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ABSTRACT

This paper addresses a challenging interactive task learning scenario we call rearrangement under
unawareness: an agent must manipulate a rigid-body environment without knowing a key concept
necessary for solving the task and must learn about it during deployment. For example, the user may
ask to “put the two granny smith apples inside the basket”, but the agent cannot correctly identify
which objects in the environment are “granny smith” as the agent has not been exposed to such
a concept before. We introduce SECURE, an interactive task learning policy designed to tackle
such scenarios. The unique feature of SECURE is its ability to enable agents to engage in semantic
analysis when processing embodied conversations and making decisions. Through embodied con-
versation, a SECURE agent adjusts its deficient domain model by engaging in dialogue to identify
and learn about previously unforeseen possibilities. The SECURE agent learns from the user’s em-
bodied corrective feedback when mistakes are made and strategically engages in dialogue to uncover
useful information about novel concepts relevant to the task. These capabilities enable the SECURE
agent to generalize to new tasks with the acquired knowledge. We demonstrate in the simulated
Blocksworld and the real-world apple manipulation environments that the SECURE agent, which
solves such rearrangements under unawareness, is more data-efficient than agents that do not engage
in embodied conversation or semantic analysis.'

1 INTRODUCTION

A central theme in human-robot interaction (Bartneck et al., 2020) is to use embodied conversation (Cassell, 2001) to
instruct and teach robots to perform a variety of tasks (Shridhar et al., 2021; Ahn et al., 2022; Brohan et al., 2023). In
this pursuit, models for vision, language, and action have been developed to design generalist robotic agents (Shridhar
et al., 2021; Ahn et al., 2022; Zitkovich et al., 2023; Octo Model Team et al., 2024). One challenge for these agents
is the interactive task learning (ITL) scenario (Laird et al., 2017), in which the task instruction features a neologism
(i-e., a newly coined expression) that denotes a concept the agent is unaware of but must understand to solve the task.
For example, consider the scenario in figure 1. The user instructs the robot to “Put the two granny smith apples inside
a basket”. But before deployment, the robot was not trained on and cannot correctly ground the concept “granny
smith”, let alone distinguish objects that are “granny smith” from other objects, including other kinds of apple, such as
“golden delicious”. Achieving such a fine-grained categorisation (Wei et al., 2022) with limited prior experience might
not be sufficiently captured in advance (Udandarao et al., 2024). For instance, Grounding DINO (Liu et al., 2023) can
accurately detect a variety of objects in the environment, including an excellent ability to localize fruits. However, in
our real-world experiments, grounding DINO does not work out-of-the-box when asked to localize objects denoted by
the phrase “granny smith” or “granny smith apple”, presumably because it completely lacked any examples labelled
“granny smith” during training. To cope with this scenario, the agent must update their domain conceptualisation with
this unforeseen concept, thereby expanding the set of possible states, which in turn demands revisions to planning
about subsequent interactions with the user and the environment.

More generally, the task in figure | uses sensory observations to effect a rearrangement of rigid bodies into a state that
satisfies the specified goal (Batra et al., 2020). In this work, we consider a special case of rearrangement, in which the
goal is given in a natural language instruction and the agent is not aware of at least one concept required to understand
it. We refer to such tasks as rearrangement under unawareness. To solve them, the agent can engage in an embodied
conversation with the user to learn online how to recognise unforeseen concepts by interactively grounding them. This
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Figure 1: Framework overview. The agent interprets embodied conversation with the user in order to update its beliefs
and solve tasks under unawareness: that is, an expression like “granny smith”, which is a part of the user’s instruction,
is not in the agent’s vocabulary, and the concept “granny smith” denotes is not a part of the agent’s hypothesis space
of possible domain models. Our framework enables the agent to exchange embodied messages with the user before
attempting to solve the task; the expert can also provide feedback on the agent’s actions in the environment during task
execution. For conversation before execution, the agent issues questions (e.g., “show me a granny smith”) to reduce
its uncertainty about the domain. When executing the task, the user responds to a suboptimal action with embodied
corrective feedback, e.g., “No. This is a golden delicious”. Such corrections can occur in case of a wrong action
(e.g., picking “golden delicious” instead of “granny smith”) or premature completion (declaring that the goal state is
reached when it is not.). Such feedback exposes the agent’s false beliefs (being confident but wrong about the state).
It triggers execution interruption and belief revision. In both cases, our framework processes embodied conversation
in a semantics-aware manner: the user’s messages are augmented with their logical consequences (shown in brackets
in this figure). They are used to update the agent’s beliefs, which in turn affects their decision-making.

requires incremental grounding (belief updates should occur with every user’s message) and coping with an expanding
hypothesis space (the dialogue may reveal unforeseen concepts). Consequently, the agent: (a) cannot assume mutual
exclusivity between concepts; (b) must detect deficient beliefs about the hypothesis space; and (c) on discovering such
deficiency, must adapt its prior beliefs to the newly expanded hypothesis space.

A principal way to process embodied conversation is to parse its utterances into a logical form in a symbolic logic that
supports automated inference (Blackburn & Bos, 2005). This work studies how logical reasoning can enhance solving
rearrangements under unawareness through interaction. We aim to make the agent semantics-aware: that is, besides
the evidence acquired from directly processing the user’s utterances, the agent also utilizes the logical consequences
of the parsed output to aid learning and inference. Previous work showed the value of logical consequences in ITL
stemming from the semantic analysis of individual messages (Rubavicius & Lascarides, 2022; Park et al., 2023) (e.g.,
“put the two granny smiths...” entails that there are two and only two objects that are “granny smith”) as well as the
semantic analysis of the overall discourse—in particular corrective feedback (Appelgren & Lascarides, 2020) (e.g., in
figure 1, the user highlights a mistaken pick, which implies that the picked object is not “granny smith”). However,
they don’t combine sentence and discourse semantics and lack state-of-the-art perception and testing in the real world.

To rectify this gap in the existing work, we develop the SECURE ITL framework—Semantics-aware Embodied
Conversation under Unawareness for Lifelong Robot Learning. SECURE combines symbolic reasoning and neu-
ral grounding to process the embodied conversation. The agent continuously updates its beliefs, and hence its plans,
as and when the user provides information through their dialogue. It can discover unforeseen possibilities through the
information exchange in the conversation, at which point SECURE revises its domain conceptualisation, triggering
further belief updates and revised plans. SECURE also learns how to engage in conversation: that is, it learns how
to make decisions that resolve the dilemma between asking questions (which comes at a cost) vs. risking solving the
task using current beliefs, for which failure is very costly. Furthermore, our agent can process the user’s embodied
corrective feedback, in response to the mistakes it makes when attempting to solve the task: its interpretation of cor-
rection serves to revise (false) beliefs, and furthermore may compel it to engage in further conversation before taking
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further actions in the environment. To quantify the value of semantic awareness, we evaluate SECURE in a simulated
blocksworld and in a real-world apple manipulation on several instances of rearrangement under unawareness. The
results show that augmenting the users’ messages with their logical consequences aids ITL.

2 FRAMEWORK

This section describes our ITL framework, including its components for knowledge representation and reasoning
(section 2.1), interactive symbol grounding (section 2.2), and processing of embodied conversation (section 2.3).

2.1 KNOWLEDGE REPRESENTATION AND REASONING

The agent and the user exchange information using embodied utterances. These utterances consist of natural language
expressions N and optional pointing gestures to objects @ in the environment. Each natural language expression is
mapped to its logical form L (see section 2.3), which supports automated model checking and inference.

