness. We
shall say that a fixpoint formula is in normal form if
no application of LFP uses these extra parameters ¥.

The inflationary-fixpoint logic FO+ifp and the
partial-fixpoint logic FO+pfp are defined similarly
to the least-fixpoint logic. They have constructors

[PFPa: se(Z, 7, S)](E)

respectively, with no restriction on §. The semantics
is as above, where Ry is constructed as follows. For

FO+ifp, RE; = RZU{(b1,...,bn) € adom(D)" |
Dpa = <p(l_;, @)} (this sequence is increasing, and hence

[IFPz S‘P ’ ya E) and

reaches a fixpoint). For FO+pfp, the sequence R; is
constructed as for the least-fixpoint, and Ry 1s taken
to be its fixpoint, if it exists, and @ otherwise.

The concept of a normal form is defined for inflationary-
and partial-fixpoint logic in the same way it was defined
for FO+1lfp. When formulae of a fixpoint logic are
restricted to normal form formulae only, we call such
a fixpoint logic closed. In the case of finite domain,
there is no loss of expressiveness due to restriction to
the closed version of a fixpoint logic, cf. [1, 15].

We also consider logic with counting, O+ count(M),
following the presentation in [17]. This logic is two-
sorted. One sort has U as its domain, the other sort
has the domain N. The logic adds second-sort quan-
tifiers that range over the initial segment of N of the
size of a finite instance, constants 0 and max (inter-
preted as the size of a finite instance minus 1), the
BIT predicate, where BIT(%,j) is true if the s¢th bit

of the binary representation of 7 is 1, the order <
on the second sort, and finally counting quantifiers
of the form Jiz.p(z) which binds z but not ¢, and
means that there are at least i satisfiers of ¢ in the
active domain. For example, a database D satisfies
3i.(BIT(3,0) A Jiz.o(z) AVi.(GFjz.o(z) — 7 < 9)) iff
the cardinality of {a € adom (D) | D = ¢(a)} is odd.

The hybrid second-order logic HSO permits
second-order quantifiers 35 and VS which are inter-
preted as follows: D = 35.¢(S), where S is k-ary, iff
there exists a set R C adom(D)* such that Dg | ¢.
Note that this notion is even weaker than weak second-
order, where second-order quantifiers range over fi-
nite sets. We use SO for full second-order logic Sak—
ary second-order quantifiers range over subsets of U*)
Formulae of SO or SO, can be converted into nor-
mal form Q15 ... QxS* .4 where Q;S* are second-order
quantifiers, and v is first-order. In the case of SO, it
is not immediately clear if the same is true.

While all these logics are relevant to database query
languages (as we shall see shortly), we shall also con-
sider infinitary logic, which is of interest in finite-
model theory, as logic which subsumes fixpoint logics
and possesses nice properties, such as 0-1 law [27]. It
is defined exactly as first-order logic, except that arbi-
trary disjunctions and conjunctions are allowed. That
is, if {i(&)} is an arbitrary collection of formulae, then
V; ¢i(£) and A, ¢i(Z) are formulae. We use Leow to
denote infinitary logic.

Suppose L is one of the logics introduced above, but
the formation rules are modified so that only finitely
many variables, z1,...,2zt, can be used in formulae.
The restriction thus obtained is denoted by L*. For
example, £X _ is infinitary logic with k variables. We

oow
w k
use Loow for UkeN Loow‘

In the absence of interpreted symbols in €, we speak of
a pure logic (over a schema SC).

Queries definable by logics A query is a mapping
from Inst(SC1) to Inst(SC2), where SC; and SC; are
two schemas. For simplicity of exposition, assume that
SC; consists of a single p-ary relation. Given a logic L
and a model M, we say that a query @ is LL-definable
over M (or IL(M)-definable) if there exists an IL for-
mula ¢(z1,...,zp) in the language L(SC1, Q) such that
Q(D) ={d| D = ¢(&)}. We denote this query by Q.

As in the case of relational calculus and algebra, we
often consider queries that do not extend the active do-
main. Thus, we define the query Q;Ct by Q;Ct(D) =
{@d € adom(D)? | D = ¢(@)}. Note that any
query () obtained in such a way is domain-preserving:

adom(Q(D)) C adom (D).

Query languages Relational calculus is just first-order
logic over the database schema: its expressions are of
the form e = {Z | ¢(&)} where ¢(Z) is a FO formula in

the language of the schema relations. By the Hull-Su
theorem, we can use F, expressions. We use CALC
to denote the family of all calculus queries under the
active interpretation (that is, Q;Ct), and ALG to denote
relational algebra. It is a classical result of relational
theory that CaLc = ALa.

We consider DATALOG ™, which is datalog with negation
allowed in bodies of rules. That is, a rule is of the form
H - By,...,B,, n> 0, where each B; is an atom or a
negated atom, and H is an atom. Following [1, 2], we
give it a simple inflationary semantics. That is, each
iteration infers new facts and adds them to the facts
already inferred; thus, a fixpoint is always reached.

We also consider the WHILE language. It extends ALG
by allowing the statement while change begin e end
where e is an expression [2, 1, 12]. It iterates e as long
as it changes at least one relation. A WHILE statement
is either an assignment of the form V:=F, where V is
a variable and F is an expression, or a while expres-
sion above. A WHILE program is a sequence of while
statements. See [1, 2] for more details.

