
Learning the Effects of Physical Actions in a Multi-modal Environment

Gautier Dagan, Frank Keller, Alex Lascarides
School of Informatics

University of Edinburgh, UK
gautier.dagan@ed.ac.uk, {keller, alex}@inf.ed.ac.uk

Abstract

Large Language Models (LLMs) handle phys-
ical commonsense information inadequately.
As a result of being trained in a disembodied
setting, LLMs often fail to predict an action’s
outcome in a given environment. However,
predicting the effects of an action before it is
executed is crucial in planning, where coher-
ent sequences of actions are often needed to
achieve a goal. Therefore, we introduce the
multi-modal task of predicting the outcomes
of actions solely from realistic sensory inputs
(images and text). Next, we extend an LLM to
model latent representations of objects to bet-
ter predict action outcomes in an environment.
We show that multi-modal models can capture
physical commonsense when augmented with
visual information. Finally, we evaluate our
model’s performance on novel actions and ob-
jects and find that combining modalities help
models to generalize and learn physical com-
monsense reasoning better.

1 Introduction

Large Language Models (LLMs) are trained on
large corpora of disembodied texts. They are typi-
cally pre-trained on a masked language modeling
task: the model must predict a masked word in a
text given its context. LLMs have achieved state-
of-the-art performance on many NLP tasks (Devlin
et al., 2019; Brown et al., 2020), but they can also
fail on seemingly easy and obvious tasks and in un-
predictable ways (McCoy et al., 2020; Bommasani
et al., 2021). Commonsense knowledge is shared
knowledge and is often so obvious that it is absent
from the LLMs’ training data: people don’t men-
tion what is already known to their interlocutors.
This includes physical commonsense information,
including how executed actions affect the physical
attributes of objects; e.g., shape and weight (Forbes
et al., 2019). Humans may learn such knowledge
from their embodied environment. But LLMs, be-
ing trained on disembodied text, can make incorrect

predictions about physical attributes and how these
change when actions occur. For instance, when
asked what the weight of a 150 grams potato after
it is sliced, GPT-3 (Brown et al., 2020) incorrectly
answers 75 grams (see Appendix A for the exact
prompt). GPT-3 is an LLM with 175 billion param-
eters, and nonetheless its disembodied existence
limits its physical commonsense estimates.

Zellers et al. (2021) inject physical common-
sense information into LLMs via their model
PIGLeT—a modified LLM that is trained on
their PIGPeN simulated 3D environment dataset.
PIGLeT estimates how an environment changes as
a result of specific actions. In training and testing,
the model uses ground-truth symbolic representa-
tions of the environment but not the images: it
ignores visual sensory observations. These sym-
bolic representations of objects in an environment
are chosen to capture the possible effects of ac-
tions, and include attributes like weight, size and
temperature. However, in an embodied situation,
an agent needs to use visual perception to estimate
its interpretation of the scene. Therefore, the sym-
bolic representations should be treated as latent
rather than observed.

We propose an alternative to the PIGLeT model,
PIGLeT-Vis, which uses images directly as input
into a multi-modal LLM to ground the model to its
physical environment. We compare our approach
to the original PIGLeT model and evaluate the gen-
eralization capabilities gained from using image
inputs. At test time, our model foregoes symbolic
labels: only the images and the name of the action
are observed. Thus our model tackles a more chal-
lenging task than the original PIGLeT model in that
it must not only predict the effect of actions but also
(indirectly) estimate the symbolic representations
of objects in the images. We also evaluate a model
for predicting the effects of actions that trains on
PIGPeN’s images and their associated natural lan-
guage (NL) descriptions, eliminating the need for

Action
Apply

Object
Decoder

 name: cup
 size: small
 filled: yes

observed

latent

"The robot empties
the cup." 2

1
Action

Encoder

<Empty, cup>

pr
e-

tra
in

in
g

fin
e-

tu
ni

ng

Object
Encoder

 name: cup
 size: small
 filled: no

Figure 1: Original PIGLeT Physical Dynamics Model (Zellers et al., 2021). During pre-training the model
receives as input the full symbolic representation of two objects (o0pre and o1pre) before the action is taken and the
symbolic representation of the action itself (a) and is tasked with predicting the attributes of the objects after the
action (o0

post and o1post). During fine-tuning, the action encoder is replaced by an LLM to process a natural language
description of the action being taken and with what objects.

formal symbolic representations.
Our contributions are three-fold. First, we show

that it is possible to predict the physical effects of
actions from visual data. Second, we show that it
is possible to learn the task on training data where
formal symbolic representations, which are unob-
servable in real-world settings, are replaced with
NL descriptions (which can be observed through
natural interaction). Third, we evaluate all our mod-
els in a stricter zero-shot setup to promote ways
to train agents that generalize. Overall our work
paves the way for multi-modal models that learn
the effects of actions in realistic environments.

2 Related Work

Commonsense reasoning has been highlighted as a
potential weak point of LLMs in recent years (Shen
and Kejriwal, 2021; Forbes et al., 2019; Bisk et al.,
2020). Datasets such as PIGPeN (Zellers et al.,
2021), commonsenseQA (Talmor et al., 2019),
VCR (Zellers et al., 2019) and GD-VCR (Yin et al.,
2021) help evaluate different aspects of common-
sense reasoning in modern LLMs. In this paper, we
focus on physical commonsense reasoning, which
involves understanding the (often) unexpressed
rules of the physical world.

Forbes et al. (2019) reported that neural repre-
sentations found it challenging to infer the link
between actions and what they imply about the
attributes of objects. Accordingly, Zellers et al.
(2019) introduced the Visual Commonsense Rea-
soning (VCR) task to test how images can inform

question answering models that tackle common-
sense information. Bisk et al. (2020) designed the
PIQA benchmark to evaluate physical common-
sense reasoning in LLMs through question answer-
ing. Sampat et al. (2021) proposed an extension to
the CLEVR dataset, where an agent must reason
and answer questions about a scene after a hypo-
thetical action is taken.

Multiple approaches can improve the capabil-
ities of LLMs in commonsense reasoning, such
as using handcrafted knowledge graphs (Hwang
et al., 2021) or leveraging simulated environments
(Zellers et al., 2021). PIGLeT, in particular, com-
bines a traditional LLM and a “Physical Dynamics”
model to ground an LLM (Zellers et al., 2021). The
Physical Dynamics model enhances the common-
sense knowledge of an LLM by fine-tuning it, using
trajectories sampled from a realistic environment
(see Figure 1). Trajectories are an action and a
pair of environment states (before and after the ac-
tion) expressed in a formal symbolic representation.
Zellers et al. (2021) found that fine-tuning LLMs
with symbolic data from the simulated environment
helped them outperform other models in physical
commonsense reasoning tasks: in particular, pre-
dicting the effects of an action when executed in a
particular state.

Image inputs offer a way to ground an LLM, as
they only require general alignment with a text or
symbolic input and do not require the comprehen-
sive environment ground-truth labels that PIGLeT
uses. Gao et al. (2018) used multi-modal web
data to learn actions and their effects from images

Action
Apply

Object
Decoder

Action
Encoder

<Empty, cup>

"The robot empties
the cup."