SECURE uses a finite first-order domain model M (Gamut, 1991) to reason about the environment. M is a triple:
a set of objects O; a set of predicates, a.k.a. the vocabulary V; and an interpretation function I: V — O that maps
predicates to denotations (for 1-place predicates it’s a set of objects, for 2-place predicates a set of pairs of objects, and
in general for n-place predicates a set of n-tuples of objects). The agent can evaluate statements in a natural language
like “o; is a granny smith”€ N, which has the logical form grannysmith(o;) € gy, to be true or false with
respect to M using truth-conditional semantics. It can also identify objects denoted by various referential expressions
r € Nyof: e.g., “the two granny smiths”, which has the logical form ®(r) = (_the_2_q x.grannysmith(x)) € Ly.f,
is evaluated against M to yield either the empty set (reference failure) or a set consisting of the (unique) set of two
objects in M that are in the range of I(grannysmith). We detail this (logical) reference semantics in appendix A.
The agent uses the identified objects to understand the task instruction ¢t € Ny,q, and, in turn, solve the task (e.g., from
figure 1, when the two objects are identified as “granny smith”, they are picked and placed in the basket.) The set of
atomic predications (atoms) constructed from predicates followed by the appropriate number of constants that denote
objects in the domain O is a set of ground atoms also known as Herbrand base H. The set of atoms that are entailed
by M is denoted as Hyy = {a € H | M |= a}.

The agent estimates the domain model M using its belief state b € B (Bochman, 2007; Mykel J. Kochenderfer & Wray,
2022). This maintains knowledge that the agent has acquired throughout its lifecycle from various sources of evidence,
including percepts, memory, and priors. Percepts are constructed from the observations of the current situation. They
include a set of objects in the environment O, with corresponding object-centric embeddings « € R that are extracted
from sensory observations in the environment and a domain theory A that is constructed (and updated) by processing
the embodied conversation. Memory is a dynamic record of the agent’s experience in its lifecycle. It includes the
vocabulary V and support S, which is a set of pairs consisting of an object-centric embedding € R¢ and the
accompanying labels y € [0, 1]|V‘ with y®), indicating the degree of belief that an object with the corresponding
embedding is denoted by the symbol p € V. Priors that determine the initial beliefs of each atom are given by prior
weights w,: H — [0, 1], parameterizing the Bernoulli random variable Bern for each atom. They can come from the
initial estimation based on sensory observations (as in figure 1) or, in the case of pure unawareness, they are assigned
0.5 as the default weight, to capture complete ignorance about denotations of the symbol in question. Using the belief
state, the agent can reason about the domain and make decisions. To do this, evidence is combined into grounded
weights wg: H — [0, 1] that parameterise a probability distribution over domain models. In particular, using weights
(both w), and wy), a probability of a well-formed formula ¢ € Ly, can be computed using weighted model counting
WMC (Chavira & Darwiche, 2008) that counts and weights events (instances of M) that are valid under constraints
(M entails ¢):

WMCu(¢) = > [[ w@ - tlacun + (1 —w(@) (1 - Lacu,,) (1)
M: ME=¢ a: acH

WMC is used to compute various (probabilistic) queries given the current belief state, such as the conditional proba-
bility CON of a formula ¢, and the most probable domain model (MAP estimate):

WMC, (¢ AA) -
CONy (¢ | b) = M M= arg max CON,, (M | b) )

where A is a conjunction of formulas in the domain theory A of the belief state b and CON,, (M | b) is the probability
of M given by the conditional probability of the conjunction of model atoms based on them being in H x4, or not.
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2.2 INTERACTIVE SYMBOL GROUNDING

The grounding model is a function from sensory observations to atoms that hold in the domain.” It is operationalised
as a probabilistic classifier wy,: R — [0, 1]!VI that depends on the belief state b € B. Given an embedding x € R,
corresponding to an object o € O, which is extracted from the environment’s sensory observations, wy, predicts binary
labels 9 € [0, 1]Vl with each element §(P) indicating a probability that an atom p(o) constructed from predicate p and
the constant o that denotes the object o with an embedding « is a member of H  (equivalent to the probability that
ground-truth domain model M entails p(o) based on the current belief state and object-centric embedding):

g =wy(@) 9% = P(p(o) € Haq | b)

For interactive symbol grounding, SECURE uses a non-parametric grounding model of multilabel prototype net-
works (Yang et al., 2019; Cano Santin et al., 2020). This uses the support S of the belief state b to make predictions.
The unique approach of SECURE lies in using the domain theory A, which is built by processing the latest user’s
(embodied) utterance to update S and, in turn, update the belief state. In particular, whenever the agent constructs a
new well-formed formula ¢ € Ly, the belief updates Update: B x IL. — B with new support constructed by updating
the label values with the new conditional probabilities with respect to prior weights CON,,, (- | b) (see Appendix B
for details).

Using support S, the grounding model builds positive and negative support for each symbol p € V, denoted as S(+?)
and S(-P), respectively. Whether a pair goes into the support is decided by: the value of 3®), the entropy of Bern(y®)),
and the threshold 7 for the overall noise level in support building:

S0P = {(w,y) €8] 4P > L AHBem(y®)) <7} 8P = {(w,9) €8 |y < £ A H(Bern(y®) < 7}

Using S(*P) and S(=P), positive and negative prototypes, denoted as z(tP) and z(~P) respectively, are computed by
taking the weighted average of embeddings of the corresponding supports with the weight being the likelihood that
the relevant object is (or respectively is not) denoted by p (i.e., the values y® and (1- y(P)) respectively):

1 1
(+p) — (p) (=p) — _ @)
e 2 e AP eemm ) Ay
(2,y) €80 (@) €8

If, due to a lack of evidence (so far), the positive/negative support is empty—there is not enough evidence (yet) to deem
any of the observed embeddings to be good enough—then positive/negative prototypes default to support elements
with the largest/smallest entropy as the best guess of what exemplars are suitable for positive/negative support.

Using positive/negative prototypes, the probability that predicate p is true of an object with embedding x is com-
puted using their cosine distance as an activation for a sigmoid: ® = ¢ (cos(z("®) — 2(*P) z)). Grounding model
predictions yield grounded weights w, (p(0)) + w;(2)(®) that can be used for reasoning (section 2.1).

The presented grounding model handles tasks under unawareness in the following way. Suppose that the agent ob-
serves a new symbol or neologism p* from the latest user’s message. The agent becomes aware of p* by extending its
vocabulary V < {p*} U V in the belief state and by updating the belief state—in particular, the dimensionality of y
increases by populating it with prior weights w,,, which in case of pure unawareness is the default weight 0.5.

2.3 PROCESSING EMBODIED CONVERSATION

In processing embodied conversation, the agent performs semantic analysis (section 2.3.1), which contributes to deci-
sions about action before attempting the task (section 2.3.2) and to understanding the user’s corrections (section 2.3.3).

2.3.1 SEMANTIC ANALYSIS

When the user utters an embodied signal, its semantic analysis yields a well-formed formula ¢ € Lgy, which gets
added to A and triggers a belief update. Semantic analyses include: sentence-level ¢ : Nyof x 20 — Lgy,, stemming
from generalised quantifier theory (?); and discourse-level (: Niagx X Neorr X A +— Lgpt, stemming from coherence-
based theories of discourse, in particular coherent corrections (Lascarides & Asher, 2009).

