
Languages for Relational Databases over Interpreted StructuresMichael BenediktBell Laboratories1000 E. Warrenville RdNaperville IL 60566, USAEmail: benedikt@bell-labs.com Leonid LibkinBell Laboratories600 Mountain AvenueMurray Hill NJ 07974, USAEmail: libkin@bell-labs.comAbstractWe rework parts of the classical relational theory when theunderlying domain is a structure with some interpreted op-erations that can be used in queries. We identify parts of theclassical theory that go through `as before' when interpretedstructure is present, parts that go through only for classes ofnicely-behaved structures, and parts that only arise in theinterpreted case. The �rst category includes a number ofresults on equivalence of query languages, as well as expres-sive power characterizations for the active-domain semanticsfor a variety of logics. The second category includes mostof our results on the natural semantics, including results oncases where the natural semantics collapses to the active se-mantics. While these collapse results have been proved bynonconstructive means for �rst-order logic in previous work,we here give a set of algorithms for eliminating unboundedquanti�cations in favor of bounded ones. Furthermore, weshow these results for a new class of higher-order logics thatmix unbounded and bounded quanti�cation. We give a setof normal forms for these logics, under special conditions onthe interpreted structures.As a by-product, we obtain an elementary proof of the factthat parity test is not de�nable in the relational calculuswith polynomial inequality constraints.1 IntroductionWe would like to a start with an example that can befound in most database textbooks. When relational al-gebra is introduced, the conditions in selection opera-tors are de�ned to be boolean combinations of x = yand x < y, where x and y are variables or constants.Typically, a few examples of programming in relationalalgebra are given before a relational language, such asSQL or QUEL, is introduced. Soon after that we willprobably see an example of query like \Select employeeswho make at least 90% of their manager's salary". Such

an example is likely to be followed by a remark that thisquery, strictly speaking, is not de�nable in relational al-gebra because it involves arithmetic operations, but itis de�nable in SQL or QUEL which allow arithmeticand comparisons of the form x > 0:9 � y.Does it mean that the relational algebra is in somesense inadequate as a basic relational query language?It is certainly so if one has to deal with arithmetic,but database textbooks counter this criticism by sayingthat an extension to arithmetic is straightforward. Forexample, in his textbook [36], Ullman writes:Often, atoms in calculus expressions or se-lections in algebraic expressions can involvearithmetic computation as well as compar-isons, e.g., A < B + 3. Note that + andother arithmetic operators appear in neitherrelational algebra nor calculus, but the exten-sion of those notations to include arithmeticshould be obvious.It is obvious how to extend these notations, but itisn't completely obvious how to extend the fundamen-tal results and techniques of relational theory to includearithmetic. For example, if arithmetic constraints areallowed in selection predicates, how would one prove theclassical result that parity test and transitive closure arenot de�nable in relational algebra? It appears that thestandard techniques either are not directly applicable(such as 0-1 laws), or require considerably more com-plex arguments (such as games). This situation extendsbeyond arithmetic to other interpreted operations overthe items that could be stored in a database.As noted in [18], the proposal to combine �nitedatabases with an in�nite interpreted structure, madein the seminal paper of Chandra and Harel [11], has notbeen fully explored in the database community, despitethe fact that the rest of that paper made enormous im-pact on the development of database theory. An excep-tion, in addition to [18], has been the attention to orderrelation. This includes well-known connections betweenquery languages and complexity classes, cf. [1, 15]; also,



order constraints have been studied in the context ofDatalog queries (see, e.g., [28]).Let us give a sample of the results we obtain in thispaper. We �rst look at queries that may use the in-formation about the underlying model (for example,they may use arithmetic operations), but only ask ques-tions about elements that occur in a database. Theseare called active-semantics queries, and are the ones in-tended in the `classical database' context of the quota-tion above. For those queries, we will review and extenda technique that has arisen recently [6, 31] for analyzinginterpreted structure: generic collapse results. Thesestate that generic queries de�nable by various logics canbe de�ned without additional interpreted operations.That is, they do not add extra relational power. Thecollapse results show that for active queries many (butnot all!) traditional relational theory results generalizesmoothly to the interpreted setting. We then turn toqueries which may ask questions about elements out-side of the database (these are called natural-semanticsqueries), and prove a number of natural-active collapseresults showing that over a certain class of interpretedstructures, this extension does not add any expressivepower. We prove these results for several logics. Weconcentrate not only on proving those results, but wealso continue to re�ne and generalize a collection oftechniques that are likely to be used as the theory fur-ther develops.As mentioned above, there are issues concerning inter-preted structure that are not straightforward, even inthe setting of the relational model. Much recent inter-est in databases over interpreted structures, however,stems from the constraint database model introducedby Kanellakis, Kuper and Revesz [24]. They were mo-tivated by new applications involving spatial and tem-poral data, which require storing and querying in�nitecollections. The constraint model generalizes Codd'srelational model by means of \generalized relations".These are possibly in�nite sets de�ned by quanti�er-free�rst-order formulae in the language of some underlyingin�nite modelM = hU ;
i. Here U is a set (assumed tobe in�nite), and 
 is a signature that consists of a num-ber of interpreted functions and predicates over U . Forexample, in spatial applications, M is usually the real�eld hR;+; �;0;1; <i, and generalized relations describesets in Rn.One of the main contributions of [24] is an extensionof relational calculus and Datalog to generalized rela-tions. The development of constraint query languagesmade clear some of the ways in which the interpretedstructure adds new issues to the analysis of query lan-guages. For example, these extensions do add expres-sive power: one may ask if there is a pair (x; y) withxy = 2y + 3. In [6] it was shown that this extension,with the real �eld as the underlying model, does not addrelational expressive power: one cannot de�ne parity ortransitive closure, and, more generally, queries that aregeneric in the sense of [1, 12], other than those already

