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Abstract

Interactive task learning studies situations in which a teacher in-
teracts with a learner to help them perform a novel task in an embod-
ied environment. To successfully interpret the teacher’s utterances, the
learner has to perform interactive symbol grounding: it must update
its prior beliefs about the mapping from symbols to referents, given
their visual features, each time the teacher speaks. Interactive symbol
grounding is even more challenging if the learner starts out unaware
of concepts that are critical to task success. In that case, the learner
must use the embodied conversation to discover and adapt to unfore-
seen possibilities, and so must cope with a continuously expanding hy-
pothesis space and hence a non-stationary domain model. In this paper,
we propose a neuro-symbolic model for learning dialogue strategies for
achieving interactive symbol grounding. In particular, we study the ef-
fects of enriching the model with symbolic reasoning that captures the
valid consequences of quantifiers (e.g., both, every). Our hypothesis is
that utilizing such reasoning makes interactive task learning more data
efficient. We test this empirically via a task of interactive reference res-
olution, in which the learner must jointly learn a grounding model and
a policy for querying the teacher to enhance its accuracy in grounding.
Our results show that a learner that exploits such symbolic reasoning for
both decision-making and grounding is more data efficient than learners
that ignore such linguistic insights.
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1 Introduction
Consider a general-purpose robot that assists humans in their daily activities;
e.g. cleaning their dwelling, making a meal, or buying groceries. During
factory development, this robot will be trained to perform sensorimotor skills
such as picking, placing, pouring, and folding, and it will have learned a
policy of which of these actions to perform given its sensory observations
(Garrett et al., 2021). When deployed, a robot will face tasks instructed by
humans as part of the human-robot interaction (Bartneck et al., 2020). For
example in a shop, a customer or shop worker may request what items to place
in the trolley. The robot would then make decisions on what to do, using its
current interpretation of its environment, based on its sensory observations.

But what happens if the user issues an instruction that makes reference
to an exotic fruit, like rambutan, which was entirely absent from the robot’s
prior experience? The robot would not know how to recognise this fruit’s
visual features and so determine its referents. Moreover, the robot must up-
date the structure of the domain model with this unforeseen concept, thereby
expanding the set of possible domain states, which in turn demands adapting
the learner’s policies. As well as the introduction of unforeseen concepts, the
robot must also cope with existing domain concepts undergoing unforeseen
changes over time. For example, following legislation introduced in 2021,
straws are no longer made of single-use plastic, and so they have changed the
way they look. An autonomous system deployed in the real world thus needs
to cope with such unforeseen possibilities and the need to update the domain
model via evidence that’s observed during interaction.

To enable an agent to discover and adapt to unforeseen possibilities after
it is deployed, the human user can take the role of a teacher and the robot the
role of a learner, interacting via an embodied conversation, as illustrated in
Figure 1. In this and similar embodied conversations, the teacher instructs
the learner to perform a task that the learner has not performed before. The
information provided by the teacher’s initial task instruction is not sufficient
for the learner to act—the teacher does not know that the learner’s domain
model does not include the concept denoted by the word “rambutan”, and
that this word is a neologism to the learner. The missing knowledge that
is required to successfully execute the desired task (picking rambutans) is
acquired in the subsequent embodied exchange. But for this exchange to have
the desired effects, the learner must use the speaker’s message to revise or
refine its conceptualisation of the domain—in this case to acquire a mapping
from the word “rambutan” to its referents, given visual observations. Ideally,
this belief update should help the agent master not only the specific task that
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the user requires now, but it should also deploy what it just learned about this
unforeseen fruit in solving subsequent decision problems.

(M1) Teacher: Put the two rambutans into the trolley.
(M2) Learner: Before that, please show me a rambutan.
(M3) Teacher: Here. (points to a rambutan)
(M4) Learner: Okay. (puts the two rambutans into a trolley)

Figure 1: Example embodied conversation between learner and teacher.

The framework of Interactive Task Learning (ITL) (Laird et al., 2017)
offers a way of using natural interactions (Clark, 1996), like the one in Fig-
ure 1, to address the task of (interactive) knowledge acquisition—e.g., learn-
ing to distinguish rambutens (Figure 2b) from other fruits (Figure 2a), based
on their visual features. Such a mode of communication is essential from
the social perspective to make the interaction pleasant for a human teacher
(Tanevska et al., 2020), as well as to enable humans to interact with an agent
without knowing its underlying hardware or software.

In this article, we present a neuro-symbolic model for using embodied
conversation with the teacher to jointly learn both the domain model and a
policy for solving planning problems. We focus on task-oriented conversa-
tions taking place in a shared embodied environment, consisting of natural
language utterances and pointing gestures (which in Figure 1 are given in
italics). We aim to show that a learner that exploits the logical consequences
that stem from the linguistic analysis of logical words (e.g. both, every) is
more data efficient, both for learning a policy of when and how to query the
teacher, and for solving the task at hand.

(a) A variety of fruits and vegetable
the agent may be asked to manipulate.

(b) The exotic fruit rambutan that the
agent was not aware before.

Figure 2: An illustration of an interactive task learning scenario.
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There is a prima facie reason for thinking that such reasoning will help.
For example, if a teacher points to a set of objects and says “Here is every
rambutan”, then the truth conditions of “every” allow the learner not only
to acquire positive exemplars for learning to recognise rambutans (ie, those
objects the teacher pointed to), but also negative examples (all those objects
in the scene that the teacher didn’t point to).