1

2

observed

latent

1

2

...

 name: cup
 size: small
 filled: no

Figure 2: PIGLeT-Vis. We introduce PIGLeT-Vis, where we modify the PIGLeT architecture to replace its
Symbolic Object Encoder with a vision component that makes use of images of the environment before and after
an action is taken to predict the symbolic representation of objects post-action. We use an attention mechanism
over the extracted bounding boxes to obtain a visual hidden representation of an object given its name. The only
remaining symbolic inputs during pre-training are the action description and object names.

and corresponding text descriptions. Zellers et al.
(2019) used an off-the-shelf ResNet50 model (He
et al., 2016) to augment an existing BERT language
model (Devlin et al., 2019) with vision capabilities.
Transformer models such as UNITER (Chen et al.,
2020), ERNIE-ViL (Yu et al., 2021), VisualBERT
(Li et al., 2020), and ViLBert (Lu et al., 2019)
have been applied to visual commonsense reason-
ing. These models use a joint transformer backbone
for images and text and vary their pre-training ob-
jectives. However, most of these models are trained
on static text-image pairs: they aren’t designed to
capture the dynamics of an environment, partic-
ularly how object attributes change with actions.
Notably, recent work by Hanna et al. (2022) uses
CLIP (Radford et al., 2021) and MOCA (Singh
et al., 2021) embeddings to predict a post-action
image given a set of possible images. In contrast,
we focus on adapting an LLM with a vision-based
component to predict the consequences of actions
on the environment.

3 Method

We propose PIGLeT-Vis (Figure 2) for learning the
effects of actions on objects from images. We use a
pre-trained vision backbone, DETR (Carion et al.,
2020), as a Vision Object Encoder and combine
it with a RoBERTa LLM (Liu et al., 2019) as an
Action Encoder. We experiment with different con-
figurations of inputs to measure the impact of the
various components of our architecture. In partic-
ular, we test a variation in which we remove the
formal symbolic labels even in training, replacing

them with NL text labels. To evaluate our models,
we use the PIGPeN dataset (Zellers et al., 2021),
which consists of a symbolic and visual representa-
tion of an environment before and after an action is
taken. However, we filter PIGPeN to create a viable
testing ground for visual grounding of physical ac-
tions and more accurately measure generalization
capabilities of models.

3.1 Architecture

PIGLeT-Vis (shown in Figure 2) consists of sepa-
rate components, which can combine multi-modal
inputs in different ways. Through this modular
approach, we can turn off specific components to
evaluate how different inputs and model structures
affect performance on the task. We test models
with and without symbolic inputs and image inputs.
For all components, we use a dropout of p = 0.1
in between layers and a default hidden layer size
of h = 64.

3.1.1 Object Encoder
We reproduce Zellers et al. (2021), where all ac-
tions are assumed to involve two objects, o0 and
o1, and the symbolic representation of objects are
encoded in an Object Encoder model. The sym-
bolic representation of an object before the action
is represented by opre. Both objects (o0pre and o1pre)
in the environment are described by a vector of
38 attributes, chosen on the basis that they are the
kinds of physical attributes that are influenced by
actions. They describe an object as small/large,
cold/hot, empty/full, etc.

We first embed these symbolic object attributes

using an embedding layer Ee×h, where e = 329 is
the total number of unique attributes and h is our
hidden size. For an object k:

ôkpre = E(okpre) (1)

The Object Encoder Oencoder takes in the embed-
ded object attributes through a set of multi-head
attention layers to encode the symbolic representa-
tion of each object. We use the default Pytorch im-
plementation of the Transformer Encoder (Paszke
et al., 2019) with three layers and 4 heads. The first
encoded output of each object sequence is used for
representing the entire object.

hk
pre = Oencoder(ôkpre) (2)

3.1.2 Action Encoder
Actions are encoded either as a symbolic triplet
⟨action, action object, action receptacle⟩ or as an
annotated text describing an action being taken
(e.g., “robot empties the cup”).

During pre-training, the Action Encoder
Apretrain uses an action embedding layer E′ to
embed the first dimension of the action, and re-
uses the object embedding layer E to embed the
action object name ao and action receptacle name
ar. The action embedding layer E′ has dimension-
ality 10× h for the 10 distinct actions. The three
embedded representations are summed and passed
to the Action Encoder’s linear layers to produce ha

(see equation 3). Similarly to Zellers et al. (2021),
a tanh activation is applied after each linear layer.

ha = Apretrain(E′(a) + E(ao) + E(ar))) (3)

When fine-tuning on the annotated dataset, the
action input is text and therefore we switch out the
Action Encoder Apretrain for Afinetune—our text-
based Action Encoder. Afinetune uses a RoBERTa-
base1 model (Liu et al., 2019) to process a tok-
enized version of the text input at. The first token
([CLS]) of the RoBERTa output layer is used to rep-
resent the action sequence and then passed through
a linear layer to map the dimensionality of the hid-
den states from 256 to h.

ha = Afinetune(at) (4)
1Implementation and pre-trained model weights are taken

from the Huggingface library (Wolf et al., 2019).

3.1.3 Vision Object Encoder
The Vision Object Encoder takes in images (ipre
and ipost) to provide a visual representation of each
object k before and after (hk

pre and hk
post). We

use the DETR1 (Carion et al., 2020) model as a
backbone to predict N bounding boxes in a pair
of images (pre- and post-action). As DETR is pre-
trained on the COCO object detection dataset (Lin
et al., 2014), its predicted object labels do not align
with those in PIGPeN. Therefore, we instead learn
a mapping between the predicted bounding box
representations and the PIGPeN objects. For each
image, we obtain a hidden representation hb of
dimensionality N × 256 where N = 100.

We use an attention mechanism over the bound-
ing boxes’ hidden representation, conditioned on
the object names. For a given object ok, its condi-
tional representation hk

c is the encoded name of the
object: E(okname). We can therefore obtain the at-
tention score of a given object ok and image im by
calculating the alignment between the conditional
representation hk

c and the hidden representations of
bounding boxes hbm :

hbm = DETR(im) (5)

αk
m = Softmax

(
h∑

i=1

(hk
chbm)i

)
(6)

We obtain the final representation for a given ob-
ject and image by multiplying our attention scores
α with the extracted output representation from
DETR and summing along the bounding box axis:

hk
om = W

 b∑
j=1

(αk
mhbm)j

 (7)

We use a final output layer W to decrease the di-
mensionality of ho from the DETR dimensionality
of 256 to h.

Through the Vision Object Encoder, we replace
the previously symbolic inputs with images and can
extract [h0

preh1
pre] and [h0

posth1
post] from ipre and

ipost respectively. Note that we make the implicit
assumption that ipre and ipost contain the informa-
tion necessary to predict object attributes of the
objects post-action.

3.1.4 Action Apply
The Action Apply Model β is a simple fuse op-
eration (concatenation in the hidden dimension)
followed by three linear layers, which combine

the action representation ha and an object repre-
sentation of the scene pre-action hk

pre. The model
outputs an object’s representation hk

a, containing
information conditioned all inputs:

hk
a = β(ha,hk

pre) (8)

3.2 Object Decoder
Finally, the Object Decoder is a transformer mod-
ule that maps the object representations ho from
the pre-action state back to 38 symbolic attributes.
It uses a default three layer Transformer Decoder
(Paszke et al., 2019) that takes the hidden repre-
sentation from the Action Apply hk

a as an encoded
memory state and hk

pre as the source sequence to
predicts a label for each attribute.