2We only consider one-place predicate grounding here. In principle, the grounding model could be extended to predicates of
arbitrary arity. For instance, for two-place predicates involving spatial relationships, we could consider embeddings constructed
from the pair of embeddings of the objects participating in this relationship.



Published at 4th Conference on Lifelong Learning Agents (CoLLAs), 2025

The sentence-level semantic analysis ¢ € Lgy is constructed from a referential expression r € Ny ¢ and objects in the
environment denoting it known as the referent R C 29 This is a subset of 29, with each element being a set of objects
denoted by the referential expression. E.g., when 3 objects are “granny smith” the referent of “two granny smiths” is
a set of 3 elements, each containing 2 out of the 3 objects that are “granny smith”. ¢ includes clauses deduced from
the surface form of r as well as negated clauses from the logical consequence of using a quantifier (Beaver, 1997).
For instance, if the user utters the referential expression » =*“the one granny smith” and points to o, this leads to
the formula {(r,R) = grannysmith(o) A A, co_, "grannysmith(o’) getting added to A. The deduced negated
clauses follow from the uniqueness condition on the quantifier “the one” (Russell, 1917), which entails that no other
object in the environment is denoted by the phrase “granny smith”.

For discourse-level semantic analysis, following Lascarides & Asher (2009), the user’s correction ¢ € Ncg,, in re-
sponse to the agent’s action a € A has two effects on the agent’s beliefs: 1) the content of ¢ € Ny, is true; and 2)
a € A is not part of an optimal plan, which leads to further deductions that are dependent on the task ¢t € Ny,q, and
what type of action a is. Section 2.3.3 looks in detail at which well-formed formulae are inferred and added to A.

2.3.2 CONVERSATION BEFORE EXECUTION

When solving a task under unawareness, the interaction begins with the user uttering a task instruction in natural
language t € Ni,5k. Before trying to solve the task using their (current) belief, this option being a sequence of Gt
from the set of possible executable actions Ay that change the environment, the agent can choose instead to ask
a question Gguest € Aquest C A, to reduce uncertainty about the domain model M. The questions are of the form
“show me r”” where r € N, is a referential expression. The user responds to such questions by pointing to a referent
or r, which, using sentence-level semantic analysis &, yields a well-formed formula ¢ € Ly, that triggers a belief
update. ¢ is not known in advance to the agent and can be conceptualized as a random variable parameterized by the
agent’s ¢ ~ Result(a). To maintain coherence, A st depends on the task instruction: specifically, 7 in the question
can feature only non-logical words used in the instruction, and its quantifier can be replaced with an existential or
universal. For example, in the case of ¢ =“move every red cylinder to the left of the one cube”, the agent can ask to
show “every red cylinder”, “the one cube”, “a red cylinder”, “a cube” and “all cubes”, but not for instance “a red cube”
as this referential expression may not have a referent in the environment.

To make strategic decisions about whether and how to engage in the embodied conversation, SECURE solves the
following decision problem. Each agent’s action (A = Aqyest UAcxec) results in a well-formed formula ¢ € gy, being
observed, followed by the belief update Update(b, ¢). To quantify the value of each action, we take an information-
theoretic approach and measure the expected information gain I: B x A — R™ (Lindley, 1956; Thrun et al., 2005)
for actions:

I(b, a) = H(b) — By Result(a) [H (Update(b, ¢))] 3)

The entropoy of belief states is defined using grounded weights w,, to parameterise the Bern random variable for each
atom:

H(b) =) H(b) b~ Bern(wy(a)) 4)
acH

The expectation in equation 3 is computed by marginalising over answers ¢ consistent with b, with the likelihood that
¢ is the actual answer computed using conditional probabilities with grounded weights (equation 2).

The value of information, of performing certain actions in the environment is in a trade-off with rewards of taking
these actions. Questions have an inherent cost C': Aqyest — R*, which approximates the user’s answering effort. It
depends on two quantities: Obj(r) that is the number of objects in the referent of r approximating the designation
(pointing) effort, and Sym(r) that is the number of predicates in ®(r), approximating reference resolution effort.
These quantities are weighted by unit pointing cost Cpoin¢ and unit reference cost Clef, resulting in the overall cost:

C(q) = CPOthObj (7‘) + Crefsym(r) S Gquest (5)

For example, question ¢ =*show me the one red cube” cost is Cpoint + 2Cher as its referential expression (r =“the
one red cube”) features two predicates and answering involves pointing to one object.

For action a,c; € A and successful attempt to solve the task the reward of 1 is observed and —1 otherwise, resulting
to the following reward function R: A x B — [—1,1]:

1 if @ = a,t and task is solved correctly
R(a) =4 —C(a) ifa € Aguest (6)
-1 otherwise
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SECURE compares expected information gain to the expected reward of the current belief state:

—C(a) if @ € Aguest

Eyp[R(a)] = {2 -CONy, (M | b) =1 otherwise @

where C'is just like C' except different for the universal quantifier as the number of objects in a referent is not known

in advance as it ranges from 1 to |Q)|, thus is approximated by the average, i.e., |®‘2_1.
This leads to the overall action-value function : B x A — R:
_ _ 01 I(bv a’) _ T
Qb0) = 011(00) + iR = 1] L) | =0T ®

where @ = [f;,05]" are parameters signifying preferences in exploration (engaging in embodied conversation) and
exploitation (solving task under unawareness) and h(a,b) = [I(b,a),[Ey[R(a)]]" known as preference (Sutton &
Barto, 1998). Action-value function () parameters # can be optimized using semi-gradient SARSA. See appendix B
for details.

2.3.3 CORRECTION IN EXECUTION

Upon choosing a,c; € A, planning with M is used to compute the sequence of execution actions. For rearrangement,
three execution actions Agxec C A are considered: apick, for picking an object in the environment, apjace for placing
the picked object in the target location and acomplete for declaring that the agent has solved the task.

When executing these actions, the agent can make mistakes (suboptimal actions in the environment) due to an incor-
rectly estimated domain model M. The user reacts to a mistake by providing embodied corrective feedback. Each
correction consists of the corrective cue “No.”, followed by a referential expression and designation that highlights the
source of error, e.g. “No. This is a cylinder. (points to ocorr € ©@)”. As mentioned in section 2.3.1, semantic analysis
of the correction depends on the task instruction ¢ € Ni,q, the executed action a € Agyec, and the correction it-
self ¢ € Neo,,. To illustrate the different discourse-level semantic analyses, we consider the task instruction ¢ =“move
every cube in front of a cylinder”.

When the action apick € Acxec gets corrected, semantic analysis dictates that the picked object should not have been
picked: specifically, the picked object is not denoted by the direct object referential expression rgirect in the task
instruction ¢ € Ny,g¢. For instance, when pick is corrected with ¢ =“No. This is a cylinder. (points to oo,y € Q)7
semantic analysis dictates that cylinder(ocorr) and —cube(oco,r) are both true. In general, the semantic analysis for

pick is as follows:
C(apicks ty €) = &(reorr; {{0corr 1) A =& ("irects {10corr 1)
where 7/}, ..; 1S just like 7qgirect but with an existential quantifier.

When the action aplace € Acxec gets corrected, semantic analysis is similar to the pick case, except this time the
object designated in the correction indicates that it is not part of the referent of the indirect object referential expres-
SI0N Tindirect N t. In our illustrative example, if the correction ¢ =“No. This is a sphere. (points to oo,y € Q) is
produced in response to aplace € Aecxec, then the agent would (again) be able to infer sphere(ocor;) directly from
correction. But this time, the agent would also infer —cylinder(o..,) because placing the object must result in the
placed object being in the intended spatial relation to the indirect object. In general, the semantic analysis for place is

as follows:
C(aplace; t, ¢) = §(Tcorrs {{0corr } 1) A ﬁ5(7'ilndilrect> {Hocorr }})
where 7, 4. ... is a referential expression just like 7indirect bUt with a existential quantifier.