de�nable with order. Since it is known that such ex-pressive bounds cannot be obtained for arbitrary struc-tures [20], these results give indication that relationalcalculi over some interpreted structures are much moresimilar to pure relational calculus than others are.In addition to questions of expressive power, the con-straint model also shows how issues concerning quan-ti�cation that don't arise in the classical theory cometo the fore when interpreted structure is present. Rela-tional calculus expressions are �rst-order formulae thatmay use quanti�ers. What does 9x:'(x) mean? It couldmean that ' is satis�ed by some element of a database(this is called active interpretation), or by some elementof the underlying universe U (this is called natural in-terpretation). The issue of two semantics arises in thecontext of pure relational calculus, but Hull and Su [23]proved that the expressive power of relational calculusis the same under both interpretations. This is whatwe call the natural-active collapse. (In fact, an earlierresult [3] showed that in�nite domains are unnecessaryfor pure relational calculus.) This collapse is known notto hold over arbitrary structures, hence questions con-cerning the two semantics become much richer in the in-terpreted setting. Since constraint database formalismsaim to give �nite means for describing in�nite objects,manipulating natural quanti�cation plays a fundamen-tal role, forcing us to give much more attention to itthan in the pure case.It might appear that we have to develop separate theo-ries for the two interpretations of quanti�ers, unless weshow that they coincide. It then constituted signi�cantprogress when [32] proved the analog of the Hull-Su the-orem for linear constraints. These results were extendedto polynomial constraints in [7].Although the above results show how to reduce ques-tions about natural semantics to ones concerning activesemantics for �rst-order queries over many structures,there are a number of issues left open. In particular,the proofs in [6] and [7] are quite involved: they usetechniques of nonstandard universes [13] and o-minimalstructures [33]. In addition, the proofs in those papersare nonconstructive. In [23] (that deals with the purecase) and [32] (that deals with linear constraints), analgorithm is given that converts a natural query intoan active one. However, in [7] (which deals with poly-nomial constraints and other o-minimal structures), amere existence of such a query is proved, but no algo-rithm is given. One of the main results of the currentpaper is an algorithm for doing this conversion. It ishoped that this will lay the groundwork for transform-ing a number of optimization algorithms for pure rela-tional calculi to the interpreted setting.Going from �rst-order logic to more expressive logics(�xpoint, second-order), we observe a new interestingphenomenon. Even when we identify structures overwhich �rst-order queries have tame behavior under thenatural interpretation (for example, hR;+; �; 0;1;<i),



�xpoint logics and second-order logic may still be tooexpressive. More precisely, the set of natural numbers isde�nable in those logics over the real �eld, and then anencoding with natural numbers shows that any recur-sive query can be expressed in these languages. In addi-tion, second-order constructs when interpreted naivelyover the natural domain lead to unde�ned queries aswell as undecidable ones: counting quanti�ers andmonotone �xpoints need no longer be well-de�ned onin�nite sets.For higher-order logics, however, there are numeroussubclasses that one can restrict to that do not arisenaturally in the pure case, and which have the sameclosure properties as active queries, while also admit-ting interesting expressive bounds. In particular, weconsider a new class of logics that we call hybrid. Theidea is that �rst-order quanti�cation can still be inter-preted naturally (that is, 9x:'(x) means '(a) for somea 2 U), but the higher-order features are interpreted ac-tively. For instance, for the hybrid second-order logic,second-order quanti�ers range over subsets of the activedomain, while �rst-order quanti�ers range over U . Simi-larly, �xpoints are only taken within the active domain.Such logics are of interest in the constraint databasecontext, since the natural versions of the higher-orderconstructs are not available. We show that the behav-ior of such hybrid logics is close to the behavior of �rst-order logic.For logics that use a consistent semantics (active or nat-ural) for all quanti�ers, it is possible to adapt the nor-mal forms known in the pure case. An interesting as-pect of hybrid logics is that standard normal forms thathold straightforwardly for both natural and active inter-pretation logics become highly nontrivial in the hybridcase. We will show that for reasonably-behaved modelswe can obtain standard normal forms for both �xpointand second-order logic in the hybrid case. For arbitraryinterpreted structure we conjecture that these normalforms fail.Goals of the paper The main goal of this paper is tostudy a number of issues of the classical relational the-ory for databases and languages over interpreted struc-tures. These include equivalence of traditional querylanguages and various logics, expressive power of querylanguages, the relationship between the active and thenatural interpretation and data complexity.Included in this examination will be an elementaryproof that parity can not be de�ned using relationalcalculus with polynomial inequality constraints. Thisnew proof completely avoids techniques of nonstan-dard universes, and gives a constructive `parameterizedquanti�er-elimination' procedure that can be seen as anextension of the work in [32, 9, 35, 34].In addition to proving a number of results, this paperalso provides a set of techniques that can be used forother logics and query languages.

Organization Notations are introduced in Section 2.In Section 3, we deal with the active interpretation.We present the Ramsey technique (which is abstractedfrom the proofs in [6] and [32]), and show that it can beuniformly applied to a variety of logics (de�ned in Sec-tion 2), to obtain generic collapse results. This leads toa number of expressivity results for these logics over in-terpreted structures. We show that natural extensionsof relational algebra, Datalog: and While, are stillequivalent with �rst-order, least- and partial-�xpointlogic over arbitrary models. We look at in�nitarylogic with �nitely many variables (which subsumes all�xpoint logics), and show how to extend the proof tech-niques to deal with it. Finally, we give a 
avor of thekind of result about the active semantics which doesdepend nontrivially on the particular interpreted struc-ture: the ability to guard against unsafe queries.In Section 4, we deal with the natural interpretation.Our main goal is to give a constructive proof of thenatural-active collapse for databases over the reals. Weprove a more general result, showing that the naturaland active interpretations are equally expressive overany structure that is o-minimal [33] and has quanti�erelimination. We prove this for the hybrid second-orderlogic (second-order quanti�ers range over the subsets ofactive domain). This result was proved for �rst-orderlogic by us earlier [7] in a nonconstructive way; now wegive a recursive translation from the natural formulaeinto active formulae, provided the model is recursiveand quanti�er elimination is e�ective. We derive thenatural-active collapse for �rst-order logic, hybrid �x-point logics, and also give normal forms for formulaein these hybrid logics. We also give a much simpli�edproof of the Hull-Su theorem in the pure case, and showa tighter result: the Hull-Su theorem holds for variable-bounded logics.Concluding remarks are given in section 5. Proofs canbe found in the full version [8].2 NotationsDatabases over in�nite models In this paper, westudy databases over in�nite models. Let M = hU ;
ibe an in�nite model, where U is an in�nite set, calleda carrier (in the database literature it is often calleddomain), and 
 is a set of interpreted functions, con-stants, and predicates. For example, the real �eldhR;+;�; 0; 1;<i has carrier R (the set of real numbers),functions + and �, constants 0 and 1, and predicate �.A (relational) database schema SC is a nonemptyset of relation names fS1; : : : ; Slg with associated ar-ities p1; : : : ; pl > 0. Given a model M and X � U ,an instance of SC over X is a family of �nite sets,fR1; : : : ; Rlg, where Ri � Xpi . That is, each schemasymbol Si of arity pi is interpreted as a �nite pi-ary re-lation over X. We use Inst(SC; X) or Inst(SC ;M) todenote the set of all instances of SC over X or M.



