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Abstract

We present Plancraft, a multi-modal evaluation dataset for LLM agents. Plancraft
has both a text-only and a multi-modal interface, based on the Minecraft crafting
GUI. We include the Minecraft Wiki to evaluate tool use and Retrieval Augmented
Generation (RAG), as well as a handcrafted planner and Oracle Retriever, to
ablate the different components of a modern agent architecture. To evaluate
decision-making, Plancraft also includes a subset of examples that are intentionally
unsolvable, providing a realistic challenge that requires the agent not only to
complete tasks but also to decide whether they are solvable at all. We benchmark
both open-source and closed-source LLMs and compare their performance and
efficiency to a handcrafted planner. Overall, we find that LLMs and VLMs struggle
with the planning problems that Plancraft introduces, and offer suggestions on how
to improve their capabilities.

1 Introduction

With the increased performance and affordability of Large Language Models (LLMs) (OpenAl,
2024; Dubey et al., 2024), LLM-based agents have exploded in popularity (Xi et al., 2023). We
define LLM agents as systems that incorporate at least one call to an LLM which influences its
autonomous decisions about actions in an environment. LLMs are promising for agent-based systems
because they can leverage general knowledge acquired during pretraining to tackle tasks expressed in
natural language. They can also query and interpret knowledge bases, ask questions, and incorporate
new information via text or images, all through a flexible dialogue interface. This potential for
human interaction during planning and execution is challenging for other planning paradigms such as
Reinforcement Learning (RL) or symbolic planners (Xi et al., 2023). Various methods and strategies
(Yao et al., 2023a;b; Shinn et al., 2023) aim to maximise the performance of LLM-based autonomous
agents (Xi et al., 2024). But LLMs still exhibit problematic issues that limit their reliability and
usefulness for planning—hallucinations and brittleness to inputs, limited context windows, and lack
of grounding when placed in new environments.

Most existing benchmarks for evaluating LLM agents in interactive environments focus on success
rates (Shridhar et al., 2021; Yao et al., 2022; Liu et al., 2023; Xi et al., 2024): that is, the proportion of
trials in which the agent achieves a goal state. Success rates measure whether the agent constructed
a valid plan, but do not measure efficiency or the plan’s quality. Some environments allow an
arbitrary number of incorrect steps, while others immediately terminate an episode if a wrong action
is executed. Reporting or measuring only success rates also introduces a dataset bias, as it implies
that the solution to a given problem is easily verifiable, yet difficult to obtain. As a result, we argue
that success rate alone is insufficient to capture the complexity of real-world scenarios. Each
additional step of inference incurs non-negligible costs, so metrics should include more fine-grained
assessments, such as how close the LLM’s plan is to a handcrafted solution. Furthermore, effective
agent-based systems should recognise when a task is unsolvable, as many real-world tasks may
lie beyond the agent’s capabilities and indeed many real-world tasks might be difficult to verify as
doable, or not. Without the capacity to predict if there’s no valid plan, an agent will incur significant
costs in continually monitoring and replanning.

To this end, we introduce Plancraft, a new multi-modal planning evaluation dataset based on Minecraft,
that constrains the environment to the crafting GUI (see Figure 1). Plancraft consists of planning
problems of diverse complexity and length and includes a portion of the dataset that is intentionally
unsolvable. Plancraft, unlike previous environments, allows us to benchmark agents against a planner,
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Dataset Type  Visual Inputs Knowledge Base Planner Impossible Set
Mind2Web (Deng et al., 2023) Web X X X X
WebShop (Yao et al., 2022) Web X X X
MiniWoB++ (Liu et al., 2018) Web X X X
WebArena (Zhou et al., 2023) Web X X

GAIA (Mialon et al., 2023) Web ¥ X X
TravelPlanner (Xie et al., 2024) ‘Web X X X
VirtualHome (Puig et al., 2018) Home X X X
ALFWorld (Shridhar et al., 2021) Home X X X X
ALFRED (Shridhar et al., 2020) Home X X
MineDojo (Fan et al., 2022) Game X X
ScienceWorld (Wang et al., 2022a) Game X X X X
BabyAl (Chevalier-Boisvert et al., 2019)  Game X X X
TextCraft (Prasad et al., 2023) Game X X X X
Plancraft (ours) Game

Table 1: A comparison of different interactive datasets commonly used in evaluating LLM agents. Each dataset
expresses goals or tasks in natural language and requires multi-step planning. We design Plancraft to provide
a testing ground for which there exists both a natural language knowledge base and a handcrafted planner.
Plancraft also includes data that is intentionally unsatisfiable (the Impossible Set), since the capacity to predict
that there’s no valid plan is important. TGAIA allows tool use, including web search, however a knowledge base
on how to solve the task is not provided.

but in a setting that was designed by humans for humans. Since the crafting component of Minecraft
is inherently designed for human players, Plancraft also offers a way to test how LLM agents can
leverage human knowledge (in the form of the Minecraft Wiki) to solve planning tasks. We compare
Plancraft with popular interactive datasets in Table 1.

We evaluate different LLM-based agents on our dataset, thereby providing LLM-agent baselines. We
test both open-source and closed-source models and evaluate them against different sets of possible
actions. For open-source models, we evaluate the impact of fine-tuning agents on a set of expert
plans, and compare multi-modal vs. text-only agents. We also fine-tune a bounding-box detection
model on our environment to provide an interface through which text-only LLMs can interact with
the multi-modal environment. Finally, we release all baseline models and code along with the dataset
and environment as a stand-alone Python package.'

2 Related Work

2.1 LLM Agents

Various strategies have been proposed to leverage LLMs as agents with interactive feedback (Huang
et al., 2022; Shinn et al., 2023; Yao et al., 2023a;b; Wang et al., 2022b). The basic idea is to harvest
LLMs for information, which, if novel to the agent, may result in better behaviours than they would
perform otherwise. The simplest strategy, ReAct (Yao et al., 2023b), consists of interleaving actions
with ‘thinking’ steps where the LLM is allowed unconstrained generation. Other broader strategies,
such as Reflexion (Shinn et al., 2023) or Inner Monologue (Huang et al., 2022) try to promote
self-corrective behaviour through external modules or steps. Self-Consistency (Wang et al., 2022b)
and Tree-of-Thought (Yao et al., 2023a) sample the space of possible paths and select a solution
through a majority vote or through another LLM evaluation step. Although all of these techniques
are simple to implement, they often add significant overhead in inference compute.

One limitation of LL.Ms is the size of their context window. This is often addressed with Retrieval-
Augmented Generation (RAG) (Lewis et al., 2020), which restricts the context to only relevant
examples (by some quantitative metric) from the larger dataset, given the current observations and
task. For example, contexts in Voyager (Wang et al., 2023a) consist of the most likely applicable
skills for a given problem; those in JARVIS-1 (Wang et al., 2023b) are successful trajectories that
are sufficiently similar to current observations. Since crafting is a core part of Minecraft, its Wiki
contains a page with details of recipes for crafting all items. The Minecraft Wiki is therefore well
suited to a RAG pipeline where an agent can query the Wiki as a knowledge source.

Uhttps://github.com/gautierdag/plancraft
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Task: Craft a green bed [ ']
1. Smelt cactus [ ‘ ] into greendye[ ‘ 1 3. Move white bed [y 4] into grid
2. Move green dye [ ‘ ]into grid 4. Move green bed [ ] into inventory

Figure 1: A Plancraft example where the task is to craft a green bed #*. The agent has to use the observations
(text or image) to generate the next action. In this case, the shortest path is: crafting the green dye & by smelting
the cactus @ then moving the items (white bed ~* and green dye #) into the correct crafting slots; then moving
the resulting green bed € into the inventory.

Enabling LLMs to use external tools, such as web search, calculators, and database queries, can also
significantly expand their capabilities. This has inspired numerous research efforts (Nakano et al.,
2022; Schick et al., 2023; Parisi et al., 2022; Yang et al., 2023; Patil et al., 2023) to integrate and
evaluate tool use (or external actions) into LLM agents. Some datasets, such as GAIA (Mialon et al.,
2023), even evaluate agents without any restriction on the tools allowed.