When the action acomplete € Aexec gets corrected, the correction entails that the goal state is not reached. To illustrate,
consider correction ¢ =“No. This is a cube (points to oco,r € ©)” utterend in response to complete. The formula
cube(0¢orr) is a part of the logical form of this message. So the agent must reject any domain model for which
—cube(0corr) 18 true, including its previous MAP estimate. Furthermore, the fact that this logical form is a correction
entails that the current state does not satisfy the goal: in other words, there is a cube that is not in front of a cylinder.
Treating the message “this is a cube (points to 0¢o;; € 0)” as an explanation of the corrective cue “No” entails that
it is 0corr that is the renegade cube, not in front of a cylinder.’ In general, the semantic analysis for complete is as

follows:
C(acompletea tv C) = S(Tcorrv {{Ocorr}})

3With the ground truth to spatial relations, the agent could infer from this that every object in front of ocorr is not a cylinder.
SECURE foregos exploiting this entailment, however, for the sake of computational efficiency.
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3 EXPERIMENTS

The proposed ITL framework is evaluated in simulation and real-world experiments on a Franka Emika Panda robot.
We compare SECURE’s policy Tgecure against two baselines mgimple and Teorrect, Which are as follows:

* Tsecure: the agent can engage in embodied conversation using semantic analysis to reason about both the
literal interpretation and logical consequences of different actions. It can also process correction in execution;

* Tsimple: the agent can engage in conversation before execution but does not compute any logical conse-
quences: questions “show me the one cube” and “show me a cube” have the same expected information gain,
and the same belief state after the user’s response. It can also process correction in execution;

* Teorrect: the agent cannot engage in embodied conversation but processes correction in execution.

Each policy performance is measured using three performance metrics: cumulative reward cR and commutative cost
cC as an extrinsic metric of task success as well ass mean micro F1 score mF1 between ground truth and estimated
referents at the beginning of each task for symbols in the task instruction, as an intrinsic metric for grounding. See
appendix C for implementation details.
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Figure 2: Overview of MuJoCo (Todorov et al., 2012) environment used for simulation experiments (section 3.1)
including different views (see figures 2a, 2b, and 2c¢) and overview of object variability (see figure 2d). Each environ-
ment contains 6-7 rigid body objects. Each task instruction uses concepts of texture (plain, dotted, start), shape (cube,
rectangle, cylinder), and colours (red, green, blue, cyan, grey, magenta, yellow) that agent is not aware of before the
deployment as well predefined concepts of spatial relationships (in front of, to the right of, to the left of, behind) and
quantifiers (a/an, every/all, and the n, where n is natural number).

3.1 SIMULATION EXPERIMENTS

We conduct blocksworld manipulation experiments in simulation (see figure 2). Each task instruction has the form
“move r1 rel 72" where rel is a spatial relationship and r; o are referential expressions consisting of a quantifier
followed by one to three symbols (e.g. “every red cube”). CodeLlama7B (Roziere et al., 2023) is used for semantic
parsing to obtain logical forms of referential expressions and DINOv2 (Oquab et al., 2023) for feature extraction to
obtain object-centric embeddings. The environment includes an oracle: it answers the agent’s questions and corrects
its suboptimal actions (see section 2.3.3). Each agent attempts to solve the task up to 5 times (one episode), with their
policy evaluated over the same sequence of 60 episodes, averaged over 5 runs.

3.1.1 ITL EXPERIMENT

The results of the simulation experiment are given in figure 3a. The cumulative reward cR and commutative cost
cC are taking negative values, indicating both the agent’s questions and the user’s corrections before succeeding (or
not) in executing the task. Note that the cR curve is steeper than cC due to the positive rewards received from
solving the task. Agents that engage in conversation before execution (i.e., Tsecure and Tgimple) receive a higher and
statistically different cR and cC compared with 7¢orrect (paired t-test p-values: Tsecure VoS- Teorrect © 4 - 10726 and
Tsimple V-S. Tcorrect © 4 - 10~®). This signifies the value of the learner having some control over the information they
receive from the conversation before attempting to solve the task — a form of active learning. Comparing cR for
Tsecure aNd Tgimple, W€ observe that for the majority of the tasks mgecure performs better than 7gimple €xcept for a
brief task period 33-37 in which there’s no statistically significant difference, indicating that both policies have similar
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(c) Pessimistic belief experiment

Figure 3: Simulation experiment results. Learning curves are given with 95% confidence interval.

embodied conversations and interactions in the environment. However, the mF1 of 7gecure performs on average 5%
better than 7g;mp1e and 10% better than 7.q,rect. This signifies that it is beneficial to use agents whose decision-making
and processing utilise the logical consequences of the user’s embodied conversation messages.

3.1.2 OPTIMISTIC AND PESSIMISTIC BELIEF EXPERIMENTS

We experiment with SECURE’s ability to cope with (initial) biased beliefs that might be false. To evaluate this, we
consider a variation on the experiments from section 3.1.1, in which all textures (plain, dotted, starry) are assigned
optimistic wgpt = 0.7 and pessimistic wh® = 0.3 prior weights: these respectively impose an initial bias that all
objects are (and respectively are not) plain, dotted and starry. Such bias encourages (respectively discourages) symbol
prediction. The results are in figures 3b and 3c. When comparing cR and cC for agents with biased beliefs, Tcorrect
performs worse than agents that engage in embodied conversation. For 7gimple and Tgecure, for the period of the first 20
tasks, Tsecure performs better under biased beliefs while later the performance difference is not conclusive, fluctuating
between Tgimple OF Tsecure- 1he ME1 scores show that wgpt hurts 7eimple, making its grounding performance similar
t0 Teorrect, While Tgecure s grounding performance is similar to that in section 3.1.1. On the other hand, wges does
not yield any statistically significant difference among the agents. This is not surprising: the value derived from the
semantic analysis diminishes because it predicts that atoms are false, which aligns with the pessimistic bias. We
observe that w9  has high variance due to diverse dialogues, involving both attempts to solve the task without
dialogue and questions that exploit semantic analysis, leading to more diverse belief states.
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3.2 REAL-WORLD EXPERIMENT

(a) Environment 1 (b) Environment 2 (c) Environment 3 (d) Environment 4

Figure 4: Real-world experiment and task setup overview. Each of the 4 environments consists of different species of
apples (granny smith, golden delicious, red delicious, pink lady, and russet) and a basket. The robot is instructed to
“put the two granny smith apples inside a basket”. All environments contain exactly two granny smiths while the other
species vary, together with presenting different instances of the same species. The agent uses grounding DINO (Liu
et al., 2023) to recognise and locate apples and the basket, but cannot accurately distinguish Granny Smiths from other
types of apples. Note that using just “granny smith” grounding DINO fails to detect any object in all environments,
suggesting limited concept awareness. To evaluate the proposed framework, we conduct experiments with all possible
sequences of environments (24 in total) in which the agent starts unaware of concept grannysmith and through
interaction with the user (both questions and corrections) their belief state is updated. For evaluation we record final
cR and mF1 given in table 1.