Developing a learning model that discovers and adapts to unforeseen pos-
sibilities via emobided dialogue raises several challenges that many contem-
porary machine learning models for knowledge acquisition don’t face (see
Section 2 for details). First, learning must be incremental: the teacher will
expect the learner to update its beliefs and (behaviour) policies each time the
teacher imparts new information via an utterance (and so the learner should
do this). Secondly, the learning algorithms must cope with the hypothesis
space of possibilities being unknown, given that unforeseen concepts and
changes will be discovered via the information exchange in the dialogue (e.g.,
the existence of a fruit called “rambuten”). Thus updating requires the learner
to adapt its prior probability distributions over possibilities to a newly ex-
panded set of possibilities when such discoveries surface.

Previously, in Rubavicius and Lascarides (2022), we developed methods
for performing interactive symbol grounding that met these challenges, us-
ing linguistic analyses of the teacher’s assertions, and in particular the truth
conditions of quantifiers, to inform belief update about the mapping from
symbols to denotations, given sensory observations. This prior work demon-
strated empirically the advantage of exploiting the truth conditions of quan-
tifiers to interactive symbol grounding. But the model we studied in that
earlier paper did not handle dialogue per se: the teacher did all the talking!
This paper fixes that limitation.

In this paper, we expand our earlier line of research by endowing the
learner with the capacity to query the teacher (e.g., M2 in Figure 1), and
through that to control which observations it will acquire next—a form of
active learning. But expanding the set of actions that the learner can perform
to include dialogue moves yields a dilemma: should the learner query the
teacher about reference (which comes at a cost because of the teacher’s ef-
fort in answering), or should it use its current estimate of the domain model to
execute what it thinks is a valid domain-level plan, thereby risking a large cost
if the learner gets it wrong? In other words, for active learning to be effec-
tive, the learner must use evidence from its prior experience with embodied
conversations to learn a policy that resolves this dilemma of when (and what)
to ask vs. when (and how) to act in the domain. This learned policy must be
neural-symbolic, as it has both a neural component (using visual observations
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to estimate beliefs about the mapping from words to their referents, stemming
from object similarity) and a symbolic component (performing logical rea-
soning about possible learner-teacher message exchanges). In this paper, we
develop a model for learning such a policy, and we aim to show that exploit-
ing the logical consequences of quantifiers like both and every not only makes
grounding more data efficient (as our prior work showed), but it also makes
learning policies that resolve the dilemma between asking vs. acting more
data efficient as well.

To study the effects of neural-symbolic models that jointly learn both dia-
logue strategies and grounding models, we consider a task of interactive ref-
erence resolution in ShapeWorld (Kuhnle and Copestake, 2017): the teacher
and learner share the same visual scene, and the teacher instructs the learner
to point to a referent of a referential expression within that scene, such as
“the one red square”. The learner in this situation faces a choice. First, it can
choose to query the teacher (e.g. “before that, show me a red object”), and so
incur the cost of this while benefiting from learning something useful, in that
it improves its interpretation of the visual scene. Alternatively, it can take the
risk of identifying a referent based on its current interpretation of the scene,
which if wrong yields a substantial negative reward. The embodied conver-
sation continues until the learner stops querying and identifies a referent, at
which point the task ends.

The remainder of this article is structured as follows. We first review re-
lated work in both machine learning and computational linguistics, focusing
on the extent to which this work meets the above challenges. We further pro-
vided a step-by-step exposition of Rubavicius and Lascarides (2022) for the
interactive symbol grounding procedure, including several illustrative exam-
ples of how it affects belief update. These two sections serve a pedagogical
purpose and can be skipped or read on their own.

Our first novel contribution relative to this prior work is to design a neuro-
symbolic procedure that draws on the logical consequences of the teacher’s
assertions, as well as sensory observations, to jointly learn both a grounding
model and a decision-making strategy that optimises the above exploration-
exploitation dilemma in achieving accurate symbol grounding. Our model
also supports neuro-symbolic learners that need to fix a deficient hypothesis
space of the possible domain states, because the learner is initially unaware
of domain-level concepts that are critical for task success.

The model itself is quite general, but we test it in proof-of-concept exper-
iments (i.e., experiments that involve a relatively small domain of entities and
concepts) to showcase the model’s advantages over those that don’t draw on
logical inferences from natural language semantics. Specifically, our second
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contribution in this paper is to test the procedure empirically by conduct-
ing experiments in ShapeWorld. We compare a model for grounding and
decision-making that uses the logical consequences of quantifiers to a model
that doesn’t use this information. We showcase the learner’s capacity to cope
with a non-stationary set of possible domain states by making the learner un-
aware of all open-class words and the concepts they refer to at the start of its
learning process.

The results show that utilising the symbolic logical reasoning borne from
the semantics of quantified referring expressions leads to data efficiency, for
both learning effective decision-making to achieve accurate grounding and
for learning the grounder itself. These experiments bear out the intuition that
such reasoning helps the learner to acquire more training exemplars to inform
grounding from the teacher’s utterances than learners that ignore the different
semantics of different quantifiers.

2 Related Work
Before going into the details of our proposed model, we review related work
in lifelong machine learning, symbol grounding, and reference resolution so
as to distinguish and highlight the contributions of this paper.