Equivalences for the finite domain Query languages
introduced here have been studied in depth in the clas-
sical relational theory. Many equivalence results are
known in the pure finite case. By the pure finite case
we mean this: the only free nonlogical symbols are the
schema relations, and the universe is finite and coincides
with the active domain. That is, a query does not ex-
tend the active domain, and all quantification is active.
Below we list some of the most important equivalences.

First, CALc = ALe = FO [1]. Similar equivalences
have been obtained in the case of interpreted operations
(with some restrictions) given by abstract datatypes,
see [5]. For fixpoint logics, FO+1fp = FO+ifp =
Datavoc™ [2, 21] and WHILE = FO+pfp [2].

In the presence of an order relation, these equiva-
lences continue to hold and, in addition, FO+1fp cap-
tures all PTIME queries, and FO+pfp captures all
PSPACE queries [1, 15]. Also, in the presence of or-
der, FO+count captures uniform TC® [4, 17].

It appears that FO-+count is close to relational lan-
guages with aggregates [29], but the precise connection
is not fully understood. Second-order logic was shown
to be relevant to the study of languages for complex
objects, see [22]. L¥ is of interest in finite-model
theory because it subsumes fixpoint logics. Until re-
cently, variable-bounded logics were studied primarily
in (finite) model theory, but [37] demonstrated nice con-
nections with expression and combined complexity.

Genericity A query @ (that is, a mapping from
Inst(SC1, X) to Inst(SCz, X)) is totally generic if,
for any D € Inst(SCi) and any injective map 7 :
adom(D) U adom(Q(D)) — X, it is the case that
Q(m(D)) = 7(Q(D)). A query is locally generic if X

is ordered, and the above holds for any injective mono-
tone 7. It is known that total genericity implies local [6].
Examples of generic (locally or totally) queries are any
ALG, DATALOG™ or WHILE query, when no interpreted
operations are present. Example of a locally but not to-
tally generic query is @(S1, S2) = VaVy.S1(z)AS2(y) —
z < y. Also note that totally and locally generic queries
are domain-preserving: aedom(Q(D)) C adom(D), see
[6]. For more of genericity, see [1] and [6].

3 Behind the iron curtain — active interpretation

The active interpretation does not allow a query to
ask any question about what is outside of the finite
database. That is, we live behind the iron curtain: the
outside world — our infinite model — is there, we can
even see a small part of it, but cannot ask much about
it. So, how much more does the mere presence of the
outside world add to the expressiveness of query lan-
guages? The answer is (and this is what one would
expect) — practically nothing. We start by proving this
result for a variety of logics. Then we show that many
of the equivalences among languages continue to hold,
when languages are appropriately modified. We derive
some complexity corollaries, and also consider infinitary
logic as a separate case. Finally, we mention one prop-
erty of active semantics queries that holds, but not ‘as
before’: the ability to test for query safety.

Note: in this section we only deal with active quan-
tification, so we omit the € adom part of restricted
quantifiers. Also, we write L instead of L., since the
natural semantics case is not considered in this section.
Similarly, when we write @, for a query definable by

the formula, we mean ;Ct, and omit the superscript.

3.1 Ramsey property and expressivity bounds

The main goal of this section is to prove generic col-
lapse results for a number of logics. = We say that a
logic I has a locally generic collapse over an or-
dered model M = (U, Q) if, for every schema SC, every
IL(M)-definable locally generic query on SC-databases,
is already LL({U, <))-definable. That is, M is as ex-
pressive as just the order relation, with respect to lo-
cally generic queries. A logic IL has a generic collapse
over a model M if every IL(M)-definable totally generic
query on SC-databases is definable in pure L.

This problem of collapsing signatures for the active
quantification was considered for first-order logic in [6]
and independently in [31]. However, the techniques in
[6] relied heavily on translation into prenex form, and
the extension to second-order logic [7] was ad hoc. In
[31], an elementary extension is used that possesses a
set of indiscernibles, and it is unclear whether this tech-
nique works beyond the first-order case.

However, we show here that the technique of [6, 7] can
be modified so that it can be applied to a variety of
other logics. In particular, we show that a proof based
on Ramsey’s theorem [19], can proceed inductively on
the structure of a formula, thus making it unnecessary
to impose syntactic restrictions. Consequently, we get
a series of results that give us expressivity bounds for
logics under the active interpretation.

Definition 1 Let IL be a logic. We say that it has o
Ramsey property over an ordered model M = (U, Q)
if, for any SC, the following is true:

Let ¢(Z) be an L-formula in the language
L(SC,Q), and X an infinite subset of U.
Then there exists an infinite set Y C X and
a L(SC, <) formula ¥(Z) such that for any
D € Inst(SC,Y) and any @ over Y, it is the
case that D = ¢(a@) < ¥(d).

We also speak of a formula ¢ having the Ramsey prop-
erty if the above is true. We speak of total Ramsey
property if ¥ is ¢ L(SC) formula.