Given an instance D, adom(D) denotes its active do-main, that is, the set of all elements that occur in therelations in D. If S is a new n-ary symbol not in SCand R is a �nite subset of Un, then DR denotes theinstance of SC [ fSg where S is interpreted as R.In Section 4, we will use o-minimalmodels [33]. Recallthat an ordered model M is o-minimal, if every de�n-able set is a �nite union of points and open intervalsfx j a < x < bg. De�nable sets are those of the formfx j M j= '(x)g, where ' is a �rst-order formula in thelanguage ofM, possibly supplemented with symbols forconstants fromM.A model admits quanti�er elimination if, for every for-mula'(~x), there is an equivalent quanti�er-free formula (~x) such that M j= 8~x:'(~x) $  (~x). A model is re-cursive if its language is recursive and validity of atomicsentences is decidable. An example of o-minimal, recur-sive model having quanti�er elimination is the real �eldhR;+;�; 0; 1;<i.Logics Since our goal is to develop a theory thatcan be used beyond the �rst-order case, we considera variety of logics here. Fix a model M = hU ;
i.By L(SC ;
) we denote the language that consists ofthe schema predicates and the symbols in 
. ByFO(SC ;M) (or just FO(M) if the schema is under-stood) we denote the �rst-order logic over the languageL(SC ;
); we use FO for �rst-order logic in the lan-guage of the schema. We also de�ne the semantic no-tion D j= '(~a), where '(~x) is a formula and ~a a vectorover U . Note that D j= 9x:'(x;~a) means that for somea0 2 U , D j= '(a0;~a). This corresponds to the naturalinterpretation of queries, cf. [1, 23].Under the active interpretation of �rst-order logic [1,23], 9x means that x can be found within the activedomain. To deal with this in the same framework asthe natural interpretation (that is, to avoid introductionof a di�erent notion of satisfaction), we introduce theactive quanti�cation of the form 9x2adom:'(x) and8x2adom:'(x). The semantics is as follows: D j= 9x2adom:'(x;~a) if for some a0 2 adom(D), D j= '(a0;~a),and likewise for 8x 2 adom. Note that this restrictedquanti�cation can be expressed in �rst-order logic. Weshall call a formula active if all quanti�ers in it areactive. For every language L, its subset consisting ofthe active formulae is denoted by Lact.Next, we consider �xpoint extensions of �rst-order logic.The presentation here di�ers slightly from the standardde�nitions for the �nite [15, 21, 2] or in�nite [30] casebecause we have a mix of these cases: �nite structuresover an in�nite universe. (This corresponds to what wecalled hybrid logics in the introduction.) The least-�xpoint logic FO+lfp adds the following constructionrule: if S is an n-ary relation symbol not in the schema,'(x1; : : : ; xn; ~y; S) is a L(SC [ fSg;
) formula whereS occurs positively, and ~t is an n-vector of variables or

terms, then [Lfp~x;S'(~x; ~y; S)](~t)is a formula, whose free variables are ~y and free vari-ables from ~t. The semantics is as follows. GivenD 2 Inst(SC ;U) and ~a of the same length as ~y, de�nethe sequence R~a0 = ;,R~ai+1 = f(b1; : : : ; bn) 2 adom(D)n j DR~ai j= '(~b;~a)g:It is known that this sequence increases, and thusreaches a �xpoint, denoted by R~a1. Now D j=[Lfp~x;S'(~x;~a; S)](~c) i� ~c 2 R~a1. The least-�xpointlogic over the logical language L(SC ;
) will be denotedby FO+lfp(M).Note that we may have instances of �rst-order quanti�-cation in least-�xpoint formulae, which are interpretednaturally, but the �xpoint itself is always taken withinthe active domain, which makes the logic hybrid: itcombines both active and natural interpretations. Inthe pure �nite case, it is unnecessary to add parame-ters ~y to the iterated formula, because it does not addpower [15]. The same is true in the pure in�nite case,that is, when R~ai+1 is constructed as the set of all vec-tors ~b over U that satisfy '(~b;~a). But it is not clearwhether the extra parameters ~y can be dropped in hy-brid �xpoint logics without losing expressiveness. Weshall say that a �xpoint formula is in normal form ifno application of Lfp uses these extra parameters ~y.The in
ationary-�xpoint logic FO+ifp and thepartial-�xpoint logic FO+pfp are de�ned similarlyto the least-�xpoint logic. They have constructors[Ifp~x;S'(~x; ~y; S)](~t) and [Pfp~x;S'(~x; ~y; S)](~t)respectively, with no restriction on S. The semanticsis as above, where R~a1 is constructed as follows. ForFO+ifp, R~ai+1 = R~ai [ f(b1; : : : ; bn) 2 adom(D)n jDR~ai j= '(~b;~a)g (this sequence is increasing, and hencereaches a �xpoint). For FO+pfp, the sequence Ri isconstructed as for the least-�xpoint, and R1 is takento be its �xpoint, if it exists, and ; otherwise.The concept of a normal form is de�ned for in
ationary-and partial-�xpoint logic in the same way it was de�nedfor FO+lfp. When formulae of a �xpoint logic arerestricted to normal form formulae only, we call sucha �xpoint logic closed. In the case of �nite domain,there is no loss of expressiveness due to restriction tothe closed version of a �xpoint logic, cf. [1, 15].We also consider logic with counting, FO+count(M),following the presentation in [17]. This logic is two-sorted. One sort has U as its domain, the other sorthas the domain N. The logic adds second-sort quan-ti�ers that range over the initial segment of N of thesize of a �nite instance, constants 0 and max (inter-preted as the size of a �nite instance minus 1), theBIT predicate, where BIT(i; j) is true if the ith bit