Beyond RAG and tool use, some work has examined the limitations of LLMs in planning tasks.
Kambhampati et al. (2024) argue that while LLMs struggle with long-term planning, they can still
complement traditional methods in an LLM-modulo framework. Several datasets like PlanBench
(Valmeekam et al., 2023), TRAC (He et al., 2023), and ACPBench (Kokel et al., 2025) were proposed
to evaluate planning-related reasoning. ACPBench and TRAC primarily test planning capabilities
through multiple-choice or boolean questions, while PlanBench uses LLMs to generate full plans
directly given different testing conditions. However, since these datasets do not involve interactive
execution, we do not include them in Table 1.

2.2 Interactive LLM Evaluation Datasets

Research on LLM agents requires datasets and benchmarks for evaluation. These datasets vary
significantly in the types of environments in which actions are executed, ranging from simplified
text-only worlds to multi-modal environments. ALFWorld (Shridhar et al., 2021) and ALFRED
(Shridhar et al., 2020) provide virtual home environments in which the agent must manipulate objects
to fulfil the instruction, expressed in natural language. Mind2Web (Deng et al., 2023), WebShop (Yao
et al., 2022), and WebArena (Zhou et al., 2023) evaluate agents in web-based environments, with tasks
requiring interaction with browser interfaces or e-commerce platforms. BabyAl (Chevalier-Boisvert
etal., 2019) is a 2D maze-solving game with natural language instructions. Minecraft is also a popular
benchmark for agent evaluation, with various datasets such as MineRL (Guss et al., 2019), MineDojo
(Fan et al., 2022), and TextCraft (Prasad et al., 2023). In Table 1, we compare Plancraft against these
LLM evaluation datasets. While these vary in domain and implementation, they all require agents to
do multi-step planning in interactive environments to achieve tasks expressed in natural language.

Knowledge Base. Minecraft has the advantage that it is a game humans play, rather than constructed
only for agent evaluation. So LLM agents can take advantage of existing online content that assists
human players. Baker et al. (2022) collected a large dataset of Minecraft videos and trained a model,
Video Pretraining (VPT), to solve tasks directly from pixels in MineRL (Guss et al., 2019). Fan et al.
(2022) introduced MineDojo along with a knowledge base of scraped resources such as Minecraft
videos and pages taken from the Minecraft Wiki and Reddit forum; however, they do not evaluate
whether these improve performance. In Plancraft, we collect the pages of recipes on the Minecraft
Wiki and use them to build a knowledge base to evaluate RAG capabilities. We also implement an
Oracle Retriever for recipes to provide an upper estimate of a well-performing RAG system.
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Planner. All of the datasets listed in Table 1 can evaluate whether an agent achieves the goal. But
evaluating a plan’s quality requires a designated optimal policy for comparison. Of the datasets
that we compare to, only BabyAlI (Chevalier-Boisvert et al., 2019) and ALFRED (Shridhar et al.,
2020) release handcrafted policies or solvers. BabyAl implements a Bot Agent with handcrafted
policies that can act as a teacher agent for learners in the environment. ALFRED releases expert
demonstrations found using a PDDL solver and reports Path Weighted Metrics that take the length
of the expert into account. Similarly, we implement a planner for Plancraft to provide a benchmark
against which to compare agents (Section 3.4). While PDDL-based classical planning approaches
(McDermott et al., 1998) could theoretically be applied to Plancraft, the domain presents unique
challenges due to large search space (see Appendix D.1).

Impossible Set. Most interactive datasets assume that every task has a solution. So they cannot eval-
uate mechanisms that assess feasibility or handle inherently unsolvable tasks. This can be particularly
costly for strategies like Tree-of-Thought, which expand the search space by extensively sampling
the LLM for potential solutions. Plancraft addresses this gap by including a set of intentionally
impossible tasks — tasks with no valid plan. This is similar to the task of identifying non-reachable
atoms, as proposed in ACPBench (Kokel et al., 2025), or the unachievable tasks in WebArena (Zhou
et al., 2023). By incorporating impossible tasks, Plancraft evaluates an agent’s capacity to assess task
feasibility. This promotes more realistic and cost-effective decision making, encouraging agents to
balance problem solving with estimates of feasibility.

3 Plancraft

To create Plancraft, we implement the logic and visual representation of the Minecraft crafting GUIL
Like Prasad et al. (2023), we reconstruct the crafting process entirely in Python using game files and
images from the Wiki: we use image manipulation to overlay items on top of the inventory background.
This improves performance compared with using the Java game engine. Our environment has a
one-to-one pixel mapping with the real Minecraft interface and supports multiple resolutions.

3.1 Assumptions

Plancraft makes a number of simplifying assumptions. First, there is a single agent in the environment,
and all changes to the environment are a result of this agent’s actions. Second, the effects of executable
actions are deterministic. Third, the crafting interface and inventory are fully observable, either
through the text description or through the multi-modal image input. And finally, aligned with
classical planning, actions are sequential: they are discrete and executed one at a time.

3.2 Action and Observation Space

The abstraction level chosen for the action and observation space impacts the tractability of the
planning problem. Other Minecraft environments such as MineDojo (Fan et al., 2022) and Textcraft
(Prasad et al., 2023) provide a high-level ‘craft’ command that doesn’t require the agent to manipulate
the underlying ingredients. In contrast, Plancraft requires the correct placement of ingredients in the
inventory and, as such, provides a lower-level symbolic action space. The two possible environment
actions are smelt and move, and both actions require a slot _from,a slot_toandaquantity.
This abstracts control dynamics and focuses on planning and spatial reasoning.

In the Minecraft crafting GUI, there are 46 possible item slots or positions. The crafting slot can
be populated with an item only if the correct items have been deposited within the 3 X 3 crafting
grid—items can be moved in and out of this grid from the remaining 36 slots, in which items are
stored. Items can only be withdrawn from the crafting slot, and doing this confirms the crafting
operation and removes the items present in the crafting grid. Crafting recipes in Minecraft are either
Shapeless or Shaped. Shapeless recipes only check whether the items required are present in the
crafting grid, whereas Shaped recipes require the items to also be placed in the correct positions.
When the items on the crafting grid match one of the 634 recipes, then the resulting item is added to
the crafting slot. We denote the crafting slot as [0], the 3 X 3 crafting grid as slots [A1] to [C3]

where the letter denotes each row and the number denotes the column, and the remaining 36 inventory
slots as slots [I1] to [I36]. See Figure 2 for an example of a text description of the inventory that
uses our annotation scheme.
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Crafting .
inventory:

fd —). - red_dye [0] quantity 1

- beetroot [A1] quantity 1

- torch [I10] quantity 57

- wooden_pickaxe [I12] quantity 1
- map [I17] quantity 22

- lodestone [I27] quantity 50

Inventory

Figure 2: Example of a Plancraft observation of the scene in either an image or text format. For the text, we
encode the scene using a specific slot notation where [0] denotes the crafting slot, [A1] to [C3] denotes each
row and column of the 3 X 3 crafting grid, and [I1] to [I36] denotes the inventory slots.

Plancraft provides two types of observations: text-only and multi-modal. In text-only, agents receive
a text description of the current inventory and crafting goal and the inventory is perfectly represented
using our annotation scheme. Whereas in multi-modal, agents receive an image (dimensions
664 x 704) that perfectly contains the crafting GUI, while the goal is provided as text.

3.3 Task Setup

The tasks within Plancraft all involve crafting specific items using a predefined set of available
resources. The goal of each task is expressed in natural language, such as ‘Craft an item of type:
green_bed’. The complexity of these tasks varies, ranging from single-step crafts (e.g., crafting

wooden planks ‘) to multi-step plans that require chaining multiple crafting recipes and actions
(e.g., crafting a bed »~~ first requires planks @ and wool 7).

To generate crafting tasks, we represent the dependencies among items as trees. The root of a tree is
the target item while its leaves and intermediate nodes are the materials required to craft that item. For
each crafting task, we sample the required recipes for the target item and then recursively explore the
necessary materials to craft it. This builds a step-by-step plan from raw materials to the final product,
simulating the crafting processes with varying levels of complexity. In addition to the necessary
crafting materials, we also sample a number (4, 8, 16) of distractor items to make identifying the
correct crafting path more challenging. Finally, we validate that all generated tasks can be solved in
the text-only and multi-modal environments using a planner (see Section 3.4). We exclude invalid
examples and ones where the handcrafted planner’s trajectory exceeds 30 steps.