We conduct a real-world experiment on ap-
ple manipulation (see figure 4 for overview

and appendix C.2 for details). To detect Agent  cR cC mF1%

apples, prior weights are assigned using Teorrect  -3.70 £0.53  -7.70 £+ 0.53 50.54 £ 3.72
grounding DINO (Liu et al., 2023): when Tsimple -3.454+0.72  -7.454+0.72 45.11 £ 3.08
given the prompt “granny smith apple”, this Teecure  0.47 0447 -3.625 + 0.44"  51.63 + 3.99

localises all the apples and outputs the sim-

ilarity score between the prompt and lo- Taple 1: Real-world experiment results with 95% confidence interval.

calised enVir(.)nment. region. This score is T jndicates a statistically significant difference between agents.
used as a prior weight for grannysmith.

Similarly to the simulation experiments, the

robot can attempt to solve the task 5 times before the end of the episode; the user monitors the execution and corrects
if a mistake is made. Table 1 shows the summary results. The policy mgecure has on average highest cR, cC and mF1.
We observe these behaviours:

* Tsecure: 18 highly uncertain about the denotations of grannysmith and keeps asking for evidence using the
question “show me the two granny smiths”, after which no reward is obtained for the task (-1 for the question
and +1 for task success). After several such questions, the agent can correctly identify denotations and is
confident enough to decide to attempt to solve the task;

* Tsimple: 18 highly uncertain about the domain and often first opts to ask a question “show me a granny
smith”, which always results in several corrections on falsely picked fruits afterwards. Importantly, from the
evidence gathered, Tsimple is unable to significantly change its grounding based on the evidence gathered
from its previous tasks and always requires some kind of interaction with the user to solve the task.

* Teorrect: 1S attempting to solve the task from corrections, leading to the lowest cR, on average requiring 3
attempts to solve the task. At the same time, this gathers a lot of negative evidence, so after attempting to
solve several tasks, this policy succeeds later in identifying referents as indicated on average higher mF1 than
for Tsimple-

For additional intuitions about agent behaviours, see appendix C.2 for interaction traces for different agents in table 5
and videos in supplementary material illustrating belief updates using different interaction strategies.

4 RELATED WORK

Lifelong learning SECURE as a framework for lifelong robots is designed for ITL scenarios, where there is natural
interaction (embodied conversation in our case) between the agent and the user (Laird et al., 2017). By design, it is
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not at odds with generative multimodal models (Li et al., 2023; Driess et al., 2023), but rather provides the means of
structure-level domain adaptation when embodied agents are deployed in settings in which new concepts are frequently
introduced or changed, requiring learning to adapt rapidly by using all possible incidental supervision signals. (Roth,
2017). SECURE handles the issue of unawareness, specifically missing concepts from the hypothesis space of possible
domain models, which must be discovered and learned about to solve the task. A related concept is catastrophic
forgetting (McCloskey & Cohen, 1989; Ratcliff, 1990), which describes the loss of previously acquired knowledge
due to limitations on the agent’s memory (i.e., the amount of experience stored). Both of these phenomena hinder
lifelong learning but in different ways—e.g., unawareness stems from a lack of knowledge, while forgetting results
from the loss of knowledge. SECURE focused on the underexplored problem of unawareness, while catastrophic
forgetting was not addressed (our agent had no limit on the number of exemplars it could store).

Language-conditioned Manipulation Language can be used to specify manipulation goals (Stepputtis et al., 2020;
Shridhar et al., 2021; Ichter et al., 2022) with grounded representations (Jiang et al., 2023; Gkanatsios et al., 2023),
and can be highly modular and generalizable. Our framework enhances such work by providing a methodology to
address unawareness. SECURE is most similar to Ren et al. (2023), which explores how planners can be interactively
repaired when predictions are confident but wrong. We go beyond this by: a) considering a complete embodied
conversation that includes corrections and b) explicitly learning a dialogue policy rather than performing statistical
tests (Angelopoulos & Bates, 2021).

Learning from Human Feedback Human-centric agents have to align their behaviour with human preferences
(Christiano et al., 2017; Ziegler et al., 2019; Bai et al., 2022) by integrating learning and acting during the fine-
tuning phase or continuously through online, human-in-the-loop interactions (Mosqueira-Rey et al., 2023). Traditional
models primarily rely on sparse binary rewards, but SECURE leverages symbolic inference to utilise more nuanced
embodied conversation messages, enabling it to learn and efficiently perform new tasks involving unforeseen concepts.

Neuro-symbolic Reasoning There is a broad interest in combining neural networks with symbolic/classical algo-
rithms (Garnelo & Shanahan, 2019; Sarker et al., 2021) with many ways to do so (Sheth et al., 2023). In this project,
we integrated symbolic reasoning into neural network inference by leveraging semantic analysis of embodied con-
versation, which builds upon Rubavicius & Lascarides (2022). In the experiments, we study agents that use different
semantic analyses to quantify and qualify the benefits of semantic awareness. Large language models have shown the
capacity to handle at least some aspects of semantic analysis (Madusanka et al., 2023), but quantifying that capacity
is beyond the scope and focus of this work.

5 CONCLUSION

We have presented a framework for processing embodied conversation to solve rearrangement under unawareness,
which broadly falls into the type of task expected to be handled in ITL. We have demonstrated the benefits of making
the agent semantics-aware in interactive symbol grounding and task learning, as well as having a mechanism to address
false beliefs. There are several directions of future work to consider, including handling and exploiting other semantics
of conversation (e.g. generics or contrast) as well as using additional learning signals and knowledge sources.

6 LIMITATIONS

This project assumes collaborative human-robot interaction in the context of solving rearrangements that require pick-
and-place manipulation of rigid objects. Human-robot interaction may not always be collaborative, and in real-world
scenarios, it often involves deception (Shim & Arkin, 2013), which conflicts with the reliance on the user’s feedback.
The semantic analysis of corrections is explicitly encoded for the set of execution actions (section 2.3.3), so in the
case of additional execution actions (e.g., navigation action in the room), additional knowledge needs to be encoded
or inferred following semantic analysis of corrections (Lascarides & Asher, 2009). Due to the object-centric view of
the environment, SECURE inference complexity (in particular WMC) increases with the number of objects of interest
in the environment and the length of the embodied conversation. This, nevertheless, was not an issue in practice due
to the limited number of objects and short dialogues. Nonetheless, scaling this to real-world scenarios would require
approximate inference (Dubray et al., 2024). Our experiments do not consider dynamic situations, and dialogues
were limited to non-fluent properties of objects. In effect, the environment is treated as static, even though its fluent
properties (e.g., the location of objects) can change when the agent interacts with the environment. Finally, we are
only considering user feedback as a source for learning. Other learning signals, such as utilising data available on the
Internet, could also potentially be used to bootstrap the interactive task learning process.

10
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A LoOGIC OF NATURAL LANGUAGE EXPRESSIONS

This appendix outlines the background on representing and reasoning with natural language expressions using logic.

A.1 LOGIC OF SENTENCES

Natural language sentences like “every cube is a cuboid” can be represented in first-order logic. The syntax of the
language of first-order logic is constructed recursively: predicate symbols followed by the appropriate number of terms
(i.e., a variable x € L, or aconstant o € L., s:) are well-formed formulae, and these combine with boolean operators
and connectives L.on, = {A, V, =, —, <>} and the quantifiers ¥ and 3 in the usual way to create more complex well-
formed formulae. First-order languages have been used extensively to capture natural language semantics (Blackburn
& Bos, 2005): for example, “every cube is a cuboid” has the logical form V x.cube(x) — cuboid(x).