of the binary representation of j is 1, the order <on the second sort, and �nally counting quanti�ersof the form 9ix:'(x) which binds x but not i, andmeans that there are at least i satis�ers of ' in theactive domain. For example, a database D satis�es9i:(BIT(i; 0) ^ 9ix:'(x) ^ 8j:(9jx:'(x) ! j � i)) i�the cardinality of fa 2 adom(D) j D j= '(a)g is odd.The hybrid second-order logic HSO permitssecond-order quanti�ers 9S and 8S which are inter-preted as follows: D j= 9S:'(S), where S is k-ary, i�there exists a set R � adom(D)k such that DR j= '.Note that this notion is even weaker than weak second-order, where second-order quanti�ers range over �-nite sets. We use SO for full second-order logic (k-ary second-order quanti�ers range over subsets of Uk).Formulae of SO or SOact can be converted into nor-mal formQ1S1 : : :QkSk : where QiSi are second-orderquanti�ers, and  is �rst-order. In the case of HSO, itis not immediately clear if the same is true.While all these logics are relevant to database querylanguages (as we shall see shortly), we shall also con-sider in�nitary logic, which is of interest in �nite-model theory, as logic which subsumes �xpoint logicsand possesses nice properties, such as 0-1 law [27]. Itis de�ned exactly as �rst-order logic, except that arbi-trary disjunctions and conjunctions are allowed. Thatis, if f'i(~x)g is an arbitrary collection of formulae, thenWi'i(~x) and Vi 'i(~x) are formulae. We use L1! todenote in�nitary logic.Suppose L is one of the logics introduced above, butthe formation rules are modi�ed so that only �nitelymany variables, x1; : : : ; xk, can be used in formulae.The restriction thus obtained is denoted by Lk. Forexample, Lk1! is in�nitary logic with k variables. Weuse L!1! for Sk2NLk1!.In the absence of interpreted symbols in 
, we speak ofa pure logic (over a schema SC).Queries de�nable by logics A query is a mappingfrom Inst(SC1) to Inst(SC2), where SC1 and SC2 aretwo schemas. For simplicity of exposition, assume thatSC2 consists of a single p-ary relation. Given a logic Land a model M, we say that a query Q is L-de�nableover M (or L(M)-de�nable) if there exists an L for-mula '(x1; : : : ; xp) in the language L(SC1;
) such thatQ(D) = f~a j D j= '(~a)g. We denote this query by Q'.As in the case of relational calculus and algebra, weoften consider queries that do not extend the active do-main. Thus, we de�ne the query Qact' by Qact' (D) =f~a 2 adom(D)p j D j= '(~a)g. Note that anyquery Q obtained in such a way is domain-preserving:adom(Q(D)) � adom(D).Query languages Relational calculus is just �rst-orderlogic over the database schema: its expressions are ofthe form e = f~x j '(~x)g where '(~x) is a FO formula in

the language of the schema relations. By the Hull-Sutheorem, we can use FOact expressions. We use Calcto denote the family of all calculus queries under theactive interpretation (that is, Qact' ), and Alg to denoterelational algebra. It is a classical result of relationaltheory that Calc = Alg.We consider Datalog:, which is datalog with negationallowed in bodies of rules. That is, a rule is of the formH :{ B1; : : : ; Bn, n � 0, where each Bi is an atom or anegated atom, and H is an atom. Following [1, 2], wegive it a simple in
ationary semantics. That is, eachiteration infers new facts and adds them to the factsalready inferred; thus, a �xpoint is always reached.We also consider the While language. It extends Algby allowing the statement while change begin e endwhere e is an expression [2, 1, 12]. It iterates e as longas it changes at least one relation. A While statementis either an assignment of the form V :=E, where V isa variable and E is an expression, or a while expres-sion above. A While program is a sequence of whilestatements. See [1, 2] for more details.Equivalences for the �nite domain Query languagesintroduced here have been studied in depth in the clas-sical relational theory. Many equivalence results areknown in the pure �nite case. By the pure �nite casewe mean this: the only free nonlogical symbols are theschema relations, and the universe is �nite and coincideswith the active domain. That is, a query does not ex-tend the active domain, and all quanti�cation is active.Below we list some of the most important equivalences.First, Calc = Alg = FO [1]. Similar equivalenceshave been obtained in the case of interpreted operations(with some restrictions) given by abstract datatypes,see [5]. For �xpoint logics, FO+lfp = FO+ifp =Datalog: [2, 21] and While = FO+pfp [2].In the presence of an order relation, these equiva-lences continue to hold and, in addition, FO+lfp cap-tures all PTIME queries, and FO+pfp captures allPSPACE queries [1, 15]. Also, in the presence of or-der, FO+count captures uniform TC0 [4, 17].It appears that FO+count is close to relational lan-guages with aggregates [29], but the precise connectionis not fully understood. Second-order logic was shownto be relevant to the study of languages for complexobjects, see [22]. L!1! is of interest in �nite-modeltheory because it subsumes �xpoint logics. Until re-cently, variable-bounded logics were studied primarilyin (�nite) model theory, but [37] demonstrated nice con-nections with expression and combined complexity.Genericity A query Q (that is, a mapping fromInst(SC1; X) to Inst(SC2; X)) is totally generic if,for any D 2 Inst(SC1) and any injective map � :adom(D) [ adom(Q(D)) ! X, it is the case thatQ(�(D)) = �(Q(D)). A query is locally generic if X



is ordered, and the above holds for any injective mono-tone �. It is known that total genericity implies local [6].Examples of generic (locally or totally) queries are anyAlg, Datalog: orWhile query, when no interpretedoperations are present. Example of a locally but not to-tally generic query is Q(S1; S2) � 8x8y:S1(x)^S2(y) !x < y. Also note that totally and locally generic queriesare domain-preserving: adom(Q(D)) � adom(D), see[6]. For more of genericity, see [1] and [6].3 Behind the iron curtain | active interpretationThe active interpretation does not allow a query toask any question about what is outside of the �nitedatabase. That is, we live behind the iron curtain: theoutside world { our in�nite model { is there, we caneven see a small part of it, but cannot ask much aboutit. So, how much more does the mere presence of theoutside world add to the expressiveness of query lan-guages? The answer is (and this is what one wouldexpect) { practically nothing. We start by proving thisresult for a variety of logics. Then we show that manyof the equivalences among languages continue to hold,when languages are appropriately modi�ed. We derivesome complexity corollaries, and also consider in�nitarylogic as a separate case. Finally, we mention one prop-erty of active semantics queries that holds, but not `asbefore': the ability to test for query safety.Note: in this section we only deal with active quan-ti�cation, so we omit the 2 adom part of restrictedquanti�ers. Also, we write L instead of Lact, since thenatural semantics case is not considered in this section.Similarly, when we write Q' for a query de�nable bythe formula, we mean Qact' , and omit the superscript.3.1 Ramsey property and expressivity boundsThe main goal of this section is to prove generic col-lapse results for a number of logics. We say that alogic L has a locally generic collapse over an or-dered modelM = hU ;
i if, for every schema SC , everyL(M)-de�nable locally generic query on SC-databases,is already L(hU ; <i)-de�nable. That is, M is as ex-pressive as just the order relation, with respect to lo-cally generic queries. A logic L has a generic collapseover a modelM if every L(M)-de�nable totally genericquery on SC-databases is de�nable in pure L.This problem of collapsing signatures for the activequanti�cation was considered for �rst-order logic in [6]and independently in [31]. However, the techniques in[6] relied heavily on translation into prenex form, andthe extension to second-order logic [7] was ad hoc. In[31], an elementary extension is used that possesses aset of indiscernibles, and it is unclear whether this tech-nique works beyond the �rst-order case.