3.3.1 Dataset Statistics

We define a complexity metric as directly proportional to the number of items used and the number
of recipes needed to craft the item. We sample trajectories from least to most complex (easy, medium,
hard), where hard examples can always be completed in less than 30 steps (see Appendix A.2 for
details). Our complexity correlates with the planner’s search space exploration, with more complex
tasks requiring more steps. We stop episodes after a maximum number of steps n = 30 is reached.

Impossible Tasks. Since we also wish to evaluate whether agents can predict when a task is unsolv-
able, we include an additional portion (17%) of the dataset that requires the agent to craft an item,
which is impossible given the inventory. To generate this dataset, during sampling, key materials
from the path are deliberately removed from the inventory. This is designed to test an agent’s ability
to recognise when a task cannot be completed given the available resources. As mentioned, all
previous interactive environments (see Table 1) rely on the assumption that the task given to an agent
is solvable. However, real-world scenarios are unlikely to meet this assumption and tasks may often
be unsolvable due to missing resources or constraints.

In total, we sample 1145 training examples, 570 validation examples, and 580 test examples. We hold
out items such that 79 items in the validation set are not seen in the training set, and similarly 128
items in the test set do not appear in the training set, 63 of which also do not appear in the validation
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set. Since these evaluation sets are extensive, we also provide smaller subsets of the validation (110
examples) and test set (117 examples where 20 are impossible) which we use in our evaluation.

Dialogue History

Crafting

B Task: Craft a green_bed
e - think: I need to craft a green_bed but
Clad . inventory: [ I'm not sure how to so I will need
Inventory . to search for the recipe.
- cactus [I24] quantity 1
- white_bed [I25] quantity 1 ! Ok.
Goal search: green_bed
o Plancraft
Observation -
Crafting Recipes to craft green_bed

| Task: Craft a green_bed

- . N recipe 1:
inventory: green_dye at [A1]

white_bed at [A2]

Inventory

FEEZSk SN
I

- green_dye [I4] quantity 1
- white_bed [I25] quantity 1

G smelt: from [124] to [14] with quantity 1

Figure 3: Example flow of Plancraft. The agent can use the varying set of tools. The dialogue history is passed as
a sequence of messages. Environment messages include the task goal and current observation (text or image). If
the agent takes an action that does not impact the environment such as think or search, then the environment
does not return an observation but a response based on this action.

3.3.2 Environment Feedback

Since all models in Plancraft can handle text, we propagate formatting errors as text observations. This
feedback informs agents about specific issues, allowing agents to adjust accordingly. For example,
when an agent tries to move an item between identical source and destination slots, the environment
returns a message specifying that different slots must be used. Or, if an agent generates a quantity
that exceeds defined limits, the system provides an error message that the quantity must fall within
acceptable parameters. This feedback mechanism allows agents to correct their actions and ensures
smoother interactions with the environment.

3.3.3 Evaluating Impossible Tasks

To evaluate the agent’s predictions on when a task is impossible, we introduce the impossible
action: when emitted by an agent, this stops the episode. An impossible task is considered successful
if and only if the agent emits impossible. We report the F1 score of emitting impossible,
since it is now possible for the agent to interrupt a solvable task (see Section 4.1).

3.4 Expert Planner

To evaluate the quality of generated plans (and not just their validity, as measured by success rate),
we handcraft a planner to find an efficient sequence of actions required to complete each task.
This planner serves as a standard against which the performance of various agent models can be
benchmarked.

We implement the solver as a memoized Depth-First search over all possible crafting recipes given an
inventory. If found, we return the shortest path between the initial inventory and the target object that
needs to be crafted as a series of smelt and move actions. If the solver does not find a shortest path
after 30 seconds, we timeout the search. The planner represents the crafting dependency graph as a
directed graph where nodes are items and edges represent the crafting relationship between items.
This structure allows for efficient planning by focusing only on recipes that are ancestors of the target
item in the dependency graph.

Note that, for efficiency, our planner searches over recipes rather than actions. As a result, shorter
paths may still exist if an agent can group actions into one. We provide a more detailed discussion of
the planner, including pseudocode and its limitations, in Appendix D.
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3.5 Integrating External Knowledge

Similarly to Fan et al. (2022), Plancraft includes the Minecraft Wiki as a natural language knowledge
base, allowing agents to perform RAG to assist in crafting decisions. This addition enables the agents
to use external knowledge, testing their ability to retrieve relevant and multi-modal information and
apply it to the planning problem. We scrape the pages from the Minecraft Wiki that contain recipes
and post-process the data to convert them to Markdown format.

We implement a search action that allows an LLM to search for a given item in the knowledge base.
Since we wish to evaluate the limits of RAG, we design the search operator to return a gold-label
instantiation of a recipe required to craft the particular item. The search mechanism uses an exact
match to identify the correct recipe for each item, ensuring that the returned information is always
accurate. This approach helps estimate the performance of our system under a perfect retriever and
parser. Additional details about our RAG implementation are provided in Appendix E.

4 Method

On text-only observations, we evaluate the open models Llama 3.1 8B and 3.3 70B (Dubey et al.,
2024), Gemma 3 12B and 24B (Team et al., 2025), Qwen3 30B A3B (Yang et al., 2025), and
gpt-40-mini” (OpenAl, 2024). All tested models are chat models, and we format the environment
observations and feedback as messages from a user role. We show the interactions between the agent
and the Plancraft environment in Figure 3. We evaluate each model in the text-only and multi-modal
environments, test making available different sets of actions or tools, and measure the impact of
zero-shot versus few-shot versus fine-tuning. We implement the ReAct (Yao et al., 2023b) ‘thought’
strategy as a tool, where the agent can emit think as an action within the environment. Any
generated text after think is ignored. Notably, Qwen3 30B A3B is the only reasoning model in our
evaluation. When using Qwen3, we increase the maximum number of generated tokens per step from
256 to 2048 to account for longer reasoning steps and remove (think) traces after the generation.

Tool use. We evaluate multiple sets of different tools outside of the core environment actions (move
and smelt), we test whether including think, a recipe Oracle Retriever search (RAG) and
impossible has an impact on the planning capabilities of agents. If a tool is active, we incorporate
a description of it within the system prompt and provide an example of its use in the few-shot
examples (see Appendix A.3).

Fine-Tuning. We fine-tune a Llama 3.1 8B model on 1145 planning trajectories from the training
set using LoRA (Hu et al., 2021) (r = 64, a = 32). These trajectories only consist of Observation,
Action pairs directly obtained from our handcrafted planner and only include the smelt and move
actions. As a result, we also test whether the LoRA fine-tuned LLM can take advantage of new
actions that it has not been explicitly trained on.

Image Observations. We also evaluate models on both text and image inputs. Since Llama models
are text-only, we train a Faster R-CNN (Li et al., 2021) to extract item types, quantities, and positions
from images (Appendix F). This model is trained separately on randomly sampled inventories. It
classifies object types and quantities using bounding box features, achieving 99% slot accuracy and
86% accuracy for correct type and quantity. We then map the extracted symbolic representations
to the same format as our text-only observations. The bounding box model benchmarks how much
planning ability is lost if an observation is generated from a trained but imperfect visual processing
system. For gpt-4o0-mini, we evaluate using the predictions from the bounding-box model but also
test passing image inputs directly (since gpt-4o-mini supports images). We also evaluate multimodal
observations on Qwen 2.5 VL 72B (Bai et al., 2025) and the aforementioned Gemma 3 models.

4.1 Metrics

For all methods, we report: (a) the task success rate—whether or not the goal item has been crafted;
(b) the plan length—the number of environment actions the agent has taken (i.e. smelt and move);
and (c) the total number of tokens used (both input and output combined). Task success evaluates the
percentage of tasks completed successfully by the agent and excludes the impossible set.

Zgpt-40-mini-2024-07-18
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Using the expert planner, we can compare an agent’s trajectories compared to those of the expert.
We calculate the average Action Efficiency (AE) as the average difference between the number of
actions in an agent’s plan P compared to the length of the path of the expert planner P°. Note we
only consider successful plans in the calculation of this metric:

Nsuccessful (Pl _ Ple)

i=1

Action Efficiency = @))]

N, successful

We measure whether knowledge, internal and external, is used through the number of think and
search calls. When we evaluate the performance of models when the impossible is allowed,
we also report the F1 score of emitting the action. Since predicting impossible immediately stops
the episode, the impossible setup introduces a new form of failure mode where a model can emit an
impossible when faced with a solvable problem.