As was shown previously [6, 7], the Ramsey property
implies the following collapse for generic queries:

Lemma 1 (Generic Collapse Lemma)

1. If I has the Ramsey property over M = (U,Q),
and every L({U, <))-query is locally generic, then
IL has the locally generic collapse over M.

2. If L has the total Ramsey property over M, and
every L-query is totally generic, then 1. has the
generic collapse over M. a

The condition that every IL({U,<))-query is locally
generic, and every L-query is totally generic, holds for
all the logics we introduced. Thus, to limit their ex-
pressiveness over infinite models, we have to prove the
Ramsey property. First, we state a simple lemma that
is often used as a first step in such proofs.

Lemma 2 (Separation of atomic subformulae)

Let (&) be an 1L formula in the language L(SC,Q),
where 1. is one of the logics introduced in the previ-
ous section. Then there ezists an equivalent formula
P(&) such that every atomic subformula of v is either
an L(SC) formula, or a L(Q) formula. Furthermore,
for any set Z C & of free variables of ¢, there is an
equivalent formula Y(Z) such that none of Z-variables
occurs in an L(SC)-atomic formula. ad

The key in the inductive proofs of the Ramsey property
is the case of Q-atomic subformulae. This was the key
idea of the proof for the first-order case in [6], though
the lemma below was not stated explicitly.

Lemma 3 Let M = (U,Q) be an infinite ordered
model, and (&) an atomic formula. Then ¢ has the
Ramsey property. a

Now an inductive argument proves:

Proposition 1 The following have the Ramsey prop-
erty: FO; FO+1Up; FO+ifp; FO+pfp; FO+count;
SO.

Proof sketch. Proof is by induction on the formula.
By Lemma 2, assume that every atomic subformula is
a L(5C) formula or a L(Q) formula. We start with the
FO case. The basis follows from Lemma 3. If ¢(Z) =
01(Z) A p2(&), and X C U is infinite, find 91, Y1 C X
such that for any D and @ over Y1, D |= ¢1(a) < ¥1(d)
and, by the hypothesis for @3 and Y7, find Y2 C Y7 such
that for any D and @ over Y2, D | ¢3(a@) ¢ v¥a(a).
Now ¢y = 91 Ay and ¥ = Y3. The ¢ = —¢' and
o(Z) = Jy.¢'(y, £) cases are similar.

Let us sketch the proof for FO+1lfp. In addition to
doing the inductive step for LFP, we also note that
all transformations preserve positiveness. Here, with-
out loss of generality, we give the proof for a closed
Lrp formula applied to a vector of variables (see [8]).
Let S be a new n-ary relation symbol that occurs
positively in a L(SC U {S}, Q) formula a(Z), and let
o(¥) = [LFpzsa(z,S)](Z). Given infinite X C U,
we use the hypothesis to find an infinite ¥ C X
and a L(SC U {S}, <) formula B(Z) such that for any
S5C U {S}-database Dr € Inst(SC U {S},Y) it is the
case that Dr | «(@) < B(&) for all @ € Y™. Fix
D € Inst(SC,Y) and @ € Y™, and define Ro(a) = 0,
and Ri(a) = {b | b C adom(D), Dg,_,(a) = «(b)}, and
similarly define R;(3). It can be easily shown by induc-
tion on ¢ that R;(a) = R;(8) for all <. From this we
derive D |= [Lipg,sa(Z, 9)](@) © [LFps,sB(3, 5)](a),

as required. Proofs for other logics are similar. ad

The main technique of the proof can easily be extended
to other logics, (e.g., transitive closure logics [15]).

It is clear from the proof that only the case of atomic
L(Q) formulae requires the introduction of the order
relation. Thus, if atomic L(Q) formulae had the total
Ramsey property over M, so would all of the logics in
the statement of Proposition 1. Following [7], we call a
signature) analytic on R if it consists of real-analytic
functions. For example, (+, %) is an analytic signature.
It follows from the results in [7] that any L(Q) atomic
formula has the total Ramsey property if 2 is analytic.

Corollary 1 If M = (R, Q), where Q is analytic, and
L is FO, or FO+1fp, or FO+pfp, or FO+ifp, or
FO—+count, or SO, then IL has the total Ramsey prop-
erty over M. O

From Proposition 1 and corollary 1 we obtain the main
result of this subsection.

Theorem 1 Let I be FO, or FO+1fp, or FO+pfp,
or FO+ifp, or FO+count, or SO. Let M = (U, Q)
be an arbitrary ordered model. Then 1. has locally
generic collapse over M. If M = (R,Q), where Q is
analytic, then 1. has generic collapse over M. a

This result can be combined with classical results in
finite-model theory and descriptive complexity (cf. [1,
15]) to obtain a large number of corollaries that give
expressivity bounds for the languages of the form IL(M)
under the active interpretation. For example,

Corollary 2 Let M = (U,Q) be an ordered model.
Then the class of locally generic queries definable
in L(M), where L is FO, FO+count, FO+1fp,
FO+ifp, FO+pfp and SO, is the class of all uni-
form AC®, uniform TC°, PTIME, PTIME, PSPACE
and PH queries, respectively. a

From the 0-1 law for FO+pfp [26], one can get

Corollary 3 Parity test is not definable in
FO+pfp({R+, *)). O

3.2 Equivalence results

In this section we show that a number of well-known re-
sults on equivalence between logics and relational query
languages generalize straightforwardly in the presence
of interpreted structures.