2.1 Lifelong Machine Learning
Machine learning is used by autonomous systems to learn to solve planning
problems, with training utilising data that’s based on observing the conse-
quences of one’s own actions (Sutton and Barto, 1998) or the actions of oth-
ers (Bishop, 2007). It has been an important paradigm in AI system design in
recent decades (Bengio et al., 2021). The subfield known as lifelong machine
learning considers systems that can learn many tasks over the system’s life
cycle from one or more domains. Such systems efficiently and effectively
retain the knowledge they have acquired so far and use it for more efficient
and effective learning of new tasks (Silver et al., 2013). A key element of
this learning paradigm is that learning is incremental: it updates beliefs and
policies and adapts its decision-making in real-time (online), as and when
it gathers new evidence. This is in contrast to most contemporary learning
paradigms, in which the learning signal is batched, and models train offline
on large volumes of data (Mohri et al., 2012).

van de Ven et al. (2022) distinguished three types of incremental learning
scenarios, which applied to symbol grounding amount to the following three
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cases: task-level (learn to solve distinct tasks with respect to a single proba-
bility distribution over possible environments); domain-level (learn to solve
a single task in ‘out-of-distribution’ environments); and class-level (learn to
solve distinct tasks while at the same time inferring a probabilistic repre-
sentation of the environment). In all these scenarios, the central aim is the
reusability of what an agent has learned so far when applied to novel or out-
of-distribution scenarios. This has motivated research in transfer learning
(Pan and Yang, 2010) (how to transfer the experience from one task to an-
other), multitask learning (Caruana, 1997) (using the experience from mul-
tiple tasks to bootstrap the learning process) and meta-learning (Vilalta and
Drissi, 2002) (learning how to learn).

Conventionally, the task structure is not explicitly used in these learning
scenarios. But it is appealing to explore the compositional task structure for
systematic generalization (Mendez and Eaton, 2022; Hupkes et al., 2020).
The research in Interactive Task Learning (Laird et al., 2017) aims to build
compositional approaches to policy learning, in which the system can reuse
and combine in novel ways components that it has learned from prior tasks
when facing novel tasks. According to van de Ven et al’s classification, this
makes ITL a class-level incremental learning problem (we are learning both
the task and how to represent the domain).

Another distinguishing feature of ITL is that the learning scenario in-
volves a teacher providing the learner with contextually relevant guidance or
advice, either through an embodied natural language conversation or via ac-
tion demonstrations. This article is particularly interested in how to utilise the
teacher’s embodied utterances to enhance, in a linguistically principled man-
ner, the leaner’s model of grounding—that is, the way the agent interprets
its perceptual sensors, and in particular identifies within the current visual
scene the denotations of referring expressions. This paper adopts the ITL
approach by exploring in detail the interaction between the agent’s beliefs
about grounding and the decision-making that’s required to perform complex
tasks, where the latter relies entirely on generic decision-making algorithms
(Kochenderfer et al., 2022), but the novelty comes from utilizing the logical
consequences of quantifiers during training.

Changes in perceptual capabilities can lead to two types of domain model
updates: parameter-level, in which the underlying structure of the domain
conceptualisation stays the same but its parameters are tuned to the current
scenario; and structure-level, in which the domain conceptualisation itself
changes (acquiring skills and concepts that were not previously a part of the
domain at all, thereby expanding the hypothesis space of possible domain
states and actions). The latter is the primary interest in this article. To update
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  designation  symbol
(logical form)
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Figure 3: Reference triangle (Ogden et al., 1924) showing the relation-
ship between the reference (linguistic form/messages), symbol (logical
form/ground truth) and referent (entities in the environment) and com-
monly discussed task like (semantic) parsing, generation, reference resolu-
tion, grounding (inferring the domain model), and designation.

the agent’s conceptualisation of the domain (and in particular its structure),
we study the learning signal of the embodied conversation (Cassell, 2001) to
discover and then exploit unforeseen possibilities that are critical to the task.

By design, such scenarios are not in competition with large multimodal
models (Tan and Bansal, 2019; Li et al., 2023; Driess et al., 2023) that are
trained offline via batch learning and are designed to support broad domain
coverage and parameter-level model updates in interaction. Research in ITL
aims to provide a means of performing structure-level model updates, which
are needed when AI systems are deployed after training offline on ‘big data’
in settings where unforeseen concepts are frequently introduced and/or exist-
ing concepts change in unforeseen ways. These scenarios require models to
adapt, using all possible incidental supervision signals (Roth, 2017).

2.2 The Symbol Grounding Problem
The symbol grounding problem is the task of learning a grounding model
(grounder) that links referents (sets of entities) in the environment to abstract
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concepts known as symbols, on the basis of the agent’s sensory observations
(and in particular the visual features) (Harnad, 1990). Figure 3 outlines the
reference triangle (Ogden et al., 1924) that relates the linguistic expressions,
the symbolic representations of those expressions and the environment, so
as to establish the relationship between the three. Symbol grounding has
been extensively studied before (Hu et al., 2016b,a; Du et al., 2021; Chandu
et al., 2021), in particular in designing autonomous robotic agents (Matuszek,
2018). But for ITL scenarios, many of the contemporary grounders are not
sufficient, because they don’t meet all the desiderata that arise from the ITL
setup. These desiderata are elicited and explained below.

Firstly, from the machine learning perspective, we are tackling multilabel
classification with an expanding hypothesis space. It might be tempting to
formalise the problem as a multiclass classification problem in which, given
the observation, a single symbol is predicted (Krishna et al., 2016). But such
a modelling approach assumes mutual exclusivity between symbols, which
might not be the case. For example two symbols square and rectangle

are not mutually exclusive because the former is a hyponym of the latter (“is
a” relation); similarly for magenta and red. Because of this, a multilabel
classification approach needs to be deployed in which for each entity in the
visual scene, multiple symbols can be predicted. Furthermore, the key fea-
ture of ITL is that novel symbols (neologisms) are introduced in the domain,
which may refer to existing concepts or entirely new and unforeseen con-
cepts; thus the method must handle the expanding hypothesis space of labels
(or symbols).