Lastly, we track the overall compute efficiency using the total number of tokens used as a proxy.’
Token usage is impacted by tool use since calling external tools and actions both requires the model
to generate additional tokens (to call the tool) but also introduces new information as a result of the
external call. We note that in Plancraft the observation tends to dominate token usage, therefore
tool-use decreases the overall token usage since it leads the model to see fewer observations on
average. However, we also note that tools could hide additional compute costs not factored into
simple token usage analysis.

Unless specified, all models are evaluated under the same conditions, with a fixed number of trials
per task and the same prompts. We use a temperature of ¢ = 0.6 and run five generations per model
to report an average on each metric.

Success Rate (1)

Avg. Avg.
Tools Model Difficulty Overall Avg. Action Count Imlg);)s(sTl)b le L:ﬁ;h I(Aﬁ T{)Itzgs
(€5) (€]
Easy Medium Hard think search impossible
MS Llama 8B 0.10 0.00 0.00 0.04 - - - - 29.06 438 88.9k
MS Llama 70B 0.38 0.12 0.00 0.18 - - - - 25.57 238 76.3k
MS gpt-40-mini 0.16 0.00 0.00 0.07 - - - - 28.12 048 82.1k
MS Llama 8B FT 0.63 048 0.11 0.40 - - - - 2029 0.14  56.5k
MS Gemma 12B 0.16 0.03 0.00 0.07 - - - - 28.12  0.85 79.4k
MS Gemma 27B 0.24 0.08 0.01 0.12 - - - - 27.13 185 67.5k
MS Qwen3 30B A3B  0.49 0.21 0.04 0.27 - - - - 2429  3.66 93.6k
MST Llama 8B 0.14 0.00 0.00 0.06 11.31 - - - 28.80 6.67 683k
MST Llama 70B 0.45 0.30 0.02 0.26 11.79 - - - 2434 332 587k
MST gpt-4o0-mini 0.21 0.05 0.01 0.10 15.43 - - - 27.65 3.63 584k
MST Llama 8B FT 0.61 0.48 0.10 0.39 0.07 - - - 20.59 026 589k
MST Gemma 12B 0.20 0.06 0.00 0.10 17.53 - - - 27.82 285 572k
MST Gemma 27B 0.38 0.20 0.00 0.20 15.56 - - - 2570 3.56  56.4k
MST Qwen3 30B A3B  0.34 0.23 0.03 0.20 15.49 - - - 2561 290 73.1k
MSTI Llama 70B 045 0.29 0.03 0.26 6.98 - 0.43 0.45 16.81 275 403k
MSTI Gemma 27B 0.30 0.15 0.00 0.16 2.82 - 0.82 0.34 7.68 289 14.0k
MSTI Qwen3 30B A3B  0.29 0.17 0.01 0.16 3.04 - 0.71 0.37 872 1.88 25.1k
MSTSE  Llama 8B 0.44 0.14 0.02 0.22 6.23 3.73 - - 2523 448 63.0k
MSTSE  Llama70B 091 0.83 0.31 0.67 4.80 2.51 - - 16.99 395 38.0k
MSTSE  gpt-4o-mini 0.46 0.13 0.02 0.23 13.24 1.93 - - 2546 555 554k
MSTSE  Llama 8B FT 0.62 0.54 0.10 0.41 0.03 0.08 - - 20.31 039  60.0k
MSTSE  Gemma 12B 0.53 0.30 0.03 0.29 13.09 1.85 - - 2375 336  49.8k
MSTSE  Gemma27B 0.83 0.69 0.08 0.52 8.71 275 - - 19.57 4.06 43.6k
MSTSE  Qwen330BA3B 048 0.38 0.07 0.30 11.59 0.79 - - 23.60 284 729k
MSTSEI Llama 8B 0.28 0.03 0.00 0.12 2.06 1.81 0.85 0.32 829 290 154k
MSTSEI Llama70B 0.88 0.82 0.30 0.65 4.57 2.42 0.08 0.71 1630 396 36.7k
MSTSEI gpt-4o-mini 0.40 0.13 0.02 0.20 6.90 1.20 0.60 0.39 15.67 5.12  32.6k
MSTSEI Llama8BFT 0.62 0.55 0.10 0.41 0.01 0.12 - 0.00 20.24 038 603k
MSTSEI Gemma I12B 0.43 0.28 0.02 0.25 291 0.58 0.71 0.36 9.05 287 19.1k
MSTSEI Gemma27B 0.78 0.62 0.07 0.48 2.73 1.22 0.51 0.45 890 380 17.5k
MSTSEI Qwen330BA3B 0.32 0.28 0.03 0.20 1.69 0.15 0.68 0.38 788 233 255k

Table 2: Average Success Rates (SR) for different models and sets of actions available: move (M), smelt (S),
think (T), search (SE), impossible (I). We also report the average count of special actions used, the
average plan length, the Action Efficiency (AE) and the average total number of tokens used.

3We consider input and output tokens as equivalent.
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Overall Avg. Avg.

Success Plan Tokens
Model (M S) Rate Length AE (]) Used

) @) ()

Llama 8B R-CNN 0.00 30.00 - 84.5k
Llama 70B R-CNN 0.13 27.03 2.97 79.5k
gpt-4o-mini R-CNN 0.04 28.93 3.31 82.3k
Gemma 3 12B IMG 0.00 29.96 0.00 137.7k
Gemma 3 27B IMG 0.00 29.94 1.00 117.6k
Qwen 2.5 VL 72B IMG 0.01 29.89 0.50 181.1k
gpt-4o-mini IMG 0.02 29.45 2.50 11.6M

Table 3: Results for different models with the basic sets of actions (M S) and image observations. We use our
R-CNN to extract the symbolic representation from images. Since gpt-4o-mini and Gemma 3 also supports
image inputs, we evaluate these models as a unified VLM where observations are passed directly as images
(IMG). We additionally test the Qwen 2.5 VL 72B model on image only observations.

5 Results

We report results with text-only observations in Table 2 and multi-modal observations in Table 3.

Act and ReAct baselines. We first restrict the action space to only the environment actions, move
(M) and smelt (S), and evaluate the planning capabilities of LLMs in a few-shot setting. We find
that Llama 70B outperforms gpt-4o-mini, with overall task success rates of 0.18 and 0.07 respectively.
Llama 8B performs noticeably worse with a success rate of only 0.04. Gemma models perform
similarly to gpt-4o-mini with success rates of 0.07 (12B) and 0.12 (27B), while the Qwen3 30B
A3B reasoning model achieves 0.27. However comparing Qwen3 is the best model when think
is not available is not a fair comparaison as Qwen3 is allowed to generate a reasoning trace before
answering. In terms of AE, we find that gpt-4o-mini is closer to the expert planner (0.48) than the
Llama models (4.38 and 2.38), which indicates that when the model succeeds, it does so efficiently.

We then extend the pool of possible actions to include think, similar to a ReAct strategy (Yao
et al., 2023b). Note that we also update the few-shot prompt appropriately to include a description
of the action and an example of its use (see Appendix A.3). Using think improves overall task
success in all few-shot models: Llama 8B 0.06 (+0.02), Llama 70B 0.26 (+0.08), gpt-4o-mini
0.10 (+0.03). The Gemma models also show modest improvements, while Qwen3 30B A3B slightly
decreases to 0.20 despite its reasoning capabilities. Explicitly including a think action in addition
to its reasoning trace decreases Qwen3’s overall success rate.

External Knowledge. When we allow search, we enable the models to incorporate the external
knowledge contained in the Minecraft Wiki through the RAG Oracle Retriever. We find that this has
substantial benefits for all three few-shot models, boosting Llama 8B to 0.22 (4-0.16), Llama 70B to
0.67 (4+0.41) and gpt-4o0-mini to 0.23 (40.13) in overall success rate. Gemma 27B achieves 0.52
with search, demonstrating significant improvement, while Qwen3 30B A3B reaches 0.30. Instead of
speculating on how to craft a particular recipe, search allows models to directly retrieve precise
information and where items must be placed to complete a recipe. This reduces the need for additional
reasoning steps, resulting in more efficient token usage.