ȯkpost = Odecoder(hk
a,hk

pre) (9)

When we use image inputs, we also have access
to the post-action visual representation and can
therefore use hk

pre + hk
post instead of hk

pre.
The output has post-action object states ȯkpost

which are compared to the ground truth okpost to
calculate cross-entropy. As an additional loss, we
also use the cross-entropy between ȯkpre and okpre by
passing an empty hk

a to force the Object Decoder
to recreate the attributes in the pre-action state. We
weight both losses equally.

3.3 Evaluation Metrics
Since our task involves predicting 38 attributes
for two different objects per example, we follow
Zellers et al. (2021) and report different types of
accuracy metrics on the test set (after fine-tuning).
We measure the overall accuracy by scoring how
many objects have all attributes correctly predicted
(exact match). Note that this is a high bar for a
model where the symbolic representations are la-
tent: to predict an object correctly, our model must
first estimate its attributes before the action and
then estimate whether and how these change given
an action. So we also measure the attribute-level
and action-level accuracies of each model, so as
to explore which attributes and actions are more
difficult to predict than others.

3.4 PIGPeN-Vis Dataset Split
To evaluate physical commonsense reasoning using
PIGLeT-Vis, we filter PIGPeN (Zellers et al., 2021)
to create a subset (PIGPeN-Vis) which we use for
all our experiments. We motivate PIGPeN-Vis as

a way to isolate the effects of adding our vision
component, because while PIGPeN already has
images, these images were not used in PIGLeT.

The PIGPeN dataset consists of trajectories of
an environment before (pre) and after (post) an
action is taken. Each trajectory contains repre-
sentations of two distinct objects before and af-
ter. One of the objects is usually targeted by the
action, while the other acts as a distractor. In ad-
dition, image pairs (ipre, ipost) for each trajectory
are provided, where each image is snapshot of the
simulated photo-realistic 3D environment which
contains the objects in view (see Appendix B for
an example). Each image is an RGB image of
dimensions 640× 385.

The original dataset is separated into two distinct
sets:

1. A pre-training set of 278, 009 trajectories,
which includes the symbolic representations
of objects o before and after a symbolic action
a is taken. A separate validation set of 33, 042
examples is also included.

2. A fine-tuning set of 1, 000 trajectories which
has been annotated to replace the symbolic ac-
tion a with a textual representation at describ-
ing the action. Separate validation and test
sets of 500 examples each are also included.
All metrics are reported on the test set.

In PIGPeN, the object states opre and opost con-
tained 40 different attributes and 13 different ac-
tions a. Attributes range from intrinsic such as
name or moveable to stateful such as distance or
isCooked. In forming PIGPeN-Vis, we remove
two attributes and three actions from the dataset
to obtain 38 attributes and 10 possible actions (see
Appendix B for more details).

3.4.1 Viewpoint and Action Filtering
Since the PIGPeN images were not generated with
the goal of being used as input data, we identified
several issues with the quality of certain scenes.
A notable difficulty is that in some cases, the be-
fore and after images are not captured from the
same camera angle or they have different light-
ing conditions. Changing orientations and lighting
conditions makes it difficult to use an image pair
(ipre, ipost) to isolate the outcome of an action. Con-
versely, image pairs with too few perceivable differ-
ences also break our assumption that the changes in

the environment are perceivable. Therefore, we fil-
ter the dataset using pixel statistics to remove image
pairs that have either large perceivable differences
(likely due to changes in viewpoint) or small per-
ceivable differences (where the action’s results are
not visually salient enough) (see Appendix B.2).
We exclude 15.4% of the total dataset through
visual filtering of the original dataset.

3.4.2 Zero-Shot Filtering
To evaluate the generalization capabilities gained
from a vision component, we further filter the
dataset to exclude a subset of training examples.
Unlike the original PIGPeN dataset which only
tested for zero-shot generalization at the level of
the fine-tuning data, we remove all instances with
selected specific objects or action-object pairs from
all training and validation sets. To minimize the
effect of removing examples from the dataset, we
pick objects and action-object pairs with an already
low number of samples in the training sets. In total,
we exclude 14 objects and 27 action-object pairs,
which amounts to less than 3% (6, 816 samples)
of the remaining training sets (see Appendix B.3).
These zero-shot examples comprise around 10% of
the test set.

After both filtering stages, PIGPeN-Vis contains
a pre-training dataset of 232, 625 trajectories with a
validation set of 26, 823, and a fine-tuning training
set of 750 examples with a validation set of 367
examples and a test set of 398 examples.

3.5 Training Configurations

We evaluate the impact of the vision component on
PIGPeN-Vis through five different setups:

• base: We implement a baseline model with-
out symbolic object inputs. Our implemen-
tation removes the Object Encoder entirely,
such that the model must predict the attributes
of objects solely from knowing the action and
the object names that it relates to. This model
acts as a lower bound on the capabilities of the
vision model: its performance would match
the vision model if images are irrelevant to
solving the task.

• base+symbolic: This is our implementation
of the original Zellers et al. (2021) PIGLeT
model, shown in Figure 1. This model acts as
an upper bound on the capabilities of the vi-
sion model since it observes the true symbolic

representations of objects before the action
(which the vision model must estimate).

• base+images: This is our proposed PIGLeT-
Vis, shown in Figure 2, where the Vision Ob-
ject Encoder replaces the previously symbolic
Object Encoder. This model leverages the
before and after images of the environment
as well as the name of the objects to extract
representations of the object attributes.

• base+symbolic+images: We sum the hid-
den symbolic representations of objects with
their visual representations in a unified model.
Through this setup, we evaluate whether im-
ages can provide additional information to the
already comprehensive symbolic representa-
tions.

• base+images+text-labels: We convert the
symbolic representations of the labels for the
object names and actions to their text label and
encode them using a frozen LLM during pre-
training. We use the same LLM to encode the
text labels that we later use in the fine-tuning
stage. This setup replaces all symbolic inputs
from the pre-training stage to only language
and image inputs.

Note that there are a few differences between the
original Zellers et al. (2021) model and our im-
plementation of base+symbolic. For instance,
for simplicity, we opted to use an off-the-shelf
RoBERTa-base (Liu et al., 2019) model instead
of training our own custom GPT2 (Radford et al.,
2019). Additionally, we also reduce the dimen-
sionality of the PIGLeT layers from h = 256 to
h = 64. We found that not only does this allow
faster training times as it shrinks the Physical Dy-
namics model from 11.9 million parameters to 2
million parameters, it also improves the overall
accuracy by a small margin (+1.51%).

We train each model for 80 epochs with a batch
size of 256 using the Pytorch implementation of
the Adam optimizer (Kingma and Ba, 2014) and a
learning rate of 10−3 during pre-training and 10−5

during fine-tuning. We run each setup over 10
different seeds and report the average and standard
deviation for each metric (see Appendix C.1 for
more details).