Secondly, as mentioned in Section 1, the grounder in ITL scenarios
should ideally admit active learning and in turn real-time knowledge acqui-
sition for decision-making. Contemporary grounders (Ye et al., 2019; Datta
et al., 2019) heavily utilize offline learning for extensive fine-tuning and batch
learning, which results in data regularization for the stochastic representa-
tion of the learning grounder. Even though these design decisions lead to
increased performance, such grounding models are not suitable for interac-
tive learning. During the embodied conversation, the knowledge is actively
acquired piecemeal from the sequentially uttered messages. This knowledge
has to influence the agent’s decision-making as to its next move during the
interaction with the teacher—in effect, the learner should update its beliefs
and behaviour every time the teacher says something. As a result of this,
incremental and online learning methods are necessary.

Thirdly, due to data scarcity, few-shot learning must be performed. Even
when extensively utilizing the learning signal from the embodied conversa-
tion, it is unreasonable to expect that sufficient data is acquired through in-
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teraction to deploy data-intensive learning methods. Hence, few-shot learn-
ing approaches that generalize from a few learning exemplars (Wang et al.,
2020b) should be used.

Finally, the method has to be able to reason about beliefs. Because of the
strong assumptions that are necessary for efficient knowledge acquisition, it
is likely that some of the agent’s assumptions will bring inconsistencies in the
beliefs about the underlying ground-truth domain model: e.g., the teacher’s
latest message is inconsistent with the learner’s previously made predictions.
Because of this, the method of active knowledge acquisition should be able
to detect inconsistencies and be able to revise and repair beliefs accordingly
(Hansson, 2022).

In this article, the symbol grounding problem with these additional re-
quirements is referred to as an interactive symbol grounding problem.

Symbol grounding models are key components for more complex tasks
like visual question answering (VQA) (Antol et al., 2015) or manipulating an
embodied environment (Alomari et al., 2017a). For these tasks, grounding
models are often composed by exploiting the principle of compositionality of
natural language (Mao et al., 2019; Wang et al., 2023)—i.e., that the mean-
ing of a phrase is a function of the meaning of its parts and how they are put
together. This compositionality enables the learned models to exhibit system-
atic generalization (much like the lifelong machine learning scenario). They
acquire a grounded natural language lexicon (Mao et al., 2021) and/or gram-
mar rules (Alomari et al., 2017b,a) from evidence. Our work doesn’t learn
mappings from natural language to logical form; our experiments will assume
this mapping is already known. But we exploit compositionality in another
way: namely, unpacking the truth conditions of arbitrarily complex logical
forms is compositional. We in essence, therefore, are exploring how the valid
consequences of the meaning of a semantic representation of a natural lan-
guage expression assists generalization during learning and so enhances data
efficiency. In particular, exploiting formal semantic interpretations enables
us to acquire negative examples for the concepts, as observed in (Rubavicius
and Lascarides, 2022) and the example involving “every” given in Section 1.
It is worth noting that such notions of compositionality are not at odds with
exploiting it to aid grounded semantic parsing, but complementary.

From the symbol grounding perspective, our work is most similar to Alo-
mari et al. (2022). They perform incremental updates of visual features to
arrive at a set of concepts that are clusters of visually similar situations. But
by the time their system processes language, those incrementally acquired
domain concepts, on the basis of visual processing, are fixed. As a conse-
quence, symbol grounding is restricted to mapping words to that fixed set of
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domain concepts. This means that they cannot reliably distinguish lexical re-
lationships, in particular synonyms and hyponyms, in those situations where
words denote visually similar concepts: e.g., burgundy glass vs. chardonay
glass vs. wine glass. In contrast, we are developing models that incrementally
learn from both vision and language simultaneously, so that the set of domain
concepts is not determined solely by visual information, but also by the way
those concepts are described and referred to by the teacher. Further, because
Alomari et al. (2022) don’t support incremental learning from language, their
models aren’t suited to ITL via embodied conversation.

Finally, Dobnik et al. (2022) offers a careful study of meaning repre-
sentations of embodied conversation in the context of symbol grounding.
They advocate using probabilistic Type Theory with Records (TTR) (Cooper
et al., 2015; Cooper, 2023) to model symbol grounding from both visual per-
cepts (Larsson, 2013; Larsson et al., 2021) and definitions (Larsson, 2021;
Noble et al., 2022; Noble and Ilinykh, 2023). TTR offers a much richer frame-
work for representing natural language utterances than first-order logic. But
in this work, we do not aim to commit to a specific framework for repre-
senting natural language meaning. Rather, our aim is to present a general
neuro-symbolic reasoning framework that can later be adopted by different
machine learning and linguistic researchers when they design more robust
natural language interfaces, handling richer interactions as part of the embod-
ied conversation from a linguistic and perceptual point of view. Accordingly,
our model of neuro-symbolic reasoning (Manhaeve et al., 2021) utilizes com-
ponents that have as broad an appeal to researchers in machine learning and
linguistics as possible: specifically, the symbolic reasoning stems from first-
order logic representations of natural language utterances, we deploy neural
similarity-based classification, and the probabilistic calculus we use to com-
bine these elements is the well-established weighted model counting (Chavira
and Darwiche, 2008) (see Sections 3 and 4 for details of the model).