Predicting Impossible Tasks. Including impossible into the action inventory introduces a
way for the agent to interrupt an episode. This negatively affects the overall success rate of all
models. Having large impact on smaller Llama 8B model (—0.10) and the Qwen3 30B A3B model
(—0.30), while having a smaller impact on the larger Llama 70B (—0.02) and gpt-4o-mini (—0.03).
We also record the F1 rate of emitting impossible. The Llama 70B model outperforms all other
models on predicting impossible tasks (F1 score 0.71). Adding impossible also decreases token
use, since models can now interrupt an episode when stuck. This reduces the average tokens used
significantly for some models; for example, Llama 8B’s average token use reduces from 63.0k to
15.0k and gpt-40-mini’s from 55.4k to 32.6k. We note that predicting impossible is not trivial
without external knowledge, Llama 70B only gets 0.45 F1 when search is not available.
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Effects of Fine-tuning. As mentioned in Section 4, we also fine-tune an LLM on expert plans
(Llama 8B FT). As in Wang et al. (2022a), we find that smaller models can increase their task
success with only about 1k training examples. Llama 8B FT obtains an overall success rate of around
0.40, which is remains steady with each additional action we introduce. We find that fine-tuning
severely decreases the model’s ability to use new actions: Llama 8B FT almost never uses think
and search actions, and never emits impossible.

Image Observations. In Table 3, we use images instead of text inputs. We use the pre-trained
bounding-box Faster R-CNN model to map images into text descriptions, and confirm a drop in
accuracy for all models: Llama 8B (—0.04), Llama 70B (—0.05), and gpt-4o-mini (—0.03). Because
gpt-4o-mini supports image inputs, we also evaluate passing images, and no text descriptions, directly
to the model. This is gpt-4o-mini IMG: the system instructions remain the same, but the few-shot
prompt replaces the observations with images. This model cannot solve our task (0.02) and yet uses
significantly more tokens, because every image is converted into a long sequence of tokens (~ 200
per 512 x 512 image patch). Note that token usage in gpt-4o-mini IMG is an overestimation due to
vision tokens being priced at the gpt-4o rate (10 x). However, the average token usage remains a
direct representation of the average cost per episode.

We also run same image only observations for the Gemma 3 12B/27B and Qwen 2.5 VL 72B class
of models, and find similarly that accuracy remains 0 for both Gemma 3 sizes, and Qwen 2.5 VL
72B only manages 1% overall success. To solve Plancraft, a VLM needs to discern where and what
objects are in an image, how these change over time, and how to map between these and the text
locations/types. VLMs like Gemma 3 26B might approximate positions (e.g., ’bottom left”) but
fail to map items to exact grid locations. As Plancraft can contain dialogue sequences of up to
30 observations, VLMs need to be able to handle 30 different image inputs. We hypothesize that
this is in part due to the pre-training and fine tuning regime of VLMs which are rarely trained on
long image sequences nor to ground arbitrary game Uls. Overall, our results also demonstrate that
prompting VLMs using few-shot prompting in the same way as with text does not work in Plancraft.
Modern VLMs are unable to leverage the few-shot image examples to calibrate their predictions and
generalise more broadly to new tasks.

6 Conclusion

We introduced Plancraft, a multi-modal dataset to evaluate the planning capabilities of LLM-based
agents. Using Minecraft crafting, Plancraft enables assessment of both task accuracy and an agent’s
ability to judge task feasibility. Our results show that larger models, such as Llama 70B, outperform
smaller models like Llama 8B in both task success and efficiency in Plancraft. This advantage is
amplified by specialised actions such as think and search. The introduction of impossible
highlights a trade-off: while enabling models to recognise unsolvable tasks reduces token usage and
increases efficiency, it disproportionately impacts smaller models like Llama 8B. Fine-tuning smaller
models, as shown with Llama 8B FT, can boost task success but also reveals a key limitation: the
inability to effectively use new actions later on like think and search, indicating fine-tuning may
overly constrain agentic behaviour.

Our results highlight challenges in few-shot multi-modal interactive settings. While text-only tasks
exhibit strong performance trends, raw image inputs (e.g., gpt-4o-mini IMG) underscore the limi-
tations of out-of-the-box VLMs for effective interactive planning. All models are also sensitive to
observations, and even with our pre-trained bounding box model, we observe significant performance
degradation as the observations become noisier. Overall, our results underscore the complexity of
bridging multi-modal inputs and decision-making in planning. We hope Plancraft aids future work in
enhancing tool adaptability and developing RAG systems to handle noisy real-world knowledge.
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A Additional Dataset Details

In this section, we provide additional details about the Plancraft dataset, including the motivation for
using Minecraft, the dataset splits, and the complexity metric used to categorize tasks.

A.1 Why Minecraft?

Since its introduction to Al research through platforms like Malmo (Johnson et al., 2016), Minecraft
has evolved into a widely adopted benchmark for evaluating both reinforcement learning algorithms
(Guss et al., 2019; Perez-Liebana et al., 2019) and, more recently, language-based agents (Fan et al.,
2022; Wang et al., 2023a; Prasad et al., 2023; Wang et al., 2023c). Whereas most previous work
deals with the navigation and exploration aspects of Minecraft, abstracting away the crafting steps
to simple callable functions, our work focuses entirely on the crafting aspect of Minecraft, which
requires a different set of planning and spatial reasoning skills.

Unlike synthetic environments designed specifically for Al research (e.g., ALFWorld (Shridhar et al.,
2021) or ALFRED (Shridhar et al., 2020)), Minecraft is a commercially successful game developed
for human players. This means that provides an environment with inherent complexity appropriate
for human problem-solving capabilities. Additionally, its popularity means that Minecraft comes with
extensive human-authored documentation, tutorials, and community knowledge bases that LLMs
may have encountered during pretraining (Fan et al., 2022). Minecraft allows us to evaluate how
effectively LLMs can leverage existing human knowledge sources (e.g. the Minecraft Wiki) to solve
planning tasks, paralleling real-world scenarios where agents must use reference documentation to
accomplish goals.

A.2 Dataset Splits

We split the dataset into training, validation, and test sets, with a total of 1145, 570, and 580 examples
respectively. We also provide a smaller validation and test set with 110 and 117 examples respectively,
which we use in our evaluation.

Our complexity metric is proportional to the number of items used and the number of recipes required
to solve an example (see Figure 4). The complexity score therefore correlates with how many steps
are required to solve a task, with more complex tasks requiring more steps. We group examples into
five quantiles or complexity bins: very easy, easy, medium, hard, very hard. We also include a set of
impossible tasks, which are intentionally unsolvable.

Note that when reporting results, we group together very easy and easy examples together, and the
hard and very hard examples together for simplicity. Table 4 shows the distribution of examples
across complexity score for each dataset split.

A.3 Prompts

We provide the system prompt used for all Plancraft experiments in Figure 5. The prompt includes
a detailed description of the crafting grid, inventory slots, and available actions. Examples of the
format for each action type are included in the system prompt. Figure 6 shows the few-shot (two-shot)
interaction examples used throughout the evaluation.

15


https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf

Published as a conference paper at COLM 2025

25 °
.
. . 0
. . . .
= ° . ° ° . .
© 20 . . . ° .
o ° [} [} [} ° [} [}
© ° ° . ° . .
E ° ° °
-5 ° ° ° ° ° ° °
o 15 . . . . °
2 . ° . . °
= . . . ° .
£ ° ° ° ° °
3 . . .
o 10 . . .
- b : . . Complexity
E ® very easy
® 5 easy
medium
e hard
.
° ® very hard
0
2 4 6 8 10 12

# Crafting recipes in the optimal path

Figure 4: Scatterplot showing the number of items used in a task versus the number of recipes required to craft
the target item. The hue of the scatterplot represents the complexity bins.

Complexity \Train Val Test Val(small) Test(small) Val (easy) Test (easy)

very easy 200 100 100 20 20 100 100
easy 200 100 100 20 20 - -
medium 198 100 100 20 20 - -
hard 200 100 100 20 20 - -
very hard 147 70 80 10 17 - -
impossible set 200 100 100 20 20 - -
Total 1145 570 580 110 117 100 100

Table 4: Dataset statistics per complexity score for each split.