Accuracy (%± σ)
Overall Zero-Shot

base 21.23± 0.72 5.34± 2.77

base+symbolic (PIGLeT) 85.03± 0.45 39.04± 3.37
base+symbolic+images 86.01± 0.89 35.89± 3.47

base+images (PIGLeT-Vis) 45.47± 1.50 7.53± 2.60
base+images+text-labels 47.55± 2.10 8.90± 3.24

Table 1: Overall and zero-shot accuracies (PIGPeN-Vis)

4 Results and Discussion

We evaluate all models on our PIGPeN-Vis split
and report the overall (exact match), zero-shot,
action-level, and attribute-level accuracy results
for all setups in Tables 1 and 2. For completeness,
we also evaluate models on the original PIGPeN to
contrast the effects of our filtering operations (see
§3.4 and Appendix D) and find PIGPeN-Vis is a
more challenging subset for all models.

The base model provides a low bar estimate of
what is achievable using only the action encoder
inputs. Unsurprisingly, the base model performs
worst on overall accuracy, which demands an ex-
act match of all attributes. It does relatively well
on (individual) attribute-level accuracy, primarily
because it predicts the most common attribute for
each object. Some actions are also easier than
others—for instance, the model reaches 27.38% ac-
curacy on ToggleOn from only knowing the action
and object names. This is likely because ToggleOn
is constrained to a small set of objects and effects.

Our base+symbolic model obtains similar re-
sults to the original implementation by Zellers et al.
(2021), with an overall accuracy of 85.03%. How-
ever, it performs much worse on the zero-shot split
(39.04%) than the original PIGLeT model reported
(80.2%) (Zellers et al., 2021). This disparity can
be explained by the fact that the original zero-shot
PIGPeN dataset was not a true zero-shot dataset, be-
cause the Physical Dynamics model was exposed
to the “unseen” objects in its pre-training. The
base+symbolic model provides a high bar esti-
mate of what could be achievable if: (i) ipre and
ipost capture the symbolic environment; and (ii) the
Vision Object Encoder can subsequently extract
these features. However, as we will argue in Sec-
tion 6, both (i) and (ii) are unrealistic given the
constraints of both the dataset and the model.

Our base+images (PIGLeT-Vis) model scores
45.28% in overall accuracy but only 7.53% on the
zero-shot set. Nevertheless, it outperforms the
base model in overall accuracy (p < 0.0001) and
in zero-shot accuracy (p = 0.08), which demon-

strates that the images improve the prediction of
the effects of actions. The base+images model
also performs significantly better than base on dif-
ficult attribute-level accuracies such as distance
(p < 0.0001). However, as before, accuracy on
individual attributes benefits from the skewed dis-
tributions of their values and does not necessar-
ily translate to high scores on predicting all 38
attributes correctly.

Utilizing both images and symbolic representa-
tions as inputs helps the base+symbolic+images
model outperform purely symbolic inputs in over-
all accuracy, from 85.03% to 86.01% (p < 0.01).
However, image inputs also decrease the model’s
zero-shot performance from 39.04% to 35.89%, al-
though this isn’t statistically significant (p = 0.05)
due to high variance. We suspect that this high
variance is caused by an increase in noise in the
model resulting from adding images to the sym-
bolic model. However, the overall picture is more
complicated, as images can also provide gains on
certain actions (e.g., PickUp accuracy increases
from 80.48% to 86.14%) even though it causes a
decrease in many other cases (e.g., ToggleOn).

Finally, when we utilize NL descriptions to re-
place the formal symbolic inputs (action name
and object names), base+images+text-labels
improves overall accuracy when compared to
base+images from 45.47% to 47.55% (p = 0.02).
Text inputs appear to improve zero-shot accuracy,
but not by a statistically significant margin (p =
0.31). Accuracy also improves in most actions,
for instance the Slice accuracy improves from
41.64% to 45.57% (p = 0.03). So the NL descrip-
tions inform the task in a beneficial way, over and
above the raw images. But encoding the labels as
text rather than formal symbolic representations
also adds noise.

Nevertheless, text labels improve accuracy on
actions where the semantic information contained
in the label provides a richer context to help gen-
eralize to similar objects. For instance, a “cup”
and a “mug” are semantically close, and thus learn-
ing the effects of actions on a “cup” might help
the model predict the same effects on a “mug”
even if the word forms are different. In con-
trast, the formal symbolic representations treat
the predicate symbols cup and mug as unrelated,
and so don’t benefit from the lexical relationships
that the LLM captures. Fully removing the sym-
bolic representations allows us to adapt our model

Action Accuracy (%) Attribute Accuracy (%)
Open Pickup ToggleOn Slice size distance temperature

base 8.33 10.96 27.38 22.13 73.78 51.01 95.91
base+symbolic (PIGLeT) 85.73 80.48 96.90 75.41 94.98 95.13 99.85
base+symbolic+images 88.75 86.14 92.86 81.31 96.35 96.13 99.59
base+images (PIGLeT-Vis) 20.83 33.49 70.24 41.64 87.03 76.62 96.10
base+images+text-labels 22.92 40.12 67.14 45.57 87.89 78.06 96.72

Table 2: Action and attribute specific accuracies for a subset of actions and attributes; for a comprehensive table
with standard deviations see Appendix D. size and distance each have eight possible classes while temperature
has three.

Apple Apple PotCounterTop

Be
fo

re
Af

te
r

SliceObject(Apple) on (CounterTop,Apple) PutObject(Apple, Pot) on (Apple,Pot)

Figure 3: We visualize the attention of the Vision Object Encoder from a trained base+images model on two
different actions and environments. The left grid focuses on the effect of Slice(Apple) on CounterTop and Apple,
while the right grid focuses on the effects of Slice(Apple) on Apple and Pot objects.

to any possible unseen object during test time.
base+images+text-labels is adaptable to gen-
eral settings without knowing the symbolic map-
ping of objects and actions in the environment.

The results of both base+symbolic+images and
base+images+text-labels make the case multi-
modal modeling of commonsense reasoning, as
both language and images are complementary to
generalize to unseen settings.

4.1 Qualitative Attention Maps
Visualizing attention is another benefit of a vision
component, as we can see what the model focuses
on and partially explain its predictions. Figure 3
shows two separate examples and corresponding at-
tention maps. In the left example, base+images is
tasked with predicting the attributes of CounterTop
and Apple after the Slice action is applied on the
Apple. In the right example, the Put action is ap-
plied on the Apple, and the model must predict
the attributes of the Apple and the distractor object
Pot. The two rows are the before and after images
(ipre and ipost), and the two columns are the two
objects used to condition the attention. The atten-
tion maps display the strength of the attention for
each bounding box given an object name.

Both examples in Figure 3 show that the Vision

Object Encoder can map known objects to relevant
bounding boxes. The model successfully tracks the
Apple in both cases by placing the most weight on
the bounding box targeting the Apple. However,
these examples also show the difficulty of this task—
the environments are realistic and can be filled with
more than one instance of an object.