However, we show here that the technique of [6, 7] canbe modi�ed so that it can be applied to a variety ofother logics. In particular, we show that a proof basedon Ramsey's theorem [19], can proceed inductively onthe structure of a formula, thus making it unnecessaryto impose syntactic restrictions. Consequently, we geta series of results that give us expressivity bounds forlogics under the active interpretation.De�nition 1 Let L be a logic. We say that it has aRamsey property over an ordered model M = hU ;
iif, for any SC , the following is true:Let '(~x) be an L-formula in the languageL(SC ;
), and X an in�nite subset of U .Then there exists an in�nite set Y � X anda L(SC ; <) formula  (~x) such that for anyD 2 Inst(SC ; Y ) and any ~a over Y , it is thecase that D j= '(~a)$  (~a).We also speak of a formula ' having the Ramsey prop-erty if the above is true. We speak of total Ramseyproperty if  is a L(SC) formula.As was shown previously [6, 7], the Ramsey propertyimplies the following collapse for generic queries:Lemma 1 (Generic Collapse Lemma)1. If L has the Ramsey property over M = hU ;
i,and every L(hU ; <i)-query is locally generic, thenL has the locally generic collapse over M.2. If L has the total Ramsey property over M, andevery L-query is totally generic, then L has thegeneric collapse over M. 2The condition that every L(hU ; <i)-query is locallygeneric, and every L-query is totally generic, holds forall the logics we introduced. Thus, to limit their ex-pressiveness over in�nite models, we have to prove theRamsey property. First, we state a simple lemma thatis often used as a �rst step in such proofs.Lemma 2 (Separation of atomic subformulae)Let '(~x) be an L formula in the language L(SC ;
),where L is one of the logics introduced in the previ-ous section. Then there exists an equivalent formula (~x) such that every atomic subformula of  is eitheran L(SC) formula, or a L(
) formula. Furthermore,for any set ~z � ~x of free variables of ', there is anequivalent formula  (~x) such that none of ~z-variablesoccurs in an L(SC)-atomic formula. 2The key in the inductive proofs of the Ramsey propertyis the case of 
-atomic subformulae. This was the keyidea of the proof for the �rst-order case in [6], thoughthe lemma below was not stated explicitly.



Lemma 3 Let M = hU ;
i be an in�nite orderedmodel, and '(~x) an atomic formula. Then ' has theRamsey property. 2Now an inductive argument proves:Proposition 1 The following have the Ramsey prop-erty: FO; FO+lfp; FO+ifp; FO+pfp; FO+count;SO.Proof sketch. Proof is by induction on the formula.By Lemma 2, assume that every atomic subformula isa L(SC) formula or a L(
) formula. We start with theFO case. The basis follows from Lemma 3. If '(~x) ='1(~x) ^ '2(~x), and X � U is in�nite, �nd  1, Y1 � Xsuch that for any D and ~a over Y1, D j= '1(~a)$  1(~a)and, by the hypothesis for '2 and Y1, �nd Y2 � Y1 suchthat for any D and ~a over Y2, D j= '2(~a) $  2(~a).Now  =  1 ^  2 and Y = Y2. The ' = :'0 and'(~x) = 9y:'0(y; ~x) cases are similar.Let us sketch the proof for FO+lfp. In addition todoing the inductive step for Lfp, we also note thatall transformations preserve positiveness. Here, with-out loss of generality, we give the proof for a closedLfp formula applied to a vector of variables (see [8]).Let S be a new n-ary relation symbol that occurspositively in a L(SC [ fSg;
) formula �(~x), and let'(~y) = [Lfp~x;S�(~x; S)](~z). Given in�nite X � U ,we use the hypothesis to �nd an in�nite Y � Xand a L(SC [ fSg; <) formula �(~x) such that for anySC [ fSg-database DR 2 Inst(SC [ fSg; Y ) it is thecase that DR j= �(~a) $ �(~a) for all ~a 2 Y n. FixD 2 Inst(SC ; Y ) and ~a 2 Y n, and de�ne R0(�) = ;,and Ri(�) = f~b j ~b � adom(D); DRi�1(�) j= �(~b)g, andsimilarly de�ne Ri(�). It can be easily shown by induc-tion on i that Ri(�) = Ri(�) for all i. From this wederive D j= [Lfp~x;S�(~x; S)](~a) $ [Lfp~x;S�(~x; S)](~a),as required. Proofs for other logics are similar. 2The main technique of the proof can easily be extendedto other logics, (e.g., transitive closure logics [15]).It is clear from the proof that only the case of atomicL(
) formulae requires the introduction of the orderrelation. Thus, if atomic L(
) formulae had the totalRamsey property over M, so would all of the logics inthe statement of Proposition 1. Following [7], we call asignature 
 analytic on R if it consists of real-analyticfunctions. For example, (+; �) is an analytic signature.It follows from the results in [7] that any L(
) atomicformula has the total Ramsey property if 
 is analytic.Corollary 1 If M = hR;
i, where 
 is analytic, andL is FO, or FO+lfp, or FO+pfp, or FO+ifp, orFO+count, or SO, then L has the total Ramsey prop-erty over M. 2From Proposition 1 and corollary 1 we obtain the mainresult of this subsection.