We define the calculus over M, denoted by CaLc(M)
simply as FO(M). More precisely, its expressions are
of the form e = {Z | p(Z)}, where ¢ is a FOuet(M) for-
mula. An algebra over M, denoted by ALG(M), con-
tains all the same operations as relational algebra ALG;
the only difference is the selection predicates. Define se-
lection terms by the grammar st := #1 | f(st,...,st)
where f ranges over the function symbols in Q. Then,
selection conditions are given by sc := C(st,...,st) |
st = st | —sc | scV sc, where C ranges over the
predicates in Q. For example, ou14,g2>21+23(R) is an
algebra expression that selects triples (z,y,z) from R
such that z * y > # 4 z. Similar extensions exist in the
literature, see, for example, [16]. A simple extension of
the classical equivalence CALC = ALG yields

Proposition 2 For any M, CaALc(M) = ALG(M). O

Next, we consider DATALOG (M), which extends
Dataroc ' by allowing L(Q)-atomic formulae in the
bodies of rules. For example, if if = R and €2 contains
addition, then the following DATALOG ™ (M) program

R(z,y) - E(z,y),z>y+y
R(z,y) +— E(z,2z),z>z+2 R(zvy)

defines the transitive closure of a subgraph that consists
of the edges (z,y) with z > 2y.

Proposition 3 For any M, DAaTALOG (M) =
FO+ifp(M) = FO+1fp(M). O

WHILE(M) extends WHILE by allowing ALG(M) ex-

pressions in place of ALG expressions.

Proposition4 For any M, WHILE(M) =
FO+pfp(M). O

We now combine these results with the Ramsey tech-
nique to get expressivity and complexity bounds on the
active queries over interpreted structures.

Theorem 2

1. Let M be an arbitrary ordered wnfinite model.
Then, for locally generic queries, ALG(M) =
FOact(<), Dararoc (M) = PTIME and
WHILE(M) = PSPACE.

2. If M = (R,Q) where Q consists of real-analytic
functions, then every totally generic query in
ALG(M) is FOguci-definable, and every totally
generic query in DATALOG (M) and WHILE(M)
has PTIME (resp., PSPACE) data complezity.
Furthermore, the parity test is not definable in any
of these languages. a

3.3 Infinitary logic

Here we extend our results to infinitary logic. We
are not interested in the full infinitary logic £, nor
L% ., over ordered structures, because they express ev-
ery property of finite structures [14]. Thus, we concen-

trate on L£¥ , over unordered models.

We cannot use the inductive argument of Proposition 1
anymore, because it does not work for infinitary for-
mulae. Indeed, for infinitary disjunction \/¢;, one
would construct a decreasing family of infinite sets
X1 2 X3 D ..., but its intersection (); X; is not guar-
anteed to be infinite. Thus, we use the approach that
is closer to the proof of the collapse of generic queries
for FO in [31]. We modify the argument in [7] to show
that every uncountable subset of R has a set of total in-
discernibles [13] with respect to a countable collection
of formulae, if the signature is analytic. This gives us:

Proposition 5 Let M = (R, Q) where Q is analytic,
and has countably many symbols. Then L%, has
generic collapse over M. a

Using the 0-1 law for infinitary logic [27], we obtain:

Corollary 4 The parity test is not definable as a
L5, (R, +,%)) query. O

3.4 When interpreted structure matters:
safety

query

We now want to give the reader first indication that
the kind of an interpreted structure one adds, can
make a difference, even in the active case. Instead of
Q¥ (D) = {@ € adom(D)" | D |= p(d)}, one could
consider Q,(D) = {d € U™ | D = ¢(d)}. Unfortu-
nately, this may fail to define a query, because Q,(D)
may be infinite. This is the classical problem of query
safety. Following [25], we say that a formula ¢(Z) in
L(SC, Q) is safe for an instance D if Q,(D) is finite.

Proposition 6 Let M = (R, +,%,0,1,<). Then there
is a recursive function that takes an active FO(M, SC)
formula ©(2), and outputs another active formula
Psate(Z) such that
_ Qo(D) if ¢ is safe for D
@pree(D) = { 0 otherwise

We will prove this in the next section, via a detour
into the natural semantics. In the full paper, we will
also show that this result does not hold for an arbitrary
interpreted structure.

4 The infinite world — natural interpretation

So far we have produced a set of techniques that can
be applied to analyze expressiveness and complexity of
active-semantics queries in a variety of languages. The
next question is: how does one approach the case of
natural queries? It appears that this case is “infinitely”
harder than the active case, because now we can ask
questions about eny element in the universe: the iron
curtain of the finite active domain, that limited our vis-
ibility, no longer applies.

Note: 1) The proviso of the previous section that only
active formulae are considered and that IL is used in
place of LLact is not in force in this section.

2) We say that a logic I admits the natural-active
collapse over M if IL(M) = L,(M); that is, for ev-
ery schema and every L-formula ¢(Z) in the language
L(SC,), there exists an equivalent active formula ¢(Z)
in the same language.