A.4 Environment Feedback

Figure 7 shows the error messages returned by the environment for each action type.

On the other hand, when the agent performs a valid action, the environment responds with a message
containing the goal and observation. This means that a valid action that has no effect on the
environment will still return a message with the goal and observation, but no additional feedback.
Since a no-op action is not penalized, the agent should recognise when it its actions are not having
the desired effect and adjust its strategy accordingly. Note, we also do not provide any rewards to the
agent. However, it would be possible in the future to include a reward signal based on the number of
remaining steps needed to complete the task, or whether the agent is successful.

B Qualitative Examples

In Figures 8 to 12, we provide qualitative examples of the Llama 8B model interacting with the
Plancraft environment. These examples illustrate the model’s reasoning process and the impact of
different actions on task completion. Figures 8 to 11 are all taken from the same Plancraft task, where
the model is asked to craft light_gray_glazed_terracotta. By our complexity categories this is a very
easy task as it only requires smelting light_gray_terracotta into a free inventory slot.

In Figure 8, the model has access to think, and it successfully completes the task by correctly
identifying the required smelting action in its first think step, though we note that it also halluci-
nates other non-needed actions. Whereas, Figure 9, the model, with the same input, hallucinates
non-existent crafting dependencies and attempts to solve for them, eventually reaching the max-
imum number of steps. In Figure 10, the model uses the search action to find the recipe for
light_gray_glazed_terracotta, and then uses think to identify the correct smelting action. However
when we introduce impossible in Figure 11, the model uses impossible to end the task early,
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You are crafting in Minecraft.
action.

Crafting Grid: The crafting table
Each slot in the grid has a unique

- Top row: [Al] [A2] [A3]
- Middle row: [B1] [B2] [B3]
- Bottom row: [C1] [C2] [C3]

The output of the crafting process
slot labeled [O0]. You cannot move
slot [O0].

Inventory Slots:
crafting grid)

The remaining inventory slots
are used for storing items.

You need to decide on the next

is organized into a 3x3 grid.
identifier:

is placed in a designated output

or smelt items directly into

(outside of the
These slots are labeled

as [I1l] to [I36].
Actions:
* move: Transfer a specific quantity of an item from one slot
to another
e smelt: Smelt an item in a furnace and moves the output to a
specific slot
e think: Generate thoughts to help you decide on the next
action
. : Search for recipes to craft a specific item
* impossible: Stop task if it is certain that it is impossible
with given inventory
Format
e ‘move: from [Source] to [Target] with quantity N’
e ‘smelt: from [Source] to [Target] with quantity N’
e ‘think: <thought message>’
o 4
* ‘impossible: <reason>’
Example:
* ‘move: from [I2] to [Al] with quantity 3’
e ‘smelt: from [I5] to [I6] with quantity 1’
Constraints:

* You cannot move or smelt items into
[0]

e If an item is not in slot

* You need to move items from

(0]
then the recipe is incorrect

(0]

to a free inventory slot to

complete the crafting process

Figure 5: System prompt used for all Plancraft experiments.

The coloured actions (think,

impossible) are included or excluded based on the experimental configuration.

even though it still correctly identified the recipe for light_gray_glazed_terracotta and has the same
inventory as in the previous examples. We find models eager to emit impossible when it is

available, even when the task is solvable, therefore decreasing their overall accuracy.

Finally, in Figure 12, the model is asked to craft diorite_wall, which is an impossible task given
the inventory. In this case, the model correctly uses a combination of both search and think to

identify the missing ingredient (diorite) and before outputting impossible.
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Tools Model Smelting  Shapeless Shaped Mixed
MS Llama 70B 0.91 0.51 0.12 0.07
MST Llama 70B 0.69 0.57 0.25 0.12
MSTSE Llama 70B 1.00 0.80 0.80 0.42
MSTSEI Llama70B 1.00 0.78 0.79 0.39
MS Llama 8B 0.09 0.20 0.01 0.02
MST Llama 8B 0.18 0.23 0.02 0.03
MSTSE Llama 8B 0.98 0.37 0.22 0.10
MSTSEI Llama8B 0.66 0.24 0.10 0.06
MS Llama 8B FT 0.88 0.77 0.41 0.22
MST Llama 8B FT 0.65 0.81 0.42 0.19
MSTSE Llama 8B FT 0.86 0.77 0.43 0.21
MSTSEI Llama8BFT 0.86 0.78 0.44 0.20
MS gpt-40-mini 0.58 0.26 0.00 0.04
MST gpt-40-mini 0.51 0.34 0.04 0.05
MSTSE  gpt-40o-mini 0.71 0.32 0.26 0.09
MSTSEI gpt-40-mini 0.76 0.26 0.24 0.07

Table 5: Average success for all models and tools when aggregated over the type of recipes needed to craft the
target item. The Mixed category requires combining multiple different types of recipes.

Tools Model Avg. # of Invalid Actions
MS Llama 70B 2.88
MST Llama 70B 0.03
MSTSE  Llama70B 0.02
MSTSEI Llama70B 0.01
MS Llama 8B 6.85
MST Llama 8B 0.20
MSTSE  Llama 8B 0.44
MSTSEI Llama8B 0.04
MS Llama 8B FT 0.02
MST Llama 8B FT 0.00
MSTSE  Llama 8B FT 0.01
MSTSEI Llama 8B FT 0.01
MS gpt-4o-mini 1.53
MST gpt-4o-mini 0.02
MSTSE  gpt-4o-mini 0.04
MSTSEI gpt-40-mini 0.00

Table 6: Average Number of Invalid Actions that trigger corrective environment feedback per trajectory for each
tool/model configuration.

C Additional Results

In Table 5, we aggregate success over the different types of recipe categories. We find that Smelting
is the easiest type of recipe to craft or solve for since it only requires using the smelt action. The
hardest type of task is Mixed, when different recipe types are required to craft the target object. We
can also observe that Shaped recipes are particularly hard when the search action is not available
since it requires reasoning over the spatial positioning of items without an relevant example. However
with search, we find that larger LLMs such as Llama 70B obtain high accuracies since they can
more accurately pattern match from the recipe search to the desired crafting positions.

In Table 6, we show the average number of invalid actions that trigger error feedback from the
environment. Overall we observe that the non-fine-tuned models do not respond well to the baseline
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regime where only move and smelt are allowed, likely since most have been instruction fine-tuned
with some level of chain of thought reasoning. Simply introducing the think action greatly helps
the each model’s ability to follow the formatting of the response.

C.1 Zero-shot

We compare the zero-shot capability for Llama 70 B on our full tool set (M S T SE I) in Table 7.
Overall, we find a significant drop in overall accuracy (—0.12) when moving to a zero-shot setting.

Success Rate (1)
Avg. Avg.
Model Difficulty Overall Avg. Action Count ]ml‘,’f‘(}‘g’ le LELagnm ?ﬁ TS‘;:HS
(€3] )
Easy Medium Hard think search impossible
Zero-shot Llama 70B  0.75 0.57 0.26 0.53 4.36 1.63 0.17 0.58 17.63 498 32.6k
Few-shot ~ Llama70B  0.88 0.82 0.30 0.65 4.57 2.42 0.08 0.71 1630 396 36.7k

Table 7: Comparing zero-shot versus few-shot prompting on the Llama 70B with the full set of actions available:
move (M), smelt (S), think (T), search (SE), and impossible (I)

D Planner

In this section, we provide additional details about the Plancraft planner, including the limitations
of classical PDDL planners for the Plancraft domain and the implementation details of our custom
planner.

D.1 Plancraft and Classical PDDL Planners

While Plancraft satistifies the requirements of a classical planning domain having deterministic
actions and fully observable states, it is not easily representable in PDDL (McDermott et al., 1998).
For one, Minecraft’s crafting system contains actions in which a parametrised number of items are
moved or smelted. While variable amounts are handled in PDDL 2.1+ through the use of numeric
fluents, the complexity of representing these actions in PDDL is non-trivial and unsupported by many
classical planners such as Fast Downward (Helmert, 2006).