Theorem 1 Let L be FO, or FO+lfp, or FO+pfp,or FO+ifp, or FO+count, or SO. Let M = hU ;
ibe an arbitrary ordered model. Then L has locallygeneric collapse over M. If M = hR;
i, where 
 isanalytic, then L has generic collapse over M. 2This result can be combined with classical results in�nite-model theory and descriptive complexity (cf. [1,15]) to obtain a large number of corollaries that giveexpressivity bounds for the languages of the formL(M)under the active interpretation. For example,Corollary 2 Let M = hU ;
i be an ordered model.Then the class of locally generic queries de�nablein L(M), where L is FO, FO+count, FO+lfp,FO+ifp, FO+pfp and SO, is the class of all uni-form AC0, uniform TC0, PTIME, PTIME, PSPACEand PH queries, respectively. 2From the 0-1 law for FO+pfp [26], one can getCorollary 3 Parity test is not de�nable inFO+pfp(hR+; �i). 23.2 Equivalence resultsIn this section we show that a number of well-known re-sults on equivalence between logics and relational querylanguages generalize straightforwardly in the presenceof interpreted structures.We de�ne the calculus over M, denoted by Calc(M)simply as FO(M). More precisely, its expressions areof the form e = f~x j '(~x)g, where ' is a FOact(M) for-mula. An algebra over M, denoted by Alg(M), con-tains all the same operations as relational algebra Alg;the only di�erence is the selection predicates. De�ne se-lection terms by the grammar st := #i j f(st; : : : ; st)where f ranges over the function symbols in 
. Then,selection conditions are given by sc := C(st; : : : ; st) jst = st j :sc j sc _ sc, where C ranges over thepredicates in 
. For example, �#1�#2>#1+#3(R) is analgebra expression that selects triples (x; y; z) from Rsuch that x � y > x+ z. Similar extensions exist in theliterature, see, for example, [16]. A simple extension ofthe classical equivalence Calc = Alg yieldsProposition 2 For any M, Calc(M) = Alg(M). 2Next, we consider Datalog:(M), which extendsDatalog: by allowing L(
)-atomic formulae in thebodies of rules. For example, if U = R and 
 containsaddition, then the following Datalog:(M) programR(x; y) :{ E(x; y); x > y + yR(x; y) :{ E(x; z); x > z + z;R(z; y)de�nes the transitive closure of a subgraph that consistsof the edges (x; y) with x > 2y.



Proposition 3 For any M, Datalog:(M) =FO+ifp(M) = FO+lfp(M). 2While(M) extends While by allowing Alg(M) ex-pressions in place of Alg expressions.Proposition 4 For any M, While(M) =FO+pfp(M). 2We now combine these results with the Ramsey tech-nique to get expressivity and complexity bounds on theactive queries over interpreted structures.Theorem 21. Let M be an arbitrary ordered in�nite model.Then, for locally generic queries, Alg(M) =FOact(<), Datalog:(M) = PTIME andWhile(M) = PSPACE.2. If M = hR;
i where 
 consists of real-analyticfunctions, then every totally generic query inAlg(M) is FOact-de�nable, and every totallygeneric query in Datalog:(M) and While(M)has PTIME (resp., PSPACE) data complexity.Furthermore, the parity test is not de�nable in anyof these languages. 23.3 In�nitary logicHere we extend our results to in�nitary logic. Weare not interested in the full in�nitary logic L1!, norL!1! over ordered structures, because they express ev-ery property of �nite structures [14]. Thus, we concen-trate on L!1! over unordered models.We cannot use the inductive argument of Proposition 1anymore, because it does not work for in�nitary for-mulae. Indeed, for in�nitary disjunction W'i, onewould construct a decreasing family of in�nite setsX1 � X2 � : : :, but its intersection TiXi is not guar-anteed to be in�nite. Thus, we use the approach thatis closer to the proof of the collapse of generic queriesfor FO in [31]. We modify the argument in [7] to showthat every uncountable subset of Rhas a set of total in-discernibles [13] with respect to a countable collectionof formulae, if the signature is analytic. This gives us:Proposition 5 Let M = hR;
i where 
 is analytic,and has countably many symbols. Then L!1! hasgeneric collapse over M. 2Using the 0-1 law for in�nitary logic [27], we obtain:Corollary 4 The parity test is not de�nable as aL!1!(hR;+;�i) query. 2

3.4 When interpreted structure matters: querysafetyWe now want to give the reader �rst indication thatthe kind of an interpreted structure one adds, canmake a di�erence, even in the active case. Instead ofQact' (D) = f~a 2 adom(D)n j D j= '(~a)g, one couldconsider Q'(D) = f~a 2 Un j D j= '(~a)g. Unfortu-nately, this may fail to de�ne a query, because Q'(D)may be in�nite. This is the classical problem of querysafety. Following [25], we say that a formula '(~x) inL(SC ;
) is safe for an instance D if Q'(D) is �nite.Proposition 6 Let M = hR;+; �; 0;1;<i. Then thereis a recursive function that takes an active FO(M; SC)formula '(~z), and outputs another active formula'safe(~z) such thatQ'safe(D) = � Q'(D) if ' is safe for D; otherwiseWe will prove this in the next section, via a detourinto the natural semantics. In the full paper, we willalso show that this result does not hold for an arbitraryinterpreted structure.4 The in�nite world { natural interpretationSo far we have produced a set of techniques that canbe applied to analyze expressiveness and complexity ofactive-semantics queries in a variety of languages. Thenext question is: how does one approach the case ofnatural queries? It appears that this case is \in�nitely"harder than the active case, because now we can askquestions about any element in the universe: the ironcurtain of the �nite active domain, that limited our vis-ibility, no longer applies.Note: 1) The proviso of the previous section that onlyactive formulae are considered and that L is used inplace of Lact is not in force in this section.2) We say that a logic L admits the natural-activecollapse over M if L(M) = Lact(M); that is, for ev-ery schema and every L-formula '(~x) in the languageL(SC ;
), there exists an equivalent active formula (~x)in the same language.The Hull-Su theorem states that pure FO admits thenatural-active collapse. But this result is not robust:if N = hN;+; �;0;1i, then every recursive query is de-�nable in FO(N ) [20], but FOact(N ) cannot expressparity; thus FOact(N ) 6= FO(N ).It is known that FO admits the natural-active collapseover hR;+;�; 0; 1; <i [32] and over the real �eld [7]. Onemight ask whether a similar result holds for higher-orderlogics. It was shown in [7] that this is not true for thefull second-order logic SO. The reason is the same as