The Hull-Su theorem states that pure FO admits the
natural-active collapse. But this result is not robust:
if N'= (N, +,%,0,1), then every recursive query is de-
finable in FO(N) [20], but FO,t(N) cannot express
parity; thus FO,et(N) £ FO(N).

It is known that FO admits the natural-active collapse
over (R, +, —, 0,1, <) [32] and over the real field [7]. One
might ask whether a similar result holds for higher-order
logics. It was shown in [7] that this is not true for the
full second-order logic SO. The reason is the same as

above: the set of natural numbers can be defined, to-
gether with arithmetic operations, and thus coding can
be done. Similarly, full fixpoint logics will not exhibit a
natural-active collapse. However, the question whether
hybrid logics admit such a collapse is open.

Thus, our goal is to see to what extent we can recover
the natural-active collapse for relational languages for
databases over infinite interpreted structures. In addi-
tion to proving such results, we are interested in find-
ing algorithms that convert natural queries into active
queries. We start by giving a new proof of the Hull-Su
theorem, that can then be extended to show that FO*
collapses to FOF .. We extend this result to infinitary
logic. We then present our main result, which is a con-
structive proof that HSO(M) = HEOact(M) when M
is o-minimal and admits quantifier elimination. (The
proof is constructive if the quantifier elimination can
be done effectively.) This implies that FO, FO+1fp
and FO+ifp admit the collapse over such models, and
also leads to normal forms for hybrid logics.

4.1 Natural-active collapse in the pure case

Our goal is to have a set of general algorithms for col-
lapsing natural queries to active over interpreted struc-
tures. We start with the pure case, and give new algo-
rithms for several logics. We also give a simple construc-
tive proof of the Hull-Su theorem. Theorem 4 refines it
to work with variable-bounded logics. These ideas will
be expanded upon to deal with interpreted structures.
The original proof in [23] is algorithmic but quite com-
plex. In a recent unpublished manuscript [10], a sim-
pler proof is given that uses many-sorted logic. Below
we sketch a simple direct proof.

Theorem 3 (Hull-Su) FO = FO,t.

Proof sketch. Proof is by induction on the struc-
ture of the formula. The cases of atomic formulae and
Boolean connectives are obvious. For the existential
case, we define transformation [y]* that eliminates all
free occurrences of variable z:
If v is (z = @), then [y]* = T;
Ifyis (=y) or R(...,z,...), then [y]*®
If v is any other atomic formula, then [y
If y =791 V72, then [7]" = [71]" V [12]%;
If y =+, then [y]" = []%;
If y = Jy€ adom.y’', then [y]* = Jy€ adom.[y']*.

F;
=7

]a:_

Let ¢(?) = Jz.a(z,2) where z = (21,...,2,). By the
hypothesis, is equivalent to an active formula o'(z, 2).
Assume that o' is in prenex form; in particular, z can-
not be a bound variable in any subformula of o’.

Define ¢o(2) = Jz € adom.a'(z, 2), ¢i(2) = a'(%,2)

and o (Z) = [o/(z, 2)]°. Let ¢'(2) = po V (V=1 @) V
©Yoo- Then a simple induction argument shows that D |
(@) < ¢'(a) for every instance D and & € U™. O

The idea behind this proof can be implemented a bit
more carefully to yield the following stronger result:

Theorem 4 FO* and L%, admit the natural-active

collapse: FO* = T(’)’;Ct and LX = (L% act- ad

Corollary 5 Pure LY, admits the natural-active col-

lapse. a

4.2 Natural-active collapse over interpreted struc-
tures: The algorithm

Recall that an ordered model M = (U, Q) is o-minimal
if every definable set is a finite union of points and open
intervals. Definable sets are those of the form {z €
U | M E p(z)} where ¢ is a first-order formula in the
language of Q and constants for elements of U.

Our goal is to give a constructive proof of the following
result from which the natural-active collapse for first-
order and some other logics will follow:

Theorem 5 (Natural-active collapse) Let M =
(U, Q) be an o-minimal model that admits quantifier
elimination. Then HSO(M) admits the natural-active
collapse over M. That is, for every schema SC, and
for every HSO-formula o(Z) in the language L(SC, Q)
without free second-order variables, there ezists an
equivalent active HSO-formula @aci(&) in the same lan-
guage. Moreover, if M s recursive and the quantifier
elimination procedure is effective, then the transforma-
tion from @ to pact ts effective.

To present an algorithm, we need the following

Fact 1 (see [33]) If M is o-minimal, and ¢(z,¥) is
a first-order formula in the language of M, possibly
supplemented with symbols for constants from M, then
there is an integer K such that, for each vector a from
M, the set {z | M | ¢(z,&)} is composed of fewer

than K intervals.

Algorithm for transforming ¢ into ... The al-
gorithm is recursive on the structure of the formula. Fix
a schema SC. If ¢ is atomic, then pact = ¢. If ¢ = @,
then @act = —@act- If ¢ = a VB, then @act = aact V Bact-
If ¢ = 35.4, then pact = IS.Yact-

Let ¢(#) = 3Jz.a(z,&). First, we recursively apply
the transformation to get an active formula a,c(z, Z).
Next, using Lemma 2, we transform a,t into an equiv-
alent formula 3(z, Z) such that that each atomic subfor-
mula of 3 is either a L(SC) formula or a L(Q?) formula,
and z occurs only in L(Q) atomic formulae.