SECURE utilises generalised quantifier theory to represent the meanings of natural language determiners such as
“the one” and “both” (?).* generalised quantifier theory extends the classical first-order language with quantifiers
additional to V and 3, and it is designed to express the meanings of other quantitative sentences about the domain with
the usage of quantifiers like e.g., at least two, all but one, the one, both, and so on.

Syntactically, a well-formed formula involving a generalised quantifier Q € Lyqn: is of the form Q x.(¢, 1), where Q
binds the variable x € L,,,, and the restrictor ¢ and body ) are both well-formed formulae in which x is absent or
free. Very roughly, the restrictor ¢ expresses the descriptive content of the noun phrase that introduced the determiner
whose meaning is Q, and the body v expresses the content of ‘the rest’ of the sentence (typically the verb phrase).
For example, the natural language sentence “the one red cube is 01", or more explicitly “the one red cube is object
017, has the following logical form _the_one_q x.(red(x) A cube(x), object(oy)). The list of possible generalised
quantifiers is given in Table 2 column 1.

Formally, the set of syntactically well-formed formulae—the language of sentences L, ;—is defined recursively:

1. If p is an n-place predicate symbol and t4, to, ..., t, are terms, then p(t4, to, ..., t,) is well-formed formula;
2. If ¢ is well-formed formula, then —¢ is a well-formed formula;

3. If ¢ and 1 are well-formed formulas, then ¢ A ¥, ¢ V ¢, ¢ — 1, ¢ <> 1 are all well-formed formulas;

4

. If ¢ and v are well-formed formulas, known as restrictor and body, and ¢ and 1 either do not feature the
variable x or x is free in these formulae, and if Q is a quantifier, then Q x.(¢, 1), is well-formed formula. For
this kind of well-formed formula, the variable x is a bound variable that is bound by Q.

For convenience, we also assume that each object o € O in the domain has a unique constant o that denotes it.

Elements of g, that are well-formed expressions in generalised quantifier theory are assigned a truth-conditional
semantics with respect to a first-order domain model M consisting of a set of objects O, vocabulary V, and the
interpretation function /: V — O* as well as a variable assignment function g, which maps variables to individuals in
the model (Tarski, 1931). The truth-conditional semantics define a valuation function [-]*9: Lgy, +— {0, 1}, which in
turn specifies when a domain model variable assignment pair (M, g) satisfies a formula ¢ € Ly, written M, g = ¢:

M, g k= ¢ if and only if [¢]*9 = 1

If there are no free variables in ¢ € Ly then [¢]M9 = [¢]M9" for all g, ¢ and without a loss of generality such
situation can be expressed as:

M = ¢ if and only if Vg [¢] M9 = 1

To define valuation function [-]*9, \-expressions of the form \ x.¢ are used in which x is a variable that is free or
absent from ¢. Note that such A-expressions are well-formed expressions but are not in Lg,¢. Here, they are simply
used for defining the truth conditions of formulae that feature generalised quantifiers.

*SECURE does not consider vague quantifiers (Bradburn & Miles, 1979) like “some” or “few”, which implicate soft constraints
on objects in the domain model, as a consequence of pragmatic principles of cooperative conversation (Grice, 1975). The interpre-
tation of these quantifiers in cooperative conversation is outside SECURE capabilities but, in principle, could be captured by the
agent following the same architecture.
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Quantifier Q Surface form  Truth condition Q Referent constructor (Q)*™
_exactlynq exactlyn RNB|=n {ACO||Al =n}

_atmostn.q atmostn RNB|l<n {ACO||Al <n}

_at_leastn.q atleastn RNB|>n {ACO||Al > n}

_aq a/an RNB|#n {ACOJ|Al L1

_every_q all/every RNB|=|RIAIR| =1 {ACO||Al=|0|A|O| =1}
_thengq the n RNB|=nA|R|=n {ACO||A =|0|A|O| =n}
_both._q both RNB|=2A|R| =2 [ACO]|]A|=|0]A|O] =2}
_all butngq allbutn RNB|=|R|—nA|R|>n {ACO||A=]0|—-—nA|O|>n}
n.of themq nofthem RNB|=nAR|=m {ACO| Al =nA|0]=m}

Table 2: generalised quantifiers (column 1), surface form (column 2), truth-conditions Q between the restrictor set R
and body set B, used to evaluate well-formed formulas of the form Q x.(¢, ) (column 3), and referent constructor
used to evaluate the logical form of referential expressions for the domain model M (column 4).

Well-formed formulas in truth-conditional semantics are either evaluated as being true (1) or false (0). This evaluation
is given recursively:

I(a) if ais a predicate symbol

[a]*9 = { g(a) ifaisa variable
I(a) if aisa constant’
[p(t1,t2, .. ta)[M9 = i ([62 ]9, [e2] M9, . [6a]9) €[]

[l = 1if [¢]*9 =0
[6 A9]M9 = 1if []*9 = Land [y]9 =1
[oV g9 =1if [p]*9 = Lor [y]*9 =1
[ = ¢J* = Lif [¢]*¢ = Oor [Y]*9 = 1
[¢ ¢ 9 =1if [¢ = ¢]*9 = Land [ = ¢[M9 =1
[\ x.g]*9 = {o € O [¢[ 97/ =1}
[ x.(6, )] = Q([A x. 6], [A xy]*9)

where g[x/o] is a variable assignment function just like g except that g[x/o](x) = o and Q is a truth-condition
(Table 2 column 3) used to evaluate well-formed formulas that feature generalised quantifiers. The value of these truth
conditions depends on two sets defined by the A-expression, commonly referred to as the restrictor set R and the body
set B.

A.2 LoOGIC OF REFERENTIAL EXPRESSIONS

Natural language expressions that denote objects in the environment are known as referential expressions r (Kripke,
1980). Linguistically, they are expressed by noun phrases: a noun phrase can consist of a determiner and a noun with
pre- and post-modifiers (e.g., “the one red cube that is to the left of every green sphere”); a pronoun or demonstrative
(e.g., “it”, “this”, “that”), or proper name (e.g., “Edinburgh”, “Kim”, “ Mr. Smith”). SECURE focuses on referential
expressions that are of the first kind: i.e.; they include a determiner and a noun with pre-and/or post-modifiers. We
denote the logical form of referential expression r as ®(r) and the language of these well-formed expressions as L.

Since r is a noun phrase and not a full sentence like the ones discussed in section A.1, ®(r) consists of a generalised
quantifier Q (corresponding to r’s determiner), its restrictor ¢ (corresponding to r’s adjectives and nouns) but the body
of the quantifier is ‘missing’. In semantic analysis, this is traditionally captured using A-calculus with logical forms
like A ©.Q x.(¢, 1) but this is not what we want to capture to process embodied conversation. The A-term denotes
the set of properties satisfied by the objects that satisfy ¢, with quantifier Q imposing constraints on the relationship
between the denotations of ¢ and v (and sometimes also on ¢ itself as well). In our scenario, however, we need

5As mentioned earlier, we assume a unique constant denotes each object, and so without loss of generality, we can assume
I(a) = a, where a € O A O € M is the unique object denoted by a.
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to identify the set of referent(s) that are denoted by the referring expression r, not the properties satisfied by those
referents. Because of these requirements, we express the logical form ®(r) of the referential expression r another way
and interpret it using the theory of generalised quantifiers (?). Specifically, we represent the referential expression “the
one red cube” with the following logical form (_the_one_q x.red(x) A cube(x)). More generally, the logical forms
of referential expressions are of the form (Q x.¢), where ¢ € Lgys is a well-formed formula with only one free variable
x. Intuitively, this formula captures the content of the described objects and Q captures the content of the determiner.
The notation (-) is a convenient way to differentiate these logical forms from well-formed formulae and in particular,
the logical forms of sentences.