2.3 Reference Resolution
Reference resolution is the problem of identifying a referent of a linguistic
expression. Often in experimental settings the environment of interaction is
an image or a simulated environment and the conversation includes referring
expressions, occasionally accompanied with pointing gestures towards ob-
jects in the visual scene (Das et al., 2017; Haber et al., 2019; Kottur et al.,
2019; Loáiciga et al., 2021). In such situations, both the visual and verbal
context has to be used to resolve dialogue-specific phenomena such as co-
reference (Kottur et al., 2018). In this work, however, we avoid problems of
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co-reference in dialogue. We treat reference resolution as the task of identify-
ing for each referential expression in the embodied conversation the entities
in the visual scene that it denotes, thereby making our task correspond to the
symbol grounding problem (Section 2.2).

Signalling games (Fudenberg and Levine, 1998) are often used to model
the pragmatics of dialogue, with various definitions of game equilibria used
to predict what speakers choose to say and how their interlocutors interpret
the speaker’s (ambiguous) signals (Thompson and Kaufmann, 2010; Caelen
and Xuereb, 2011; DeVault et al., 2005). The probabilistic pragmatic frame-
work of rational speech acts (RSA) (Frank and Goodman, 2012; Goodman
and Stuhlmüller, 2013; Goodman and Frank, 2016) provides a game-theoretic
view of such interactions by explicitly defining the speaker and listener be-
haviours in a recursive manner (Andreas and Klein, 2016; Monroe et al.,
2017; Zarrieß and Schlangen, 2019; White et al., 2020; Fried et al., 2021).
One class of such signaling games models pedagogical teacher-learner inter-
action (Shafto et al., 2014; Rafferty et al., 2016), in which the initiative is
given to the teacher to transfer the desired knowledge to the learner, utiliz-
ing various cues and biases (Csibra and Gergely, 2009; Jara-Ettinger et al.,
2016). For instance, the teacher may designate a representative sample of
the referents of a symbol—“blickets”, say—that the learner is attempting to
ground, while uttering “here are some blickets.”. In this paper, however,
we are considering the opposite scenario: namely, one where the initiative
resides with the learner to choose a query to address to the teacher, whose
response is maximally likely (given the learner’s current beliefs) to help it
achieve the task at hand. Most teacher-learner scenarios between humans in-
volve initiative on both sides, and it would be interesting to explore equilibria
in situations where both the teacher and the learner can take initiatives on how
to progress the conversation forward. But that is beyond the scope of this pa-
per. We focus instead entirely on the problem of how a learner can use their
experience of conversations so far to learn a decent strategy for obtaining the
information they need from the teacher.

RSA and cooperative communication in general (Wang et al., 2020a; Hao
et al., 2023) have shown theoretical and empirical results aligning with es-
tablished observations of pragmatic implicatures and other context-sensitive
aspects of dialogue interpretation (Grice, 1975a; Sperber and Wilson, 1986).
Nevertheless, modelling embodied conversation between the learner and a
teacher in an ITL setting as a collaborative game is insufficient. By design,
such games assume perfect information about the hypothesis space: all agents
share perfect knowledge about what the possible domain states are, and what
the possible (dialogue) actions are. But having this level of knowledge is
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not always a reasonable assumption. Asher and Lascarides (2013) argue that
it is too strong an assumption in certain strategic conversations. More gen-
erally, thanks to the information exchange that occurs in dialogue, an inter-
locutor may learn of domain-level possibilities that it was unaware of prior to
the conversation taking place—in effect the player discovers he’s playing a
game with a different hypothesis space of possibilities than he thought when
he started playing it. Once the unforeseen possibility is discovered, the agent
should refine and extend its hypothesis space of domain states accordingly—
in other words, it calls for a structure-level model update. For RSA, such
scenarios are not permitted. Being built on game theory, a conversation that
entertains a different (or larger) set of possible domain states and/or signals
is treated as a different and unrelated game. But in ITL (and more generally
in lifelong machine learning) the agent, on discovering that their hypothesis
space of possible states is deficient, should retain at least some of what it has
learned so far and use it to influence its next move in the ‘larger’ game, even
within the current interaction.

Indeed, scenarios in which the learner has a deficient domain model is a
key area of interest in ITL. Because of this, the methods developed in this arti-
cle are related to, but do not simply reuse, the RSA framework. We share with
RSA a methodology that is based on a generic information-gathering learner
architecture (Russell and Norvig, 2020). There are as well approaches of di-
alogue modelling that do not explicitly model the conversation as a game but
make the speaker listener-aware, so as to modulate their decision-making in
inference (DeVault et al., 2005; Vedantam et al., 2017) and learning (Mao
et al., 2016; Yu et al., 2017) or implicitly model well-known patterns in ef-
ficient communication in human-to-human conversation like reference reuse
(Takmaz et al., 2020), descriptiveness (Takmaz et al., 2022), information-
density (Giulianelli et al., 2021) and discourse context (Giulianelli and Fer-
nández, 2021). For us, we study the scenario when learning and inference is
not only listener-aware, but also semantics-aware, meaning that the learner
reasons about the valid consequences of messages about the domain.