Let ¥ be the collection of all L(Q?) atomic subformu-
lae of 3. Let 4 be the collection of n bound variables

used in 3. Then for each p(Z, ¥, 2) in ¥, find the num-
ber K, such that Sp(l_;,c_) ={a | M E p(l_;,c_’,a)} is
composed of fewer than K, intervals for every vectors
b and ¢ of elements of /. Note that this number is
computable if M is recursive and the quantifier elim-
ination is effective. For every k, the statement that
{a | M |= p(b,,a)} is composed of fewer than k inter-

=

vals for all b, ¢ can be written as a first-order sentence
pr in the language of M. Applying quantifier elimina-
tion to px one can see if it is true or not. Since pi is
true for some k (by fact 1), to find K, one should keep
checking pi, p2, p3, - .. until the one evaluating to true
is found, which gives us an algorithm for finding K,.
Now let K = max,ce{K,, K-p}.

Given two vectors l_;,c_’ of the same arity as &,y, we
say that an interval S is a (l_;, €)-interval if either S C
Sp(l_;,c_), or S CU - Sp(l_;,c_) for every p € ¥, and S
is a maximal interval with this property. Then there
exists an integer J such that there are at most J (l_;,)-
intervals for each pair (l_;, €). In fact, J can be taken to

be (4K + 1)M; this follows from the uniform bound K
on the number of intervals in the sets S,,.

Thus, for each j < J, there is a first-order for-
mula v;(Z, ¥/, z) saying that there are at least j (Z, %)-
intervals, and z is inside the jth one. Next, we let
Xij (5, t, %) be a quantifier-free formula equivalent to

—

Fu.yi (&, 5, u) A v, (&, 1‘: u)

and p;; (5, i, &, ¥) a quantifier-free formula equivalent to

— —

Vu.(vi(Z, 5 u) A ’yj(m,z‘:u)) — p(Z, ¥, u),

where § and ¢ are n-element vectors. Let Bi; be the
formula obtained from (3 by replacing each p(Z, ¥, z) in

W with pij(,1, 8, 5).

Let us use &;(<,s, t, u) as an abbreviation for
vi(Z, 5, u) A v (&t u). Let n;;(5,t,7 &) be the
quantifier-free formula equivalent to

Vuvu'. [(6:(%,5,t,u) A &%, 5t u"))
Z, 7, p(Z, 7, u'))]

b
- /\pE\I’ (p(m,r,u) ARS
Let m;;(5, t,) be VF'e adom.n;;(s, t,7,%). It says that
any v and v in the intersection of the ith (Z, §)-interval

and the jth (Z, f)—interval have the property that for any
other vector 7 of elements of the active domain, and any
atomic formula p in ¥, it is the case that p(Z, 7, u) and
p(Z,7,u') have the same truth value.

Finally, we output, as @act, the following formula:

ds; € adom. . .ds, € adomdt; € adom. . .3, € adom.
Vi,j<J(Xi]'(';’t’ :E) A ﬂij(g’t’ :E) A ,Bij(-;,t, :E))

where §= (s1,...,8,) and i= (t1,. - ytn).

Theorem 5 now follows from

Lemma 4 (Correctness of the algorithm) For ev-
ery HSO(M) formula ¢(&) without free second-order
variables, and every nonempty database instance, D =
VE.o(Z) & Pact(Z). O

It is well known that for any SO or 8O, formula,
there exists an equivalent one in normal form (second-
order quantifiers are in front of first-order quantifiers).
Theorem 5 gives us the normal form for HSO.

Corollary 6 (Normal form for HSO) Let M be o-
minimal. Then every HSO(M)-formula is equivalent
to a HSO(M)-formula in normal form. O

4.3 The natural-active collapse for first-order
queries

The following is an immediate corollary to Theorem 5.

Theorem 6 Let M be an o-minimal model that admits
quantifier elimination. Then FO admits the natural-
active collapse over M. Moreover, the transformation
from a natural formula to an active formula is effective
if M 1is recursive and the quantifier elimination proce-
dure is effective. a

From Tarski’s quantifier-elimination, we get

Corollary 7 There is an algorithm that converts
any FO((R,+,%,0,1,<))-query into an equivalent
.7:(’)act(<R,+,*,0,1,<>)-que7'y. g

Finally, we have an elementary proof of

Corollary 8 (see [6]) Parity test cannot be defined as
a relational calculus query with polynomial inequality
constraints over the reals. ad

Now we can complete the proof of proposition 6. Note
that if the order < is dense, then for a given formula
@(Z) it is possible to write a (natural semantics) sen-
tence ® that tests if the number of satisfiers of ¢ is
finite. This is done by testing if each projection of the
set of satisfiers of ¢ is bounded and discrete (also, end-
points must be considered with care). By Theorem 6,
P can be converted into an equivalent active sentence
Dact, and then @(2) A Pact can be taken as psare(2). O

4.4 Natural-active collapse for fixpoint queries

From Theorem 5, we derive

Theorem 7 Let M be an o-minimal model that admats
quantifier elimination. Then FO+ifp and FO+1fp ad-
mit the natural-active collapse over M. Moreover, the
transformation from a natural formulae to an active for-
mula is effective if M is recursive and the quantifier
elimination procedure is effective. a

This theorem cannot be extended to partial-fixpoint
logic, because it is proved by embedding inflation-
ary (or least) fixpoint into second-order logic. How-
ever, we can prove the following for closed partial- and
inflationary-fixpoints. Recall that by closedness of a fix-
point formula we mean that no application of fixpoint
involves extra free variables, that is, it is of the form
[LFPz sp(Z, S)](f), or similarly for IFp and PFP.