The logical form of a referential expression ®(r) € L, is evaluated for the domain model M to yield the referent R.
An element of R is a set of objects because  may denote more than one object (e.g., any denotation of “two cubes”
consists of two objects). R itself is a set of (potentially) more than one element because M may have more than one
set of objects that are denoted by the referring expression r: e.g., if there is more than one object in M that is a cube,
then “a cube” has more than one referent in M. For example, given the domain model M with objects O = {01, 02}
and interpretation function I(cube) = O, the expression “all cubes” should denote {{01,02}} (there is only one
set denoted by “every cube”, and that is the set of all objects in the domain that are cubes), while “a cube” denotes
{{o1},{02}} (i.e., there are two sets of objects that are denoted by this referential expression). Thus more formally, R
is always a subset of the power set of @: R C 29, These examples reveal two factors that affect the referent of ®(r).
First, objects in a denotation of ®(r) satisfy the restrictor of the generalised quantifier.® Secondly, the generalised
quantifier imposes its conditions on R, in particular on the cardinality of each set in R that is a denotation, and
for some quantifiers there is also a constraint on the relationship between a denotation and all the objects O, which is
equivalent to a constraint on the cardinality of R itself. For instance, each set in a referent for “at least two cubes” must
have a cardinality of at least two; for “exactly two cubes” the cardinality must be equal to 2; and “the two cubes” and
“both” impose the additional constraint that not only should each denotation have cardinality 2, but also this denotation
is unique (Russell, 1917) (i.e., R itself has cardinality 1). Further, the referent for “every cube” is unique because it
is the (unique) maximal set of objects in M that satisfy the restrictor (again, R must have cardinality 1). Constraints
imposed by different quantifiers are lead to logical consequences about the environment (Beaver, 1997). Note that
such constraints are not English-specific: Finnish “molempi” has the same constraint as English “both”. With this in
mind, we obtain a formal definition of the reference semantics for an arbitrary logical form of the referential expression
®(r) = (Q x.¢) by first defining a projection of M onto a smaller domain model o (M, ¢, x), which consists of all
and only those objects o € O that satisfy ¢[x/o] (i.e., the formula ¢ with each occurrence of x substituted with the
unique constant o that denotes o € Q):

O—(M7 ¢7 X) = O—(((D’ V? I)? ¢’ X) = (@,7 V’ I’)
0" ={oc 0| M ¢[x/o]} ©)
I' =110 (ie., I projected onto Q")

We then define the reference semantics of ®(r) for this projected domain model. As discussed before, the truth-
conditional semantics of generalised quantifiers are defined using the restrictor R and body B. But in our scenario,
consisting only of referring expressions, the body B is not present for truth-conditional evaluation. However, by
evaluating the content of the quantifier for the smaller projected model and making B = O’ (i.e., the objects in that
projected model), the reference semantics can focus solely on how they constrain the cardinalities of these sets to
achieve the above-desired effects for constructing the referent R Table 2 column 4 shows how the referent is defined
using set constructors. These constraints and the definition of model projection in Eq. 9 yield the reference semantics
(Eq. A.2) for the logical form ®(r) with the desired properties:

R = 3(r)/M = (@x.g)™ = (7

where (Q)™ is a referent constructor, utilising the condition specific to the (generalised) quantifier (and defined in
Table 2 column 4).

SThis work ignore group nouns like “committee”
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B

ALGORITHMIC DETAILS

Algorithm | outlines the belief state update procedure using a well-formed formula, constructed from the semantic
analysis of embodied conversation and algorithm 2 outlines dialogue strategy optimization procedure using a semi-
gradient SARSA with hyperparameter values given in table 3.

Algorithm 1 Update (Belief state update with well-formed formula)

Require: Belief state b € B consisting of a set of objects O set of object-centric embeddings X (one-to-one corre-

P RIUN R

—_— =
W0

sponce with objects), vocabulary of predicates V, support of embedding-label vector pairs S, domain theory build
throughout the embodied conversation A, prior weights w,, and grounded weights w, as well as a well-formed
formula ¢ € Lgys.

S0 > Initialize new support
A+ AU{¢} > Update domain theory
for o, x in Zip(0, X) do > Iterate over corresponding object-embedding pairs
o < Const(o) > Get constant of an object o € O
y < Dictionary() > Dictionary for symbol predictions
for pin V do > Iterate over predicate symbols
y[p] <= CONy, (p(o) | ) > Conditional probability with prior weights for an atom p(o)
y < Vectorize(y) > Construct semantic vector of size | V]|
S« S U(x,y) > Add exemplar to new support
S+ ¢ > Update support
: for o, x in Zip(0, X) do > Iterate over corresponding object-embedding pairs
for pin V do > Iterate over predicate symbols
wy(p(0)) < wy(x)® > Grounding model prediction
return b

Algorithm 2 Dialogue Strategy Optimisation using Episodic Semi-gradient SARSA

Require: belief state b € B, state-action value function () parameterised by €, number of tasks per environment m,

1:
2
3
4:
5:
6
7
8:
9:
10:
11:
12:
13:

14:
15:

16:

17:
18:

19:

learning rate «, discount factor -y, epsilon e.
while not converged do
& < GetEnvironment/()

for ¢in GetTasks(E,m) do > Get m tasks in environment £
b + Update(b, ®(t)) > Update belief state (Algorithm 1)
Aquest <+ GetQuestions(t) > Coherent questions for ¢
A {aact} U Aquest > Construct action space
while True do > Training loop
a < argmaxgep Q(b, a) > Greedy action
R, ¢ < Act(&,a) > Actin £ and construct ¢ via semantic analysis
b’ + Update(b, ¢) > Update belief state (Algorithm 1)
if |R| = 1 then > Terminating state
04+ R—Q(s,a)
0+ 0+ adVyQ(s,a)
break
else

p . —
, {arg max,eca @V, a) with probability 1 — € > e-greedy action

Choose(A) otherwise
0+ R+~QW,d") — Q(b,a)
0« 0+ adVeQ(b, a)
b« b > Update belief state
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Hyparameter Symbol  Value
Number of tasks per environment m 1
Learning rate o 0.1
Discount factor ¥ 0.99
Exploration factor € 0.1

Table 3: Hyperparameter values used for optimizing dialogue strategies for msecure and Tsimple With semi-gradient
SARSA following algorithm 2.

C EXPERIMENT DETAILS
The following appendix provides additional details for simulation and real-world experiments.

C.1 SIMULATION EXPERIMENTS

Simulation experiments are conducted in the MuJoCo simulator in rearranging rigid objects.

For obtaining the logical forms of referential expressions that are part of embodied conversation messages (task in-
structions, questions, corrections) we used a simple semantic parser based on Codel.lama7B (Roziere et al., 2023)’
with in-context learning and prompt given in figure 5. For the grounding model, we utilize object-centric embeddings
by first using ground-truth object locations from the simulator to localize patches in the environment’s top-down view
(as in figure 2¢), from which the feature vectors & € R334 are obtained using DINOv2 (Oquab et al., 2023)% encoder.
In inference, 7 = 0.65 is set as the threshold for adding examples to the positive/negative support, which results in an
example being added to the negative support if ®) < 0.354 and added to the positive support if ) > 0.646.