5 Conclusion

In this paper, we tackle the task of predicting the
effects of actions on objects’ physical attributes. In
contrast to (Zellers et al., 2021), our model does
not treat the formal symbolic representation of the
images as observed. Instead, PIGLeT-Vis supports
inference when the inputs are images alone or im-
ages plus NL descriptions and a phrase denoting
the action (e.g., “the robot empties the cup”). While
PIGPeN offers challenges for applying a multi-
modal approach, our model can extract useful in-
formation from images, opening the door for gen-
eralizing learning physical commonsense to real-
world data. Importantly, our PIGPeN-Vis split can
be used to evaluate the zero-shot capabilities of
different model configurations. Moreover, while
base+symbolic still outperforms base+images, it
does so without estimating the attributes of ob-

jects and thus solves a much easier but unrealistic
task. Through base+images+text-labels, we
show that, when replacing symbolic inputs, the
best solution is to complement image inputs with
NL descriptions to leverage information from both
modalities. Finally, our results show the need to
improve the generalization capabilities of multi-
modal models such that they can learn and adapt to
unseen situations.

6 Limitations

There are several limitations to our approach that
result directly from the inherent limitations of PIG-
PeN and our proposed Vision Object Encoder re-
spectively.

PIGPeN was not originally designed for test-
ing commonsense reasoning using images and con-
tains numerous inconsistencies which cannot all be
solved with the PIGPeN-Vis split obtained from
filtering (Section 3.4.1). Given the presence of non-
physically salient attributes such as temperature,
images are not guaranteed to fully capture their
symbolic representations. PIGPeN includes certain
attributes which are not discernible from images,
e.g., even humans would be unable to tell a hot
plate from a cold plate from vision alone. The im-
ages in PIGPeN can also contain more than one
object (e.g., more than one cup) without ever speci-
fying which one the symbolic representation refers
to. This causes difficulty for our approach because
judging specific attributes such as distance is im-
possible if there are two cups at different distances
from the viewpoint. Additionally, PIGPeN also
discretizes continuous variables such as distance
into categories which can be hard to disambiguate.

To approach the accuracy of base+symbolic
with our vision component, we also need a vision
representation from which to correctly estimate
all latent attributes. Even if images are assumed
to be perfect representations of the symbolic en-
vironment, the model still has to extract each of
the 38 attributes correctly for both objects using
only two images. It is possible (and likely) for
the vision detection backbone to miss the target
object entirely because it is not trained to detect
the specific object in question. We see this effect
in Figure 3, where the model falls back to using a
bounding box around the sink area to describe the
CounterTop object. The DETR vision model used
to extract bounding boxes was pre-trained on the
COCO dataset (Lin et al., 2014) which does not

contain CounterTop as an object. PIGLeT-Vis is
therefore ultimately limited by the capabilities of
its vision backbone.

Ethics Statement

While this work does not introduce new data or
involve human participants, we use the PIGPeN
dataset which contains human-labelled data. The
fine-tuning portion of the dataset was annotated
through MTurk by Zellers et al. (2021) and they re-
port following best practices (paying decent wages,
providing feedback and using a qualification test)
in their data collection. We filter and use a subset of
PIGPeN and introduce methods to learn the effects
of actions in a multimodal setting. We, therefore,
believe that our work does not raise any ethical
concerns.

Acknowledgements

This work was supported in part by the UKRI Cen-
tre for Doctoral Training in Natural Language Pro-
cessing, funded by the UKRI (grant EP/S022481/1)
at the University of Edinburgh, School of Infor-
matics and School of Philosophy, Psychology &
Language Sciences and by he UKRI- funded TAS
Governance Node (grant number EP/V026607/1).

References
Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng

Gao, and Yejin Choi. 2020. Piqa: Reasoning about
physical commonsense in natural language. In AAAI.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, page 1877–1901. Curran Associates, Inc.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Zagoruyko. 2020. End-to-end object detection with
transformers. CoRR, abs/2005.12872.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El
Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. 2020. Uniter: Universal image-text
representation learning. In ECCV.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Maxwell Forbes, Ari Holtzman, and Yejin Choi. 2019.
Do neural language representations learn physical
commonsense? In CogSci.

Qiaozi Gao, Shaohua Yang, Joyce Chai, and Lucy Van-
derwende. 2018. What action causes this? towards
naive physical action-effect prediction. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 934–945, Melbourne, Australia. Association
for Computational Linguistics.

Michael Hanna, Federico Pedeni, Alessandro Suglia,
Alberto Testoni, and Raffaella Bernardi. 2022. ACT-
thor: A controlled benchmark for embodied ac-
tion understanding in simulated environments. In
Proceedings of the 29th International Conference
on Computational Linguistics, pages 5597–5612,
Gyeongju, Republic of Korea. International Com-
mittee on Computational Linguistics.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recogni-
tion. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770–778.

Jena D Hwang, Chandra Bhagavatula, Ronan Le Bras,
Jeff Da, Keisuke Sakaguchi, Antoine Bosselut, and
Yejin Choi. 2021. (comet-) atomic 2020: On sym-
bolic and neural commonsense knowledge graphs.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 6384–6392.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. International
Conference on Learning Representations.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2020. What does BERT
with vision look at? In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 5265–5275, Online. Association
for Computational Linguistics.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C. Lawrence Zitnick. 2014. Microsoft COCO:
Common objects in context. In Computer Vision –

ECCV 2014, pages 740–755. Springer International
Publishing.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
2019. Vilbert: Pretraining task-agnostic visiolinguis-
tic representations for vision-and-language tasks. In
Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

R. Thomas McCoy, Junghyun Min, and Tal Linzen.
2020. BERTs of a feather do not generalize together:
Large variability in generalization across models with
similar test set performance. In Proceedings of the
Third BlackboxNLP Workshop on Analyzing and In-
terpreting Neural Networks for NLP, pages 217–227,
Online. Association for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural lan-
guage supervision. arXiv:2103.00020 [cs]. ArXiv:
2103.00020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog.

Shailaja Keyur Sampat, Akshay Kumar, Yezhou Yang,
and Chitta Baral. 2021. CLEVR_HYP: A challenge
dataset and baselines for visual question answering
with hypothetical actions over images. In Proceed-
ings of the 2021 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
3692–3709, Online. Association for Computational
Linguistics.

Ke Shen and Mayank Kejriwal. 2021. On the gener-
alization abilities of fine-tuned commonsense lan-
guage representation models. In Artificial Intelli-
gence XXXVIII, page 3–16. Springer International
Publishing.

http://arxiv.org/abs/2005.12872
http://arxiv.org/abs/2005.12872
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-1086
https://doi.org/10.18653/v1/P18-1086
https://aclanthology.org/2022.coling-1.495
https://aclanthology.org/2022.coling-1.495
https://aclanthology.org/2022.coling-1.495
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.18653/v1/2020.acl-main.469
https://doi.org/10.18653/v1/2020.acl-main.469
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://proceedings.neurips.cc/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://doi.org/10.18653/v1/2020.blackboxnlp-1.21
https://doi.org/10.18653/v1/2020.blackboxnlp-1.21
https://doi.org/10.18653/v1/2020.blackboxnlp-1.21
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/2103.00020
http://arxiv.org/abs/2103.00020
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://doi.org/10.18653/v1/2021.naacl-main.289
https://doi.org/10.18653/v1/2021.naacl-main.289
https://doi.org/10.18653/v1/2021.naacl-main.289

Kunal Pratap Singh, Suvaansh Bhambri, Byeonghwi
Kim, Roozbeh Mottaghi, and Jonghyun Choi. 2021.
Factorizing perception and policy for interactive in-
struction following. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
1888–1897.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149–4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

Da Yin, Liunian Harold Li, Ziniu Hu, Nanyun Peng,
and Kai-Wei Chang. 2021. Broaden the Vision:
Geo-Diverse Visual Commonsense Reasoning. In
EMNLP.