At the same time, our experiments are on synthesized embodied conver-
sations, rather than humans conversing ‘in the wild’, so that we retain the con-
trol that’s necessary for quantifying the difference in performance between an
agent that utilizes the logical consequences of quantified expressions vs. an
agent that doesn’t. How often such insights help in real human-human con-
versation depends heavily on how the task at hand influences that dialogue
exchange (in particular, it would need ample use of different determiners
and presupposition triggers). Note that both RSA-style game-theoretic ap-
proaches and listener-aware dialogue modelling approaches discussed above
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have been effective to show how speakers can adapt in interaction to mis-
aligned beliefs and asymmetry in knowledge for parameter-level model up-
date (Wang et al., 2016; Wang, 2017; Hawkins et al., 2020; Takmaz et al.,
2023), but we want to support structure-level model updates (i.e., learning the
set of possible concepts that define the set of possible domain-level states),
not just parameter-level updates.

Finally, it is worth noting that for reference resolution, we are using an
off-the-shelf semantic parser. This contrasts with several existing works, in
which both the semantic parser and dialogue strategy are jointly learned. For
example, Padmakumar et al. (2017); Thomason et al. (2020) address inter-
active symbol grounding, focussing on understanding commands by jointly
learning a semantic parser and grounder. Our focus is different: while these
models learn mappings from natural language to logical forms, they do not
utilise the valid consequences of those logical forms to inform the learning
process. This paper aims to demonstrate that those logical consequences
make learning more data efficient.

3 Preliminaries
Before describing in detail the neuro-symbolic model for learning a dialogue
strategy to achieve reference resolution (see Section 4), we provide in this
section details of the model of interactive symbol grounding—that is, how
the learner uses evidence from an embodied conversation with a teacher to
update its beliefs about both the set of possible domain states (which is ever
expanding thanks to neologisms that occur in the conversation) and the map-
ping of symbols to their referents, given visual features. This interactive
grounding model is essentially a recap of the one presented in Rubavicius
and Lascarides (2022). The novelty in this paper is in Section 4, where the
grounding algorithms from this section get combined with active learning:
we specify a method that enables the learner to work out, on the basis of its
experience of conversation so far, what to do so as to acquire evidence needed
for its grounding model at minimal cost (and risk) to itself and to the teacher.

Table 9 and Table 10 in Appendix A gives a summary of the symbols and
their description used in this section.

3.1 Reasoning about the Domain
Since we will exploit a model-theoretic semantics for interpreting natural lan-
guage (Hodges, 2022) so as to learn efficiently, we start by stipulating that
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semantics, with a focus on referring expressions. As we mentioned earlier,
our symbolic component will be based on first order logic. So we represent
a domain modelM as a tripleM = (U,V, I) consisting of a set of entities
U, the vocabulary of the domain V and an interpretation function I that maps
predicate symbols (concepts) from a vocabulary to their denotations—sets
of entities for one-place predicates (properties), sets of pairs of entities for
two-place predicates (relations), and so on.

Over the course of this paper, we will use the toy example domain model
in Eq. 1 to illustrate various features of the learning process (our experiments
in Section 5 draw on larger models that this). This consists of four entities:
u1, u2, u3,and u4 and four properties: blue, red, circle, and square:

M :

U = {u1, u2, u3, u4}
V = {blue, red, circle, square}
I = {blue : {u1, u3, u4}, red : {u2},
circle : {u1, u3}, square : {u2, u4}}

(1)

The domain model can be equivalently defined as the (maximal) set of
true atomic formulae (atoms) a that are in the Herbrand baseH: these are the
formulae constructed from n-place predicate symbols and n terms referring
to entities (Chang and Lee, 1973) (without loss of generality we use the term
ui to denote the entity ui in the model). We call the maximal set of atoms that
are satisfied byMHM; i.e., HM = {a ∈ H | M |= a}. So the model in
Eq. 1 has the Herbrand baseH in Eq. 2 and the domain model representation
HM in Eq. 3:

H ={blue(u1), blue(u2), blue(u3), blue(u4),

red(u1), red(u2), red(u3), red(u4),

circle(u1), circle(u2), circle(u3), circle(u4),

square(u1), square(u2), square(u3), square(u4)}

(2)

HM ={blue(u1), blue(u3), blue(u4), red(u2),

circle(u1), circle(u3), square(u2), square(u4)}
(3)

This alternative representation of the model will be useful when developing
the learner’s probabilistic model of belief.

We assume that the learner can use their visual sensors to detect all the
entities in the visual scene (via object detection): in other words, we treat U
as observable. Furthermore, as we’ll shortly describe, the learner can also
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use their visual sensors to observe the visual features of each u ∈ U (see
Sections 3.2 and 5.2 for details). But the interpretation function I is latent:
not only does the learner not know which symbols in V denote which enti-
ties in U, but perhaps more profoundly V itself is latent as well, due to the
learner’s (initial) unawareness (it will discover new symbols in V as and when
the teacher utters a neologism).

Since I and V are latent, the learner must estimate the domain model M̂
using evidence. One type of evidence is a domain theory Δ, which is a set
of logical formulae φ that is satisfied by the ground truth model M: i.e.,
M |= Δ. We will assume that the learner can accurately convert the teacher’s
utterances into a logical form, and moreover the teacher knowsM and is al-
ways sincere (so she believes what she says and everything she says is true).
Under these assumptions, the learner can build Δ from the teacher’s (em-
bodied) utterances in their conversation: every time the teacher speaks (and
points), asserting information that has logical form φ, the learner can add φ
to Δ and assume thatM |= Δ. Hence M̂ should satisfy Δ too.

We now describe two things in sequence: first, how the learner can es-
timate M̂ given Δ, and second the kinds of information that populates Δ in
our experiments, given the task the learner has to master and the kind of ut-
terances the teacher conveys to guide the learner (in particular, the teacher
uttering a referential expression and pointing to a referent of it, as illustrated
in Fig. 1).