Additionally, the search space of Plancraft is large when compared to traditional planning domains
(e.g. Blocksworld), due to the number of possible crafting recipes (859), the number of items (976),
possible positions (46), and possible quantities (64). This results in a prohibitively large state space
that makes classical planning approaches computationally expensive for all but the simplest Plancraft
tasks.

D.2 Planner Implementation Details

Our planner uses a memoized Depth-First Search (DFS) algorithm to find the shortest path from the
initial inventory to the target item. The planner operates in two main phases:
1. Builds a directed graph representing the recipe dependency relationships between items.
2. For a given target item and initial inventory, it performs a search to find the optimal crafting
sequence.
The core of the planner recursively explores possible crafting steps while memoizing intermediate
results to avoid redundant computation. The pseudocode for this algorithm is presented below:
After finding the shortest sequence of recipes, the planner decomposes each recipe into concrete

move and smelt actions. This decomposition accounts for various recipe types:

* Smelting Recipes: Require moving an item to a smelting slot and receiving the output in
another slot.
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Algorithm 1 Handcrafted Planner Algorithm

Require: target item, initial inventory, maximum steps, timeout
Ensure: shortest sequence of recipes or NULL if impossible
: start a timer
identify necessary recipes and sort dependencies
procedure DFS(current inventory, steps taken)
if timeout exceeded then
return NULL
end if
if target item is in inventory then
return steps taken
9: end if
10: if steps taken exceed maximum allowed then
11:  return best known solution
12: end if
13: for each possible recipe do
14:  if recipe is feasible then

PRI AR

15: update inventory and steps taken

16: recursively call DFS with new state

17: keep track of the shortest valid solution
18:  endif

19: end for

20: return best known solution
21: end procedure

* Shapeless Recipes: Require ingredients to be placed in the crafting grid in any arrangement.

* Shaped Recipes: Require ingredients to be placed in specific positions within the crafting
grid.

The planner handles inventory management by tracking item quantities and ensuring that crafting
operations maintain consistency. This includes removing used ingredients and adding crafted items
to the inventory.

D.3 Limitations of the Planner

While our planner can efficiently solve Plancraft tasks, it does not provide optimal guarantees since it
decomposes the search into a series of valid recipes before optimising the action sequence for each
recipe. It is possible for shorter plans to exist if the planner were to consider all possible crafting
steps simultaneously rather than decomposing the search into individual recipes. For instance, if two
recipes share a common ingredient that can be placed in the same slot, the planner may not consider
combining the move action for that ingredient across both recipes. The planner also does not smelt
multiple items in a single action and does not move items directly into the crafting grid from the
crafting slot [0] or from a smelt action These limitations mean that it is possible for an agent in
Plancraft to outperform the planner by considering multiple recipes (subgoals) simultaneously. This
is why we refer to our planner as a handcrafted planner rather than an optimal planner.

E RAG Implementation Details

E.1 Oracle Retriever

The Oracle Retriever is a simple exact match retriever that returns the recipe for a given item query.
Since we have access to the underlying game files which includes all crafting recipes, we can
guarantee that the Oracle Retriever always returns a correct recipe for a valid item query. If the item
does not exist in the recipe database, the Oracle Retriever returns an error message stating that it
could not find a recipe for the item. If there are more than one recipe for a given item, the Oracle
Retriever returns possible instantiations of each recipe. For example Figure 6, contains an example
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where the Oracle Retriever returns three possible recipes for crafting an iron ingot. All recipes are
returned in plain text.

The retriever is not conditioned on the current inventory of the agent, as a result it returns all possible
recipes for a given item, regardless of whether the agent has the necessary ingredients in its inventory.
We can observe this in Figure 6 where recipes 1 and 3 are not feasible given the agent’s inventory.
This is analogous to querying a knowledge base, where all matching results are returned, regardless
of whether they are feasible.

For many recipes, it is possible for multiple valid instantiations to exist. For example, the recipe for

crafting planks @ can be done by placing logs in any slots of the crafting grid. As such, placing a log
in any slot of the crafting grid is a valid instantiation of the recipe. In such cases, the Oracle Retriever
returns a single random instantiation of the recipe.

Ultimately, the Oracle Retriever can be used to simulate a perfect retriever, which allows us to isolate
and evaluate how effectively agents can use external knowledge when it’s provided without retrieval
errors and grounded within the game environment. In real-world applications, RAG systems would
need to handle partial matches, ambiguous queries, and potentially irrelevant information. Our
implementation provides a best-case scenario baseline against which more realistic RAG approaches
can be compared.

E.2 Minecraft Wiki

While not used in our experiments, we also include a scraped version of the Minecraft Wiki for
future work. To collect the Minecraft Wiki, we crawl and process pages containing crafting recipes
which are valid in Plancraft. We convert the html and images to a structured Markdown format,
removing irrelevant information and formatting the recipes in a consistent manner. We include
the Minecraft Wiki in our release to encourage future work on RAG systems that can leverage
multi-modal knowledge sources.

F Custom R-CNN Model

Figure 13 shows the custom Faster R-CNN model used to predict bounding boxes along with both
class and quantity labels from observations of the inventory. The model is trained from randomly
sampling Minecraft inventories in Plancraft. Each training image is automatically annotated with
bounding boxes around items, along with class and quantity labels. We extend the Pytorch Faster
R-CNN resnet50 V2 (Li et al., 2021) model to add an additional classification head for quantity. Our
model therefore predicts both class and quantity labels for each bounding box using the same model
and underlying representation.

Accuracy Slot IoU
Threshold | Slot Type Quantity | Precision Recall ~F1 | Slot Type Quantity
0.25 1 099 0.92 0.90 1 0.99 099 | 099 0.86 0.86

0.40 | 0.97 0.1 0.90
0.50 | 0.95 0.90 0.89
0.75 |1 0.86 0.85 0.83
0.90 | 0.77 0.76 0.75

097 098 | 097 0.87 0.87
095 097 | 095 0.87 0.86
0.86 092 | 0.86 0.84 0.82
0.77 086 | 0.77 0.76 0.74

1
1
1
1

Table 8: Evaluation results of the custom Faster R-CNN model on initial inventories of the Plancraft dataset.

We evaluate our bounding box model on the initial inventory of the train split of Plancraft in Table 8 to
select a confidence threshold. The confidence threshold is used to filter out low-confidence bounding-
box predictions from the model. If two bounding boxes map to the same inventory slot, we keep the
one with the highest confidence. We report the following metrics: accuracy for slot, type and quantity
(exact match); slot precision, slot recall, and slot F1 score; and the Intersection over Union (IoU) for
slot, type, and quantity predictions. We select a threshold of 0.25 for all evaluations as it provides the
highest F1 score for slot predictions, while maintaining high accuracy in its predictions.
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Few-Shot Examples

User: Craft an item of type: andesite
inventory:

- diorite [I18] quantity 1

— cobblestone [I30] quantity 1

Assistant: search: andesite
User: Recipes to craft andesite:
recipe 1:

diorite at [Bl]

cobblestone at [B2]

Assistant: think: To solve this task I need to craft andesite
using 1 diorite and 1 cobblestone side by side.

User: Ok

Assistant: move: from [I18] to [B1l] with quantity 1
User: Craft an item of type: andesite

inventory:

- diorite [B1l] quantity 1

— cobblestone [I30] quantity 1

Assistant: think: ©Now I need to move the cobblestone into
position [B2] to be right of the diorite.

User: Ok

Assistant: move: from [I30] to [B2] with quantity 1
User: Craft an item of type: andesite

inventory:

- andesite [0] quantity 1

- diorite [B1l] quantity 1

— cobblestone [B2] gquantity 1

Assistant: think: ©Now I can craft the andesite by moving it
from the craft slot [0] to a free inventory slot.

User: Ok

Assistant: move: from [0] to [I6] with quantity 1

User: Craft an item of type: iron_ingot
inventory:

- iron_ore [I36] quantity 1

— cobblestone [I30] quantity 1

Assistant: search: iron_ingot
User: Recipes to craft iron_ingot:
recipe 1:

iron_block at [C2]

recipe 2:

smelt {iron.ore}

recipe 3:

iron_.nugget at [Al]

iron_nugget at [A2]

iron_.nugget at [A3]

iron_.nugget at [B1l]

iron_nugget at [B2]

iron_nugget at [B3]

iron_.nugget at [C1l]

iron_nugget at [C2]

iron_nugget at [C3]

Assistant: think: To craft an iron_ingot, I need to smelt
iron_-ore into an empty slot.