Fei Yu, Jiji Tang, Weichong Yin, Yu Sun, Hao Tian, Hua
Wu, and Haifeng Wang. 2021. Ernie-vil: Knowledge
enhanced vision-language representations through
scene graph. In AAAI.

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin
Choi. 2019. From recognition to cognition: Visual
commonsense reasoning. In 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), page 6713–6724. IEEE.

Rowan Zellers, Ari Holtzman, Matthew Peters, Roozbeh
Mottaghi, Aniruddha Kembhavi, Ali Farhadi, and
Yejin Choi. 2021. Piglet: Language grounding
through neuro-symbolic interaction in a 3d world.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics.

A GPT-3 Example of Physical Reasoning

The weight of the potato is 150 grams.
The robot then slices the potato into thin slices.

The weight of the potato is now 75 grams.

Figure 4: Example of incorrect physical commonsense
by an LLM. When predicting what comes after the input
text, the large 175 billion parameter GPT-3 (Brown
et al., 2020) predicts that the weight of the potato
halves after a slicing action is taken.

EmptyLiquidFromObject
object=Cup

Action

Annotated Action "The robot empties the
cup into the sink."

Figure 5: Image pair and actions for a selected PIGPeN
example.

pre post

ocuppre ofaucetpre ocuppost ofaucetpost

ObjectName Cup Faucet Cup Faucet
Contained Objects
Is contained in...
Mass 1 to 2lb Massless 1 to 2lb Massless
Size small medium small medium
Temperature RoomTemp RoomTemp RoomTemp RoomTemp
Distance 1 to 2ft 3 to 4 ft 1 to 2ft 3 to 4 ft
Breakable Yes No Yes No
Cookable No No No No
CanBecomeDirty Yes No Yes No
IsBroken No No No No
IsCooked No No No No
IsDirty No No No No
IsFilledWithLiquid Yes No No No
IsOpen No No No No
IsPickedUp Yes No Yes No
IsSliced No No No No
IsToggled No No No No
Moveable No No No No
Openable No No No No
Pickupable Yes No Yes No
CanHoldItems Yes No Yes No
Sliceable No No No No
Toggleable No Yes No Yes
Materials Ceramic Ceramic

Table 3: Attributes for a selected PIGPeN example. The
total number of attributes is 38 as the Materials attribute
is a multi-hot encoding.

https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2109.06860
https://arxiv.org/abs/2109.06860
https://doi.org/10.1109/CVPR.2019.00688
https://doi.org/10.1109/CVPR.2019.00688

B PIGPeN-Vis

We select an example from PIGPeN to display in
Figure 5 and Table 3.

From the original dataset, we re-
move two attributes (isUsedUp and
salientMaterials_Organic) because they
are unchanged in all examples. We also remove
3 actions (ThrowObject10, ThrowObject100
and ThrowObject1000) which are all related
to throwing an object across a certain distance.
These actions account for only a small subset of
the dataset and create inconsistent image pairs
due to the agent’s momentum being captured in
the images. The angle of the camera changes
as a result of ThrowObject and this breaks our
assumption that the difference between ipre and
ipost solely reflects the effects of the action on the
environment (and not on the viewer). We therefore
reduce the total number of symbolic attributes per
object to 38 and the number of possible actions to
10.

B.1 Attributes

The following 38 symbolic attributes are used to
describe an object in PIGPeN:

ObjectName, parentReceptacles,

receptacleObjectIds, distance, mass,size,

ObjectTemperature, breakable, cookable,

dirtyable, isBroken, isCooked, isDirty,

isFilledWithLiquid, isOpen, isPickedUp,

isSliced, isToggled, moveable, openable,

pickupable, receptacle, salientMaterials_Ceramic,

salientMaterials_Fabric, salientMaterials_Food,

salientMaterials_Glass, salientMaterials_Leather,

salientMaterials_Metal, salientMaterials_Paper,

salientMaterials_Plastic,

salientMaterials_Rubber, salientMaterials_Soap,

salientMaterials_Sponge, salientMaterials_Stone,

salientMaterials_Wax, salientMaterials_Wood,

sliceable, toggleable

B.2 Filtering Statistics

We initially filter the PIGPeN dataset using two
main strategies to remove images with too much or
too little change between the pre and post images.
In both cases, the goal is to remove pairs of images
in which it would be impossible for a vision model
to predict what has changed.

Images with too many changes are often images
taken from different viewpoints or with different
lighting conditions. We filter these images by look-

Figure 6: Distribution of the number of pixels changed
per image in the PIGPeN dataset.

Figure 7: Distribution of the maximum pixel value
changed per image in the PIGPeN dataset.

ing at the number of pixels changed between ipre
and ipost. We show the distribution of the num-
ber of pixels changed per image over the training
dataset in Figure 6. Using this visualization we
can clearly see a small peak at the extreme - where
almost all the pixels in ipost are different from ipre.
Note that since each image is an RGB image of
dimensions 640× 385, the max number of change
is 640 × 385 × 3 = 739, 200 (we also compare
pixels across color channels). We opt to remove
all images with more than 400, 000 changes, which
corresponds to around 6.2% of the training dataset.

Images with too little change could be exam-
ples of where the action has no visual outcome and
ipre and ipost are indistinguishable. To filter these
images we measure the maximum magnitude of
change in each pixel and each color channel be-

tween the pairs of images. We visualize the max
change across the training dataset in Figure 7. Here
a low values implies almost no salient change, and
as max change approaches zero - it becomes un-
likely that a human would be able to perceive the
difference between the pair of images. We opt for
to keep images with a max change greater than
0.2 which corresponds to excluding 7.8% of the
training dataset.

Filtering on the number of changed pixels lead
to the exclusion of around 13.89% of the training
dataset.

B.3 Zero-shot Filtering

We remove the following 14 objects from both the
train and validation (3, 401 examples total):
HandTowel, Towel, Plunger, Watch, CD, SoapBottle,

Pen, RemoteControl, SoapBar, Box, Bottle,

CreditCard, Statue, KeyChain

We remove the following 27 action-object pairs
from both the train and validation (3, 278 examples
total):
(CloseObject,Toilet),

(DirtyObject,Pan), (DirtyObject,Pot),

(EmptyLiquidFromObject,Bottle),

(EmptyLiquidFromObject,Pot), (OpenObject,Toilet),

(PickupObject,Box), (PickupObject,CellPhone),

(PickupObject,CreditCard),

(PickupObject,KeyChain), (PutObject,CD),

(PutObject,CreditCard), (PutObject,HandTowel),

(PutObject,Laptop), (PutObject,Lettuce),

(PutObject,Pen), (PutObject,Plunger),

(PutObject,Pot), (PutObject,RemoteControl),

(PutObject,SoapBar), (PutObject,SoapBottle),

(PutObject,Statue), (PutObject,ToiletPaper),

(PutObject,Towel), (PutObject,Watch),

(ToggleOff,CellPhone), (ToggleOff,Television)

C Code Release and Training

Our full code, models, and PIGPeN-Vis split can
be found at github.com/gautierdag/piglet-vis.