We start with the method for estimating M̂ given Δ. This task cor-
responds to estimating the probability that any arbitrary logical formula
φ is true, given Δ. The fundamental building block we use for comput-
ing such probabilistic queries is a weighted model counting WMC procedure
(Chavira and Darwiche, 2008). This estimates the probability that φ is true
by marginalising over all models that satisfy φ, and treating each atom a ∈ H
as a Bernoulli random variable and assigning a probability to each of them,
referred to as weights w ∈ [0, 1]H:

WMC(φ,w) = Pr
w
(φ) =

∑
M : M|=φ

|H|∏
i=1

wi1ai∈HM + (1− wi)(1− 1ai∈HM)

(4)

where 1ai∈HM is an indicator function which is 1 if atom ai is part of
the domain model ai ∈ HM and 0 otherwise. Using uniform weights
wi = 0.5 ∀wi ∈ w makes WMC equivalent to model counting otherwise
known as a #SAT problem (Valiant, 1979). We’ll see in §3.2 how reasoning
about sensory (i.e., visual) observations combined with the teacher’s utter-
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ances over the course of the embodied conversation affect weights and make
them deviate from 0.5. But the atoms created from neologisms are initially
assigned a probability of 0.5, to reflect complete ignorance about their deno-
tations. Moreover, since WMC considers only atoms created from predicates in
φ, the inference procedure uses only a subset of domain models that could be
created from the vocabulary while implicitly marginalizing over unused pred-
icates and entities. For example, if φ = red(u1)∧ square(u2), we consider
domains with U = {u1, u2} and V = {red, square} while domains with
more entities and predicates are ignored. This is important in ITL because it
allows us to dynamically change and expand the domain as new symbols or
entities are introduced to the discourse.

This article considers two types of probabilistic queries. Complete evi-
dence EVI computes the probability that formula φ is true, given Δ is true:

EVI(φ,Δ,w) = Pr
w
(φ | Δ) = WMC({φ} ∪ Δ,w)

WMC(Δ,w)
(5)

And maximum a-posteriori MAP estimates the most probable domain model
M̂ for which Δ holds:

MAP(Δ,w) = M̂ = arg max
M

Pr
w
(

∧
a∈HM

a
∧

a/∈HM

¬a | Δ) (6)

Now we address the logical representations of the teacher utterances that
get added to Δ over the course of the embodied conversation, and their model-
theoretic semantics, whose logical consequences in turn affects the learner’s
estimates of M̂ via the above equations. In this paper, we study a scenario in
which the teacher’s assertions consist of a referential expression r combined
with pointing to a denotation of r (there may be more than one denotation in
the model, in which case the teacher chooses which one to point to).1

Linguistically, r is an arbitrary complex noun phrase like “the one red
square”. We draw on generalized quantifiers (Barwise and Cooper, 1981) to
represent r’s logical form Φ(r). Since r is a noun phrase and not a sentence,
Φ(r) consists of a generalized quantifier Q (corresponding to r’s determiner),
its restrictor R (corresponding to r’s adjectives and nouns) but the body of the
quantifier is ‘missing’. This is traditionally captured using λ-calculus (i.e.,

1We do not consider vague quantifiers(Bradburn and Miles, 1979) like “some” or “few”
which implicates soft constraints on objects not designated as a consequence of pragmatic prin-
ciples of cooperative conversation(Grice, 1975a). Interpretation of such quantifiers are out of
the scope, but in principle could be modelled in our probabilistic framework.
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λB.Qx(R(x),B(x)) where R is the restrictor and B the body). But this is not
quite what we want to capture for the purposes of solving reference resolution,
for this λ-term denotes the set of properties satisfied by the entities that satisfy
R, with Q imposing constraints on the relationship between the denotations
of R and B. In our scenario, however, we need to identify the set of referent(s)
that are denoted by the referring expression r, not the properties satisfied by
those referents.

In view of this, we express the logical form Φ(r) of the referential ex-
pression r another way, and assign it a semantics that draws on that from
generlized quantifier theory. Specifically, we will represent the logical form
Φ(r) of the referential expression r as a well-formed expression of the form
〈Q x.φ〉, where Q is a generalized quantifier (see Table 1 first column for the
quantifiers we use in our experiments in Section 5) and φ is a logical for-
mula with only one free variable x, which corresponds to a representation of
the natural language description. φ is constructed recursively from predicate
symbols like square, terms consisting of variables x and constants u2, log-
ical connectives (disjunction ∨, conjunction ∧, negation ¬).3 For example,
the referential expression “the one red square” is assigned the logical form
〈_the_1_q x.red(x) ∧ square(x)〉.

The logical form Φ(r) of a referential expression r is evaluated with re-
spect to the domain modelM to yield a set of sets of entities—the referentR
of Φ(r)with respect toM. An element of the setR is a set of entities because
a denotation of r may include more than one entity in U (e.g., a denotation of
two squares). R itself is a set of (potentially) more than one element because
M may have more than one denotation for r: e.g., if there is more than one
entity inM that’s a square, then a square has more than one denotation inM.
For example, given the modelM in Eq. 1, 〈_every_q x.square(x)〉 should
denote {{u2, u4}} (there is only one entity that is denoted by “every square”,
and that is the maximal set of entities {u2, u4} that I maps square to), while
〈_a_q x.square(x)〉 denotes {{u2}, {u4}} (i.e., there are two entities that
are denoted by the phrase “a square”, corresponding to the two entities that I
maps square to).