Theorem 8 Let M be a model such that FO admats
the natural-active collapse over M. Then the closed
FO+ifp(M) and the closed FO+pfp(M) admit the

natural-active collapse. a

Finally, combining the results of this section, we see
that for some models M, there is no difference between
closed and unrestricted hybrid fixpoint logics, which
gives us the desired normal form result.

Corollary 9 (Normal form for fixpoint) If M s
o-minimal and has quantifier elimination, then

FO+1Ufp(M) closed FO+1fp(M)
FO+ifp(M) closed FO+ifp(M).

Using a simple induction argument, we show

Proposition 7 Let M be a model such that FO
admits the natural-active collapse over M. Then
FO+count(M) admits the natural-active collapse. O

4.5 Summing up

Figure 1 puts together results about both active and
natural semantics. Roughly, each line in Figure 1 shows
the equivalence of a logic L, its active-semantics version
Lact, @ procedural language (if one exists), and a com-
plexity class. Here we use classical descriptive complex-
ity results (cf. [1, 15]). Note that by AC® and TC® we
mean their uniform versions, cf. [4].

Techniques developed here make it easy to prove re-
sults for other logics. For example, one can show that
for the hybrid version of the transitive closure logic [15],
the natural and the active interpretations coincide over
the real field, and by the Ramsey property, the class of
generic queries definable in it under the active interpre-
tation does not depend on the set of operations €2, and
thus is precisely the class of NLOGSPACE queries.

5 Conclusion

Our main goal was to delineate the extent to which stan-
dard results from the pure relational case ‘go through
as before’ when interpreted structures are present. We
have distinguished several aspects of the standard the-
ory that extend routinely, as well as several whose ex-
tension requires special techniques and/or special as-
sumptions on the interpreted structure. That is, we
have three categories of results.

First, extensions of results from pure relational theory
to any interpreted structure. We show that most of
the standard language equivalences, expressive bounds
and complexity results continue to hold with inter-
preted structures, assuming the active semantics. Sec-
ond, extensions of results from the pure case that hold
with interpreted structure under special assumptions on
the structure. We show that most statements about
the natural semantics continue to hold for reasonably-
behaved interpreted structures. Third, results that
arise in the interpreted case that either do not arise
or are not of interest in the pure case. We introduced a
class of hybrid logics, that arise naturally in the inter-
preted case: those with ‘mixed’ quantification. These
logics admit the same normal forms as their unmixed
counterparts, if the structures are reasonably behaved.

This is only the tip of the iceberg for each of these
classes. The understanding of appropriate algebras for
queries with interpreted structures is still incomplete.
We are working on algebras and range-restricted cal-
culi for safe queries, other normal forms for nonboolean
queries and operations that preserve safety. Although
we have shown that for nicely-behaved structures we get
very satisfying extensions of results about the natural
semantics, we do not characterize the class of structures
for which this holds. It is also open whether the normal
forms results for hybrid logics hold in general.

The algorithm for converting natural quantification to
active is of interest in its own right. It extends work
done in the constraint community (e.g., in [32] for linear
constraints), and can also be seen as extending quanti-
fier elimination algorithms, that originate with Tarski
[35], to handle large parameter sets. We would like to
have a unified picture of the relation between the algo-
rithm presented here and those in, for example, [9, 32].
We plan to study the integration of such algorithms into
optimization systems for constraint queries.

We are interested in understanding the connection be-
tween our results and metafinite model theory [18].
Some of the motivations for [18] are very close to those
for our work, but it does not appear that we can use
any of the results in [18] to derive any of our results.

Acknowledgements We thank Victor Vianu and
Scott Weinstein for their prompt answers to our ques-
tions, Rick Hull and anonymous reviewers for their com-
ments, and Jan Van den Bussche for a copy of [10].

FOM) = FOut(M) 4p= ALg(M) = AC°
FO+count(M) = FO+count,(M) g= TC®
FO+1Ifp(M) = closed FO+Ufp(M) = FO+Up, (M) gp= DataLoc (M) ;= PTIME
FO+ifp(M) = closed FO+ifp(M) = FO+ifp, (M) ap= DaTALOG (M) ;= PTIME
HSOM) = HSOot (M) g= PH
closed FO+pfp(M) = FO+pfp,oi(M) ap= WHILE(M) 1= PSPACE

Note: Cig= ('
C ap

means the class of locally generic queries in C is C'.
C' means the class of domain preserving (adom(Q(D)) C adom(D)) queries in C is C'.