C.1 Additional Training Details

As previously mentioned, there are a few differ-
ences between the original Zellers et al. (2021)
model and our implementation of base+symbolic.
We use an off-the-shelf RoBERTa-base (Liu et al.,
2019) model instead of a custom GPT2 (Radford
et al., 2019). Additionally, we also reduce the di-
mensionality of the PIGLeT layers from h = 256
to h = 64. This shrinks the overall model (ex-

cluding the LLM) from 11.9 million parameters to
less than 2 million parameters during pre-training
and improves the overall accuracy by a small mar-
gin (+1.51%). We do not run any other hyper-
parameter search throughout our experiments and
wherever possible use the same hyper-parameters
as PIGLeT. We also reduce the batch size from
1024 to 256 because we use a mix of NVIDIA
GTX 1080 and NVIDIA A100 GPUs and wish to
keep batch size constant.

The +images models use the extracted represen-
tations from a frozen off-the-shelf DETR model
(41.3 million parameters), however it is ran only
once over all images as we cache its predictions.
We do not use the “NO OBJECT” predictions from
DETR, and simply pass all 100 bounding boxes
representations to the attention mechanism. Since
we do not have access to the true bounding boxes
in PIGPeN, we do not fine-tune DETR and there-
fore ignore its prediction heads which have also
been trained on COCO and mismatch our possible
objects.

The +symbolic models use the Symbolic Object
Encoder which is an additional 800, 000 parame-
ters on its own. During fine-tuning all models use a
RoBERTA-base model (+120 million parameters)
in the Action Encoder. The +text-label model
also uses the RoBERTA-base model during pre-
training, but again this is frozen and its outputs are
cached for the full dataset.

We pre-train each model for 80 epochs and fine-
tune for 60 epochs. For all setups, pre-training
takes between 1 to 2 hours and fine-tuning takes
less than 1 hour on an NVIDIA A100 GPU. We use
the Pytorch implementation of the Adam optimizer
(Kingma and Ba, 2014) and a learning rate of 10−3

during pre-training and 10−5 during fine-tuning.
We use early stopping on the validation loss with
a patience of 10 epochs. We run each setup over
10 different seeds (s ∈ [1, 2, ..., 10] and report the
average and standard deviation for each metric.

D Accuracy Results

D.1 Comparing PIGPeN and PIGPeN-Vis

Table 4 compares the overall accuracy on the orig-
inal PIGPeN dataset with our proposed PIGPeN-
Vis split. We find that our PIGPeN-Vis split is
consistently harder to solve than the original PIG-
PeN dataset. We explain the increased accuracy in
the original dataset with the fact that some of the
filtered out actions (see Appendix B) are easy to

https://github.com/gautierdag/piglet-vis

Overall Accuracy (%± σ)
PIGPeN PIGPeN-Vis ∆

base 29.18± 0.34 21.23± 0.72 −7.95%

base+symbolic (PIGLeT) 86.39± 0.79 85.03± 0.45 −1.36%
base+symbolic+images 87.45± 0.66 86.01± 0.89 −1.44%

base+images (PIGLet-Vis) 49.13± 1.53 45.47± 1.50 −3.66%
base+images+text-labels 51.28± 1.68 47.55± 2.10 −3.73%

Table 4: Overall Accuracies comparing full PIGPeN
with the PIGPeN-Vis split across 10 seeds.

Overall Accuracy (%± σ)
validation test

base 23.85± 0.95 21.23± 0.72

base+symbolic (PIGLeT) 88.08± 0.50 85.03± 0.45
base+symbolic+images 89.49± 0.82 86.01± 0.89

base+images 50.73± 2.97 45.47± 1.50
base+images+text-labels 53.33± 3.15 47.55± 2.10

Table 5: Validation and test overall accuracies. Note the
zero-shot accuracy is not calculated on the validation
set since there are no unseen examples in the validation
set to prevent leakage.

solve from knowing the object name and action:
e.g., most of the images we exclude due to little
salient changes are appliances like stoves being
turned on or off. However, it is easy for a model
to predict the post-condition attributes of a stove,
which are mostly static, across all examples given
an action such as ToggleOn, which always has the
same effect.

D.2 Complete Accuracy Results on
PIGPeN-Vis

Table 5 shows the overall accuracies for both the
test and validation sets. The full accuracy results
for all actions in Table 6 and for all attributes in
Table 7.

E Additional Attention Maps

We plot additional attention visual-
izations for all three image models
base+images, base+symbolic+images, and
base+images+text-labels in Figures 8, Fig-
ures 9, and Figures 11. Since the DETR object
detector remains frozen, all models have access
to the same bounding boxes and bounding
box representations. Qualitatively, we find
that the attention weights of base+images and
base+images+text-labels both learn to map
to globally relevant bounding boxes given an
objects. We also find the attention maps in
base+images+text-labels to be less confident
overall than base+images, likely due to the noise
introduced by the semantic text inputs. As a result,

base+images+text-labels makes less mistakes
by not focusing too much attention to the wrong
bounding box.

On the other hand, base+symbolic+images
focuses on seemingly random bounding boxes.
Since base+symbolic+images already receives
the full representation of each objects, it does
not learn to complement the object’s represen-
tation with accurate visual information. While
base+symbolic+images extracts 1% of additional
overall accuracy from image inputs when compared
to base+symbolic, it does so by falling back to
vision for visually salient actions such as Pickup.
base+symbolic+images focuses only a narrow set
bounding boxes with overconfidence with no re-
gard for whether or not the bounding box relates
to the object. We posit that the model might use
vision to better estimate more difficult attributes to
predict such as distance in some contexts. Note
Pickup is a salient action because when the agent
in the environment picks an object up, the object is
placed directly in the middle of its field of vision
(as if the agent were holding the object in front of
it).

(a) base+images (b) base+symbolic+images (c) base+images+text-labels

Figure 8: Attention maps for the effects of the EmptyLiquid action on Bowl with objects Fridge and Bowl. The top
row of each grid maps to the before environment and the bottom row maps to the after environment. The columns
map to each respective object. The Fridge object appears in the lower left of the image, and is only correctly
identified by base+images+text-labels, even though the model does place more weight to the bounding box of
the stove (lower right).

(a) base+images (b) base+symbolic+images (c) base+images+text-labels

Figure 9: Attention maps for the effects of the Slice action on Apple with objects CounterTop and Apple. The top
row of each grid maps to the before environment and the bottom row maps to the after environment. The columns
map to each respective object.

(a) base+images (b) base+symbolic+images (c) base+images+text-labels

Figure 10: Attention maps for the effects of the Dirty action on Bowl with objects Bowl and None. The top row of
each grid maps to the before environment and the bottom row maps to the after environment. The columns map to
each respective object. None can be an object in PIGPeN, but we do not predict its attributes and exclude it in all
model predictions.