User: Ok

Assistant: smelt: from [I36] to [I35] with quantity 1

Figure 6: Few-shot (two-shot) examples provided to models during evaluation. Core actions (move, smelt)
are shown in regular text, while optional actions are color-coded (think, search) based on which tools are
enabled.
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Environment Feedback

Error Messages for Invalid Actions:
* Move
— [Source] and [Target] must be different
— [Source] must be [0] or [Al] to [C3] or [I1l] to
— You cannot move items into [0]
[Target] must be [Al] to [C3] or [Il1l] to [I36]
quantity must be between 1 and 64

from [Source] to [Target] with quantity N
¢ Smelt
— [Source] and [Target] must be different
[Source] must be [0] or [Al] to [C3] or [Il] to
— You cannot smelt items into [0]
[Target] must be [Al] to [C3] or [Il1l] to [I36]
quantity must be between 1 and 64

<thought message>"

¢ Impossible

— Could not find a recipe by that name.

‘search: <recipe name>"‘

Format Error: <error message>. Correct format:

— Format Error: <error message>. Correct format:
from [Source] to [Target] with quantity N
¢ Think
— Format Error: <error message>. Correct format:

— Format Error: <error message>. Correct format:
‘impossible: <reason>"‘
¢ Search

— Format Error: <error message>. Correct format:

[I36]

‘move:

[I36]

‘smelt:

‘think:

Figure 7: Error messages returned by the environment when an agent performs an invalid action. These messages

try to guide the agent to correct its outputs to format its actions correctly.
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Llama 8B with think action (Successful )

User: Craft an item of type: 1light_gray.-glazed._terracotta
inventory:
- smooth_quartz_stairs [I3] quantity 57

— light_gray_terracotta [I29] quantity 1

Assistant: think: To craft light_gray.glazed._terracotta, I need 1
light_gray-terracotta and 1 colored glazed terracotta, but I have
none of these items. However, I have colored glazed terracotta

in the form of other colored terracotta, I could smelt it and then
apply a dye.

User: Ok

Assistant: think: I can smelt the light_gray.-terracotta to get
light gray clay which I can then color with a dye to get the light
gray glazed terracotta.

User: Ok

Assistant: think: I need to find a dye color that is not present
in the inventory to craft light gray glaze.

User: Ok

Assistant: think: Since I have a variety of items in the
inventory, I can check if there is a dye color that can be crafted
from any of the items present.

User: Ok

Assistant: think: I can use the black.bed to craft black dye.
Then I can use that black dye to dye the light gray terracotta and
get the light gray glazed terracotta.

User: Ok

Assistant: move: from [I22] to [I5] with quantity 1

User: Craft an item of type: light_gray.glazed_terracotta
inventory:

— smooth_quartz_stairs [I3] quantity 57

— light_gray_-terracotta [I29] quantity 1

Assistant: smelt: from [I29] to [I32] with quantity 1

Figure 8: Example of successful planning with the think action. The assistant reasons through the crafting
process, identifies in the first think step that the light_gray_terracotta needs to be smelted. However its reasons
are incorrect, as light_gray_terracotta is directly smelted into light_gray_glazed_terracotta. In this case, the model
also moves an unnecessary item to the crafting grid, but eventually generates the correct action. Note the shortest
path here would have been a single smelt action.
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Llama 8B with think action (Unsuccessful )

User: Craft an item of type: 1light_gray.-glazed_terracotta
inventory:
- smooth_quartz_stairs [I3] quantity 57

— light_gray_terracotta [I29] quantity 1

Assistant: think: To craft light_gray.glazed._terracotta, I need 4
light_gray-terracotta and 1 clay. However, I don’t have clay. I
also don’t have light_gray._terracotta, but I have regular terracotta.
I can try to craft light gray terracotta first.

User: Ok

Assistant: think: To craft light gray terracotta, I need to

mix gray concrete powder with water. However, I don’t have gray

concrete powder, I need to craft it first. I need 4 gray concrete
powder and 1 water to make light gray terracotta.

User: Ok

Assistant: think: To craft gray concrete powder, I need to mix
gray dye and concrete powder. I have gray dye, but I need concrete
powder. I also need water to make concrete powder.

User: Ok

Assistant: think: I need to craft concrete powder first. I need
4 gravel and 1 water to make concrete powder. I also need gray dye
to make gray concrete powder.

User: Ok

Assistant: smelt: from [I36] to [I35] with quantity 1 (to make
water)

User: Craft an item of type: light_gray.-glazed_terracotta
inventory:

— smooth_quartz_stairs [I3] quantity 57
— light_gray_terracotta [I29] quantity 1

Assistant: think: I need to craft water first. I have
nether_quartz_ore, which can be smelted into nether_quartz. I can
then use the nether_quartz and clay to make concrete powder, and
then mix gray dye with the concrete powder to get gray concrete
powder.
User: Ok

(continues with incorrect actions until max steps reached)

Figure 9: Example of unsuccessful planning with the think action. The assistant hallucinates non-existent
crafting dependencies, in this case the requirement for water and concrete powder, and attempts to solve for
them. It also takes valid actions, but since valid actions that are not part of the solution are not penalized, the
model either continues to take incorrect actions or eventually reaches the maximum number of steps.
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Llama 8B with search action (Successful )

User: Craft an item of type: light_gray.glazed_terracotta
inventory:
- smooth_quartz_stairs [I3] quantity 57

— light_gray_-terracotta [I29] quantity 1

Assistant: search: light_gray.-glazed_terracotta

User: Recipes to craft light_gray-glazed_terracotta:

recipe 1:

smelt {’light_gray-terracotta’}

Assistant: think: To craft light_gray.glazed._terracotta, I need to
smelt light_gray-terracotta into an empty slot.

User: Ok

Assistant: smelt: from [I29] to [I13] with quantity 1

Figure 10: Example of successful planning with the think and search actions. Combining the search action
with the think action, the model immediately identifies the correct way to craft light_gray_glazed_terracotta using
smelt.

Llama 8B with impossible action (Unsuccessful )

User: Craft an item of type: light_gray.glazed_terracotta
inventory:
- smooth_quartz_stairs [I3] quantity 57

- light_gray_terracotta [I29] quantity 1

Assistant: search: light_gray.-glazed_terracotta
User: Recipes to craft light_gray-glazed_terracotta:

recipe 1:
smelt {’light_gray_terracotta’}
Assistant: impossible: There is no light_gray._terracotta in the

inventory, only a single light_gray-terracotta, but it is not in
slot [0] to be smelted.

Figure 11: Example of unsuccessful planning with the think, search, and impossible actions. Even
though this is the same example as before, and the model successfully calls search, because impossible is
introduced, the model incorrectly ends the task early.
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Llama 8B with impossible action (Successful )

inventory:
- oak_sign

Assistant:

recipe 1:

diorite at
diorite at
diorite at
diorite at
diorite at
diorite at
Assistant:

inventory.

User: Ok
Assistant:

User: Craft an item of type: dioritewall

- strippedbirch.wood [I3] quantity 11
- grass [I35] quantity 42

User: Recipes to craft dioritewall:

in the crafting grid. However, I don’t have any diorites in my

in my current inventory.

to craft a diorite_wall

[I2] quantity 11

search: diorite_wall

think: To craft a dioritewall, I need 6 diorites

I had crafted an andesite earlier, but I don’t see it

impossible: I don’t have the required diorite blocks

Figure 12: Example of successful planning with the impossible action. The assistant correctly identifies an
impossible task after confirming the required ingredient (diorite) is missing from the inventory.

bbox quantity (n) class

@ 16/64 string

Crafting

&

Inventory

2/64 wool .
inventory:
Custom - string [I5] quantity 16
el g wool [I6] quantity 2
FasterRcnn 1/64 bowl [16] q y

beetroot [I10] quantity 7
planks [I12] quantity 7
bowl [I17] quantity 1

(Resnet 50)

7/64 beetroot

7/64 planks

Figure 13: The custom Faster R-CNN model predicts bounding boxes along with both class and quantity labels
from observations of the inventory. From the model predictions we can reconstruct a text observation in the
same format as provided text-only environment.
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