above: the set of natural numbers can be de�ned, to-gether with arithmetic operations, and thus coding canbe done. Similarly, full �xpoint logics will not exhibit anatural-active collapse. However, the question whetherhybrid logics admit such a collapse is open.Thus, our goal is to see to what extent we can recoverthe natural-active collapse for relational languages fordatabases over in�nite interpreted structures. In addi-tion to proving such results, we are interested in �nd-ing algorithms that convert natural queries into activequeries. We start by giving a new proof of the Hull-Sutheorem, that can then be extended to show that FOkcollapses to FOkact. We extend this result to in�nitarylogic. We then present our main result, which is a con-structive proof that HSO(M) = HSOact(M) when Mis o-minimal and admits quanti�er elimination. (Theproof is constructive if the quanti�er elimination canbe done e�ectively.) This implies that FO, FO+lfpand FO+ifp admit the collapse over such models, andalso leads to normal forms for hybrid logics.4.1 Natural-active collapse in the pure caseOur goal is to have a set of general algorithms for col-lapsing natural queries to active over interpreted struc-tures. We start with the pure case, and give new algo-rithms for several logics. We also give a simple construc-tive proof of the Hull-Su theorem. Theorem 4 re�nes itto work with variable-bounded logics. These ideas willbe expanded upon to deal with interpreted structures.The original proof in [23] is algorithmic but quite com-plex. In a recent unpublished manuscript [10], a sim-pler proof is given that uses many-sorted logic. Belowwe sketch a simple direct proof.Theorem 3 (Hull-Su) FO = FOact.Proof sketch. Proof is by induction on the struc-ture of the formula. The cases of atomic formulae andBoolean connectives are obvious. For the existentialcase, we de�ne transformation [
]x that eliminates allfree occurrences of variable x:If 
 is (x = x), then [
]x = T;If 
 is (x = y) or R(: : : ; x; : : :), then [
]x = F;If 
 is any other atomic formula, then [
]x = 
;If 
 = 
1 _ 
2, then [
]x = [
1]x _ [
2]x;If 
 = :
0, then [
]x = [:
0]x;If 
 = 9y2adom:
0, then [
]x = 9y2adom:[
0]x.Let '(~z) = 9x:�(x; ~z) where z = (z1; : : : ; zn). By thehypothesis, � is equivalent to an active formula�0(x; ~z).Assume that �0 is in prenex form; in particular, x can-not be a bound variable in any subformula of �0.De�ne '0(~z) = 9x 2 adom:�0(x; ~z), 'i(~z) = �0(zi; ~z)and '1(~z) = [�0(x; ~z)]x. Let '0(~z) = '0 _ (Wni=1 'i) _'1. Then a simple induction argument shows thatD j='(~a)$ '0(~a) for every instance D and ~a 2 Un. 2

The idea behind this proof can be implemented a bitmore carefully to yield the following stronger result:Theorem 4 FOk and Lk1! admit the natural-activecollapse: FOk = FOkact and Lk1! = (Lk1!)act. 2Corollary 5 Pure L!1! admits the natural-active col-lapse. 24.2 Natural-active collapse over interpreted struc-tures: The algorithmRecall that an ordered modelM = hU ;
i is o-minimalif every de�nable set is a �nite union of points and openintervals. De�nable sets are those of the form fx 2U j M j= '(x)g where ' is a �rst-order formula in thelanguage of 
 and constants for elements of U .Our goal is to give a constructive proof of the followingresult from which the natural-active collapse for �rst-order and some other logics will follow:Theorem 5 (Natural-active collapse) Let M =hU ;
i be an o-minimal model that admits quanti�erelimination. Then HSO(M) admits the natural-activecollapse over M. That is, for every schema SC , andfor every HSO-formula '(~x) in the language L(SC ;
)without free second-order variables, there exists anequivalent active HSO-formula 'act(~x) in the same lan-guage. Moreover, if M is recursive and the quanti�erelimination procedure is e�ective, then the transforma-tion from ' to 'act is e�ective.To present an algorithm, we need the followingFact 1 (see [33]) If M is o-minimal, and '(x; ~y) isa �rst-order formula in the language of M, possiblysupplemented with symbols for constants from M, thenthere is an integer K such that, for each vector ~a fromM, the set fx j M j= '(x;~a)g is composed of fewerthan K intervals.Algorithm for transforming ' into 'act. The al-gorithm is recursive on the structure of the formula. Fixa schema SC . If ' is atomic, then 'act = '. If ' = :�,then 'act = :�act. If ' = �_�, then 'act = �act_�act.If ' = 9S: , then 'act = 9S: act.Let '(~x) = 9z:�(z; ~x). First, we recursively applythe transformation to get an active formula �act(z; ~x).Next, using Lemma 2, we transform �act into an equiv-alent formula �(z; ~x) such that that each atomic subfor-mula of � is either a L(SC) formula or a L(
) formula,and z occurs only in L(
) atomic formulae.Let 	 be the collection of all L(
) atomic subformu-lae of �. Let ~y be the collection of n bound variables



used in �. Then for each �(~x; ~y; z) in 	, �nd the num-ber K� such that S�(~b;~c) = fa j M j= �(~b;~c; a)g iscomposed of fewer than K� intervals for every vectors~b and ~c of elements of U . Note that this number iscomputable if M is recursive and the quanti�er elim-ination is e�ective. For every k, the statement thatfa j M j= �(~b;~c; a)g is composed of fewer than k inter-vals for all ~b;~c can be written as a �rst-order sentence�k in the language of M. Applying quanti�er elimina-tion to �k one can see if it is true or not. Since �k istrue for some k (by fact 1), to �nd K� one should keepchecking �1; �2; �3; : : : until the one evaluating to trueis found, which gives us an algorithm for �nding K�.Now let K = max�2	fK�;K:�g.Given two vectors ~b;~c of the same arity as ~x; ~y, wesay that an interval S is a (~b;~c)-interval if either S �S�(~b;~c), or S � U � S�(~b;~c) for every � 2 	, and Sis a maximal interval with this property. Then thereexists an integer J such that there are at most J (~b;~c)-intervals for each pair (~b;~c). In fact, J can be taken tobe (4K + 1)j	j; this follows from the uniform bound Kon the number of intervals in the sets S�.Thus, for each j < J , there is a �rst-order for-mula 
j(~x; ~y; z) saying that there are at least j (~x; ~y)-intervals, and z is inside the jth one. Next, we let�ij(~s;~t; ~x) be a quanti�er-free formula equivalent to9u:
i(~x;~s; u) ^ 
j(~x;~t; u)and �ij(~s;~t; ~x; ~y) a quanti�er-free formula equivalent to8u:(
i(~x;~s; u) ^ 
j(~x;~t; u))! �(~x; ~y; u);where ~s and ~t are n-element vectors. Let �ij be theformula obtained from � by replacing each �(~x; ~y; z) in	 with �ij(~s;~t; ~x; ~y).Let us use �ij(~x;~s;~t; u) as an abbreviation for
i(~x;~s; u) ^ 
j(~x;~t; u). Let �ij(~s;~t; ~r; ~x) be thequanti�er-free formula equivalent to8u8u0: [(�ij(~x;~s;~t; u) ^ �ij(~x;~s;~t; u0))! V�2	 (�(~x; ~r; u) $ �(~x; ~r; u0))]Let �ij(~s;~t; ~x) be 8~r2adom:�ij(~s;~t; ~r; ~x). It says thatany u and u0 in the intersection of the ith (~x;~s)-intervaland the jth (~x;~t)-interval have the property that for anyother vector ~r of elements of the active domain, and anyatomic formula � in 	, it is the case that �(~x; ~r; u) and�(~x; ~r; u0) have the same truth value.Finally, we output, as 'act, the following formula:9s12adom : : :9sn2adom9t12adom : : :9tn2adom:Wi;j<J � �ij(~s;~t; ~x) ^ �ij(~s;~t; ~x) ^ �ij(~s;~t; ~x) �

where ~s = (s1; : : : ; sn) and ~t = (t1; : : : ; tn).Theorem 5 now follows fromLemma 4 (Correctness of the algorithm) For ev-ery HSO(M) formula '(~x) without free second-ordervariables, and every nonempty database instance, D j=8~x:'(~x)$ 'act(~x). 2It is well known that for any SO or SOact formula,there exists an equivalent one in normal form (second-order quanti�ers are in front of �rst-order quanti�ers).Theorem 5 gives us the normal form for HSO.Corollary 6 (Normal form for HSO) Let M be o-minimal. Then every HSO(M)-formula is equivalentto a HSO(M)-formula in normal form. 24.3 The natural-active collapse for �rst-orderqueriesThe following is an immediate corollary to Theorem 5.Theorem 6 LetM be an o-minimal model that admitsquanti�er elimination. Then FO admits the natural-active collapse over M. Moreover, the transformationfrom a natural formula to an active formula is e�ectiveif M is recursive and the quanti�er elimination proce-dure is e�ective. 2From Tarski's quanti�er-elimination, we getCorollary 7 There is an algorithm that convertsany FO(hR;+; �;0; 1; <i)-query into an equivalentFOact(hR;+; �;0;1; <i)-query. 2Finally, we have an elementary proof ofCorollary 8 (see [6]) Parity test cannot be de�ned asa relational calculus query with polynomial inequalityconstraints over the reals. 2Now we can complete the proof of proposition 6. Notethat if the order < is dense, then for a given formula'(~z) it is possible to write a (natural semantics) sen-tence � that tests if the number of satis�ers of ' is�nite. This is done by testing if each projection of theset of satis�ers of ' is bounded and discrete (also, end-points must be considered with care). By Theorem 6,� can be converted into an equivalent active sentence�act, and then '(~z) ^�act can be taken as 'safe(~z). 24.4 Natural-active collapse for �xpoint queriesFrom Theorem 5, we derive



Theorem 7 LetM be an o-minimal model that admitsquanti�er elimination. Then FO+ifp and FO+lfp ad-mit the natural-active collapse over M. Moreover, thetransformation from a natural formula to an active for-mula is e�ective if M is recursive and the quanti�erelimination procedure is e�ective. 2This theorem cannot be extended to partial-�xpointlogic, because it is proved by embedding in
ation-ary (or least) �xpoint into second-order logic. How-ever, we can prove the following for closed partial- andin
ationary-�xpoints. Recall that by closedness of a �x-point formula we mean that no application of �xpointinvolves extra free variables, that is, it is of the form[Lfp~x;S'(~x; S)](~t), or similarly for Ifp and Pfp.Theorem 8 Let M be a model such that FO admitsthe natural-active collapse over M. Then the closedFO+ifp(M) and the closed FO+pfp(M) admit thenatural-active collapse. 2Finally, combining the results of this section, we seethat for some modelsM, there is no di�erence betweenclosed and unrestricted hybrid �xpoint logics, whichgives us the desired normal form result.Corollary 9 (Normal form for �xpoint) If M iso-minimal and has quanti�er elimination, thenFO+lfp(M) = closed FO+lfp(M)FO+ifp(M) = closed FO+ifp(M):Using a simple induction argument, we showProposition 7 Let M be a model such that FOadmits the natural-active collapse over M. ThenFO+count(M) admits the natural-active collapse. 24.5 Summing upFigure 1 puts together results about both active andnatural semantics. Roughly, each line in Figure 1 showsthe equivalence of a logic L, its active-semantics versionLact, a procedural language (if one exists), and a com-plexity class. Here we use classical descriptive complex-ity results (cf. [1, 15]). Note that by AC0 and TC0 wemean their uniform versions, cf. [4].Techniques developed here make it easy to prove re-sults for other logics. For example, one can show thatfor the hybrid version of the transitive closure logic [15],the natural and the active interpretations coincide overthe real �eld, and by the Ramsey property, the class ofgeneric queries de�nable in it under the active interpre-tation does not depend on the set of operations 
, andthus is precisely the class of NLOGSPACE queries.

5 ConclusionOur main goal was to delineate the extent to which stan-dard results from the pure relational case `go throughas before' when interpreted structures are present. Wehave distinguished several aspects of the standard the-ory that extend routinely, as well as several whose ex-tension requires special techniques and/or special as-sumptions on the interpreted structure. That is, wehave three categories of results.First, extensions of results from pure relational theoryto any interpreted structure. We show that most ofthe standard language equivalences, expressive boundsand complexity results continue to hold with inter-preted structures, assuming the active semantics. Sec-ond, extensions of results from the pure case that holdwith interpreted structure under special assumptions onthe structure. We show that most statements aboutthe natural semantics continue to hold for reasonably-behaved interpreted structures. Third, results thatarise in the interpreted case that either do not ariseor are not of interest in the pure case. We introduced aclass of hybrid logics, that arise naturally in the inter-preted case: those with `mixed' quanti�cation. Theselogics admit the same normal forms as their unmixedcounterparts, if the structures are reasonably behaved.This is only the tip of the iceberg for each of theseclasses. The understanding of appropriate algebras forqueries with interpreted structures is still incomplete.We are working on algebras and range-restricted cal-culi for safe queries, other normal forms for nonbooleanqueries and operations that preserve safety. Althoughwe have shown that for nicely-behaved structures we getvery satisfying extensions of results about the naturalsemantics, we do not characterize the class of structuresfor which this holds. It is also open whether the normalforms results for hybrid logics hold in general.The algorithm for converting natural quanti�cation toactive is of interest in its own right. It extends workdone in the constraint community (e.g., in [32] for linearconstraints), and can also be seen as extending quanti-�er elimination algorithms, that originate with Tarski[35], to handle large parameter sets. We would like tohave a uni�ed picture of the relation between the algo-rithm presented here and those in, for example, [9, 32].We plan to study the integration of such algorithms intooptimization systems for constraint queries.We are interested in understanding the connection be-tween our results and meta�nite model theory [18].Some of the motivations for [18] are very close to thosefor our work, but it does not appear that we can useany of the results in [18] to derive any of our results.Acknowledgements We thank Victor Vianu andScott Weinstein for their prompt answers to our ques-tions, Rick Hull and anonymous reviewers for their com-ments, and Jan Van den Bussche for a copy of [10].
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