(a) base+images (b) base+symbolic+images (c) base+images+text-labels

Figure 11: Attention maps for the effects of the Open action on Toilet with objects Toilet and ToiletPaper.
The top row of each grid maps to the before environment and the bottom row maps to the after environment. The
columns map to each respective object. This particular example is an unseen combination of action and object that
has been excluded from the training and validation set.

Action Accuracy (%± σ)
Close Dirty EmptyLiquid HeatUpPan Open

base 13.20± 1.06 17.71± 1.20 24.75± 5.75 36.33± 4.14 8.33± 1.84

base+symbolic 85.98± 1.77 94.00± 3.42 99.34± 1.15 100.00± 0.00 85.73± 0.99
base+symbolic+images 86.80± 3.29 90.29± 5.90 99.02± 2.07 99.17± 1.62 88.75± 3.02

base+images 27.42± 3.71 58.57± 2.78 69.34± 4.17 68.67± 3.75 20.83± 4.63
base+images+text-labels 28.87± 3.19 57.71± 3.24 70.16± 3.17 74.00± 3.16 22.92± 5.79

Pickup Put Slice ToggleOff ToggleOn

base 10.96± 1.92 27.95± 1.19 22.13± 0.86 30.83± 3.39 27.38± 2.57

base+symbolic 80.48± 2.88 58.39± 1.94 75.41± 1.89 99.40± 0.84 96.90± 1.61
base+symbolic+images 86.14± 2.56 57.59± 2.31 81.31± 3.96 99.05± 0.75 92.86± 5.14

base+images 33.49± 3.45 34.91± 2.43 41.64± 3.80 71.43± 2.75 70.24± 16.00
base+images+text-labels 40.12± 2.61 38.30± 3.11 45.57± 3.85 69.05± 5.81 67.14± 16.53

Table 6: Full accuracy results table including the standard deviation over 10 seeds for all actions and setups.

Attribute Accuracy (%± σ)
Name Temperature attribute breakable cookable dirtyable distance isBroken isCooked isDirty

base 99.66± 0.07 95.91± 0.41 96.12± 0.07 91.46± 0.36 99.95± 0.07 99.95± 0.10 51.01± 0.93 99.86± 0.00 98.60± 0.06 97.93± 0.19
base+symbolic 99.64± 0.12 99.85± 0.04 99.48± 0.03 99.84± 0.09 100.00± 0.00 100.00± 0.00 95.13± 0.35 100.00± 0.00 99.85± 0.04 99.71± 0.14
base+symbolic+images 99.62± 0.09 99.59± 0.27 99.48± 0.04 99.78± 0.10 100.00± 0.00 99.97± 0.09 96.13± 0.40 100.00± 0.00 99.85± 0.04 99.52± 0.32
base+images 97.34± 0.65 96.28± 0.74 97.25± 0.13 92.63± 0.75 99.91± 0.10 99.62± 0.20 76.90± 1.05 99.85± 0.05 98.68± 0.19 97.87± 0.34
base+images+text-labels 98.44± 0.35 96.05± 1.23 97.46± 0.13 93.19± 0.31 99.96± 0.09 99.93± 0.10 78.56± 1.16 99.84± 0.09 98.19± 0.84 97.78± 0.24

isFilledWithLiquid isOpen isPickedUp isSliced isToggled mass moveable openable parentReceptacles pickupable

base 96.79± 0.50 98.84± 0.23 94.83± 0.82 97.99± 0.09 98.36± 0.23 96.51± 0.15 99.90± 0.09 99.97± 0.06 87.44± 0.42 99.84± 0.09
base+symbolic 99.93± 0.12 98.95± 0.09 99.27± 0.31 100.00± 0.00 99.88± 0.12 99.33± 0.14 99.99± 0.04 99.97± 0.06 97.78± 0.47 99.90± 0.11
base+symbolic+images 99.84± 0.19 98.67± 0.38 98.96± 0.31 99.97± 0.06 99.74± 0.30 99.59± 0.09 100.00± 0.00 99.99± 0.04 97.26± 0.44 99.88± 0.10
base+images 96.88± 0.55 98.81± 0.97 97.43± 0.37 98.28± 0.30 97.92± 0.83 96.41± 0.41 99.79± 0.21 99.74± 0.20 91.05± 0.77 99.59± 0.17
base+images+text-labels 97.25± 0.45 98.11± 1.14 97.54± 0.53 98.34± 0.29 98.06± 0.55 96.74± 0.24 99.89± 0.09 99.95± 0.10 92.49± 0.69 99.70± 0.09

receptacleIds receptacle Ceramic Fabric Food Glass Leather Metal Paper Plastic

base 84.20± 0.61 99.85± 0.10 98.26± 0.17 99.55± 0.07 99.99± 0.04 98.91± 0.13 99.89± 0.06 98.69± 0.15 99.73± 0.00 98.30± 0.10
base+symbolic 96.36± 0.18 99.90± 0.09 100.00± 0.00 99.96± 0.07 100.00± 0.00 99.99± 0.04 100.00± 0.00 99.99± 0.04 100.00± 0.00 99.97± 0.06
base+symbolic+images 96.13± 0.30 99.92± 0.10 99.99± 0.04 99.85± 0.10 99.99± 0.04 99.97± 0.06 100.00± 0.00 100.00± 0.00 100.00± 0.00 99.96± 0.07
base+images 82.87± 0.55 99.47± 0.21 99.03± 0.22 99.50± 0.19 99.92± 0.10 99.16± 0.21 99.97± 0.06 98.31± 0.37 99.67± 0.21 98.83± 0.31
base+images+text-labels 83.91± 0.56 99.69± 0.11 99.36± 0.19 99.44± 0.12 99.96± 0.09 99.37± 0.24 99.95± 0.10 98.69± 0.30 99.56± 0.19 99.08± 0.20

Rubber Soap Sponge Stone Wax Wood size sliceable toggleable

base 100.00± 0.00 99.99± 0.04 100.00± 0.00 99.34± 0.09 100.00± 0.00 99.51± 0.16 73.78± 0.29 98.02± 0.12 99.95± 0.07
base+symbolic 100.00± 0.00 100.00± 0.00 100.00± 0.00 99.99± 0.04 100.00± 0.00 99.99± 0.04 94.98± 0.19 100.00± 0.00 99.99± 0.04
base+symbolic+images 99.97± 0.06 99.99± 0.04 100.00± 0.00 99.99± 0.04 100.00± 0.00 100.00± 0.00 96.35± 0.20 99.99± 0.04 99.96± 0.09
base+images 99.88± 0.08 99.89± 0.11 99.92± 0.10 99.48± 0.14 99.92± 0.10 99.25± 0.22 87.03± 1.15 98.32± 0.32 99.81± 0.17
base+images+text-labels 99.85± 0.08 99.92± 0.10 99.88± 0.14 99.60± 0.19 99.95± 0.07 99.37± 0.22 87.89± 1.11 98.32± 0.36 99.95± 0.07

Table 7: Full accuracy results table including the standard deviation over 10 seeds for all attributes and setups.