Agent’s dialogue strategy is given by action-value function (Eq.8) which is optimized offline. To learn dialogue
strategy parameters 6 = [0, 02]T for Teecure and Tgimple (Teorrect does not make interaction-level decisions and just
uses corrective feedback), we used semi-gradient SARSA (Rummery & Niranjan, 1994) for policy optimization using
tasks in simulation whose instructions feature subsets of domain concepts. In particular, we use all quantifiers and
spatial relationships elicited in figure 2 but only a subset of properties (plain, cube, red, green, and blue). For the
simulation experiments, we set unit costs of symbol designation and reference resolution to be the same and small to
encourage exploration when learning new concepts. In particular we set Cpoing = Crer = 0.1.

When the agent decides to rearrange the environment, given by choosing an action a,.t € A, this manipulation is
achieved using an operational space controller Khatib (1987) and a rudimentary logic for setting control targets based
on the pose of the object of interest. After each action, the oracle is checked, and in case of the suboptimal action, a
correction is issued, and the previous action is undone (e.g. returning the picked object to the original position).

C.2 REAL-WORLD EXPERIMENT

For real-world experiments, we modify several aspects of the experimental setup compared to simulation experiments
while keeping the rest the same. In the real-world, we use the ZED 2i stereo camera (just the left feed) as the visual
sensor. Using it, grounding DINO (Liu et al., 2023)”: an open-set grounding model is given the prompt “granny smith
apples” that returns candidate patches from the environment. We set the threshold for prediction retrieval to 0.3 (so
regions that are identified to locate “granny smith apples” below 0.3 are not considered). Each patch has an associated
object-centric embedding € R?5¢. For the apple manipulation, we set Cpoint = 0.2 and Cyer = 0.6 to make querying
more expensive and encourage the agent to query only on high uncertainty situations—these arise at the beginning of
interaction when a neologism is encountered. When the agent decides to execute the plan, it performs pick-and-place
moves using the Movelt (Chitta, 2016) to plan and execute collision-free trajectories with pick-and-place locations
determined using Transporter Networks (Zeng et al., 2020) trained on generic pick-and-place tasks.

Tables 4 and 5 provide additional visualization of the real-world environment, task setup, and qualitative behaviour
differences via learning traces.

"https://huggingface.co/codellama/CodeLlama-7b-Instruct—hf
$https://huggingface.co/facebook/dinov2-small
‘https://huggingface.co/IDEA-Research/grounding-dino-tiny
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Prompt for Semantic parsing.

[INST] You are a helper in a virtual assistant. You are asked to translate referential expressions to their logical
forms. Referential Expressions like “the one red block” have a logical form (_the_1_q x.red(x) A block(x)).
Logical forms follow the pattern ([Quantifier]|[Variable|. [Formula]) [Quantifier] is a quantifier. We
consider the following quantifiers:

* existential with surface form: “a/an” and denoted as logic symbol: _a_q
* universal with surface form: “every/all” and denoted as a logic symbol: _every_q

* uniqueness with surface form: “the n” and denoted as a logic symbol: _the n_qg, where n is a natural

CEINT3

number like “one”, “two”, etc.

[Variable] is a variable, e.g. x, x1, x12. Note that [Variable] is the only free variable in [Formula] not
bound by a quantifier. if the formula has only one variable, it should be named x.
[Formulal is a formula of predicate logic. Each formula is constructed recursively:

* Predicates like red(x), above(x1,x2), left(x1,x3) is a well-formed formula [Formula]

* Negation of [Formula| like neg(red(x)) is a well-formed formula [Formula]

* Logical conjunction of [Formula]s like red(x) A block(x) is a well-formed formula [Formula]
* Logical disjunction of [Formula]s like red(x) V block(x) is a well-formed formula [Formula]
* Logical implication of [Formula]s like red(x) — block(x) is a well-formed formula [Formula]

* Logical structure for generalised quantifiers [Quantifier|[Variable].([Formulal, [Formula]) like
_the_1_gx.(red(x),block(x)) is a well-formed formula [Formula]

Here are some examples of what these logical forms of referential expressions look like:
RefExp, LF-RefExp,

“a block.”, _a_q x.block(x))

“the one block.”, (_the_1_q x.block(x))

“the two plain objects.”, (-the_2_q x.plain(x) A object(x))

“every magenta sphere.” (_every_q x.magenta(x) A sphere(x))

“not a block above a sphere.”, (_a_q x.neg(_a_q x1.(sphere(x1),block(x) A above(x,x1))))
“a sphere to the left of every green cone.”,

(_a_q x._every_q x1.(green(x1) A cone(x1), sphere(x) A left(x,x1))),

“every sphere to the left of every green object.”,

(_every_q x._every_q x1.(green(x1) A object(x1), sphere(x) A left(x, x1))),

“a sphere to the right of the two green cones.”,

(La_q x._the_2_q x1.(green(x1) A cone(x1), sphere(x) A right(x,x1)))

“the one sphere in front of every green cone.”,

< _the_1_q x.every_q x1.(green(x1) A cone(x1), sphere(x) A front(x,x1)))

“the two spheres behind a green cone.”,

(the 2. qx..aqxl.(green(x1) A cone(x1), sphere(x) A behind(x,x1)))

Now, please translate the following referential expression to its logical form. Just give the logical form. No
extra information. Referential expression: {refexp} [/INST]

Figure 5: Prompt for parsing referential expressions to their logical forms. {refexp denotes the referential expression
to be parsed using this prompt.
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Table 4

predictions before interaction with the environment and the user via embodied conversation.
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Initial belief state Embodied conversation Updated belief state

Tcorrect

User: Put the two granny smiths inside the basket.
Agent: Okay. Let’s try to achieve the task

User: No. This is a golden delicious.

Agent. Sorry. Let’s try again.

User: No. This is a russet.

Agent. Sorry. Let’s try again.

User: No. This is a red delicious.

Agent. Sorry. Let’s try again.

Agent: I have finished the task.

User: Correct.

User: Put the two granny smiths inside the basket.
Agent: Okay. Let’s try to achieve the task

User: No. This is a red delicious.

Agent. Sorry. Let’s try again.

User: No. This is a golden delicious.

Agent. Sorry. Let’s try again.

Agent: I have finished the task.

User: Correct.

Tlsimple

User: Put the two granny smiths inside the basket.
Agent: Before that, show me a granny smith.
User: (designates one of the granny smiths)
Agent: Okay. Let’s try to achieve the task

User: No. This is a golden delicious. g s R
Agent. Sorry. Let’s try again. A i & AL e o
User: No. This is a golden delicious. ¥ cend
Agent. Sorry. Let’s try again.
Agent: I have finished the task.
User: Correct.

User: Put the two granny smiths inside the basket.
Agent: Okay. Let’s try to achieve the task
User: No. This is a russet.
' . el Agent. Sorry. LeF’s try again.
LR Xl T2 T T Agent: I have finished the task.
User: Correct.

T'secure

User: Put the two granny smiths inside the basket.
Agent: Before that, show me the two granny smiths.
User: (designates the two granny smiths)

Agent: Okay. Let’s try to achieve the task

Agent: I have finished the task.

User: Correct.

User: Put the two granny smiths inside the basket.
Agent: Okay. Let’s try to achieve the task

Agent: I have finished the task.

User: Correct.

Table 5: Interaction traces for real-world experiments showing different agent behaviour in two consequent environ-
ments when attempting to solve the task instructed. Each trace shows the initial, and updated belief state as well as the
embodied conversation the user and agent engage in.
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