Figure 1: Summary of the expressiveness results for M = (R, +, #,0, 1, <) or any other o-minimal model that admits

quantifier elimination

References

[1] S. Abiteboul, R. Hull and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] S. Abiteboul and V. Vianu. Datalog extensions for
database queries and updates. JCSS 43 (1991), 62-124.

[3] A.K. Ailamazyan, M.M. Gilula, A.P. Stolboushkin and
G.F. Shvarts. Reduction of a relational model with in-
finite domains to the finite-domain case. Soviet Physics
— Doklady, 31 (1986), 11-13.

[4] D.A. Barrington, N. Immerman, H. Straubing. On uni-
formity within NC*. JCSS, 41:274-306,1990.

[5] C. Beeri and T. Milo. Functional and predicate pro-
gramming in OODBs. In PODS’92, pages 176-190.

[6] M. Benedikt, G. Dong, L. Libkin and L. Wong. Rela-
tional expressive power of constraint query languages.
In PODS’96, pages 5-16.

[7] M. Benedikt and L. Libkin. On the structure of queries
in constraint query languages. LICS’96, pages 25-34.

[8] M. Benedikt and L. Libkin. Languages for relational
databases over interpreted structures. Technical Memo,
Bell Labs, 1996.

[9] M. Ben-Or, D. Kozen, J. Reif. The complexity of ele-
mentary algebra and geometry. JCSS 32:251-264, 1986.

[10] L. Cabibbo and J. Van den Bussche. On the expressive
power of many-sorted logic. Manuscript, 1996.

[11] A. Chandra and D. Harel. Computable queries for re-
lational databases. JCSS 21(2):156-178, 1980.

[12] A. Chandra and D. Harel. Structure and complexity of
relational queries. JCSS 25 (1982), 99-128.

[13] C.C. Chang and H.J. Keisler. Model Theory. North
Holland, 1990.

[14] A. Dawar, S. Lindell, S. Weinstein. First order logic,
fixed point logic, and linear order. In Computer Science
Logic '95, LNCS vol. 1092, 1996, pages 161-177.

[15] H.-D. Ebbinghaus and J. Flum. Finite Model Theory.
Springer Verlag, 1995.

[16] M. Escobar-Molano, R. Hull and D. Jacobs. Safety and
translation of calculus queries with scalar functions. In
PODS’93, pages 253-264.

[17] K. Etessami. Counting quantifiers, successor relations,
and logarithmic space. JCSS, to appear.

[18] E. Gréadel and Y. Gurevich. Metafinite model theory.
In Proc. LCC, LNCS vol. 960, 1994, pages 313-366.

[19] R.L. Graham, B.L. Rothschild and J.H. Spencer. Ram-
sey Theory. John Wiley & Sons, 1990.

[20] S. Grumbach and J. Su. First-order definability over
constraint databases. In PCCP’95.

[21] Y. Gurevich and S. Shelah. Fixed-point extensions of
first-order logic. Annals of Pure and Applied Logic 32
(1986), 265-280.

[22] R. Hull, J. Su. On the expressive power of databases
with intermediate types. JCSS 43 (1991), 219-267.

[23] R. Hull and J. Su. Domain independence and the rela-
tional calculus. Acta Informatica 31:513-524, 1994.

[24] P. Kanellakis, G. Kuper, and P. Revesz. Constraint
query languages. JCSS 51 (1995), 26-52.

[25] M. Kifer, R. Ramakrishnan and A. Silberschatz. An ax-
iomatic approach to deciding query safety in deductive
databases. In PODS’88, pages 52-60.

[26] Ph. Kolaitis and M. Vardi. 0-1 laws and decision prob-
lems for fragments of second-order logic. Information
and Computation, 87 (1990), 302-338.

[27] Ph. Kolaitis, M. Vardi. Infinitary logic and 0-1 laws.
Information and Computation, 98 (1992), 258-294.

[28] A. Levy, I. Mumick, Y. Sagiv, O. Shmueli. Equiva-
lence, query reachability and satisfiability in datalog
extensions. In PODS’93, pages 109-122.

[29] L. Libkin and L. Wong. Query languages for bags and
aggregate functions. JCSS, to appear. Extended ab-
stract in PODS’94.

[30] Y. Moschovakis. Elementary Induction on Abstract
Structures. North Holland, 1974.

[31] M. Otto and J. Van den Bussche. First-order queries
on databases embedded in an infinite structure. Infor-
mation Processing Letters, to appear.

[32] J. Paredaens, J. Van den Bussche, and D. Van Gucht.
First-order queries on finite structures over the reals.
In LICS’95, pages 79-87.

[33] A. Pillay, C. Steinhorn. Definable sets in ordered struc-
tures. III. Trans. of the AMS 309 (1988), 469-476.

[34] A.P. Stolboushkin and M.A. Taitslin. Linear vs. order
constraint queries over rational databases. In PODS 96,
pages 17-27.

[35] A. Tarski. A Decision Method for Elementary Algebra
and Geometry. 2nd ed., Univ. California Press, 1951.

[36] J. D. Ullman. Principles of Database and Knowledge-
base Systems, Volume I, Computer Science Press, 1989.

[37] M. Vardi. On the complexity of bounded-variable
queries. In PODS’95, pages 266-276.