These two illustrative examples reveal two general factors that affect the
referent R of Φ(r). First, every entity in a denotation of Φ(r) satisfies the
restrictor of its generalized quantifier (this is because in this paper we ignore
group nouns, such as committee). Secondly, the generalized quantifier im-
poses its own conditions on R, in particular on the cardinality of each set in
R that’s a denotation, and for some quantifiers there’s also a constraint on the

2Each entity u is denoted by a unique constant u.
3See Section 5.2 for details on how Φ(r) is computed from r.
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relationship between a denotation and all the entities in U, which is equiva-
lent to a constraint on the cardinality ofR itself. For instance, each set inR
for the referential expression at least two squares must have cardinality of at
least two; for exactly two squares the cardinality must be equal to 2; and the
two squares and both impose the additional constraint that not only should
each denotation have cardinality 2, but also this denotation is unique (Rus-
sell, 1917) (i.e., R itself has cardinality 1). Further, as we just mentioned,
the referent for every square is unique because it’s the (unique) maximal set
of entities inM that satisfy the restrictor (again,Rmust have cardinality 1).

With this in mind, we obtain a formal definition of the semantics of Φ(r)
for arbitrary r = Qx.φ(x) by first defining a projection ofM onto a smaller
model σ(M,φ, x), which consists of all and only those entities u ∈ U that
satisfy φ[x/u] (i.e., the formula φ with each occurrence of x substituted with
the unique constant u that denotes u ∈ U):

σ(M,φ, x) = (U′,V, I′) such that
U′ = {u ∈ UM | M |= φ[x/u]} and
I′ = IM ↓ U′ (i.e., IM projected onto U′)

(7)

We then define the semanticsR of Φ(r) with respect to this projected model.
As we mentioned, the traditional semantics of a generalized quantifier Q im-
poses constraints CQ(R,B) on its restrictor R and body B. But in our scenario,
consisting only of referring expressions, the body B isn’t expressed. How-
ever, by evaluating the content of the quantifier with respect to the smaller
projected model and making B = U′ (i.e., the entities in that projected
model), the semantics of quantifiers can focus solely on how they constrain
the cardinalities of these sets to achieve the above desired effects on refer-
ents for r. This semantics for each quantifier that we study in our experiments
(see Section 5), are defined in column 3 of Table 1. These constraints and the
definition of model projection in Eq. 7 yield the following semantics Eq. 8
for the logical form Φ(r) with the above desired properties:

R = Φ(r)M = 〈Q x.φ〉M = 〈Q〉σ(M,φ,x) (8)

where 〈Q〉M = {R ⊆ U | CQ(R,U)} is a referent constructor, utilizing the
condition specific to the quantifier (and defined in Table 1 column 3).

To illustrate this symbolic semantics, consider our example model from
Eq. 1 and how the referent is computed for a referential expression r =“the
one red square”, whose logical form is 〈_the_1_q x.red(x) ∧ square(x)〉.
According to Eq. 7, theM-projection consists of the following entities:

U′ = {u ∈ U | M |= red(u) ∧ square(u)} = {u2} (9)
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Quantifier Q Surface form Condition CQ(R,B)

_exactly_n_q exactly n |R| = n
_at_most_n_q at most n |R| ≤ n
_at_least_n_q at least n |R| ≥ n
_a_q a/an |R| = 1
_every_q all/every |R| = |B|
_the_n_q the n |R| = |B| ∧ |B| = n
_both_q both |R| = |B| ∧ |B| = 2
_all_but_n_q all but n |R| = |B| − n ∧ |B| ≥ n
_n_of_the_m_q n of the m |R| = n ∧ |B| = m

Table 1: Generalized quantifiers. The third column show the condition used
by referent constructor, namely 〈Q〉M = {R ⊆ U | CQ(R,U)}. R is a set
known as a restrictor and B is a set known as a body in a referential condition.
The elements in red highlight the elements of the condition stemming from
the Rusellian interpretation of definite descriptions (Russell, 1917).

which in turn leads to the following referent:

R = 〈_the_1_q x.red(x) ∧ square(x)〉M

= {R ⊆ U′ | C_the_1_q(R,U′)}
= {{u2}}

(10)

If there had been another entity in the domain model, u5 say, such that
red(u5)∧square(u5), thenR = ∅. In other words, there’s referential failure
because the Russellian uniqueness condition triggered by “the one” (shown
in red in Table 1) is violated. By similar symbolic reasoning, the referent
for “a blue circle” is {{u1}, {u3}} and the referent for “every blue circle” is
{{u1, u3}}.

During the embodied conversation, a referent to a referring expression
r can be provided by the teacher’s explicit designation e.g. saying r while
pointing to a member of the set R. This can be used to provide a logical
formula Φ(r)[R] that holds in the domain. For the model in (1), “the one red
square” while pointing to u2 would produce the following formula:

Φ(r)[R] ≡ ¬(red(u1) ∧ square(u1))

∧ (red(u2) ∧ square(u2))

∧ ¬(red(u3) ∧ square(u3))

∧ ¬(red(u4) ∧ square(u4))

(11)
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The negated clauses in Eq. 11 are inferred from the Russellian interpretation
(Russell, 1917) for the quantifier _the_1_q. By contrast, “a red square”
and pointing to u2 does not validate any inferences about whether the entities
other than u2 are red squares, so it leads to the following formula:

Φ(r)[R] ≡ red(u2) ∧ square(u2) (12)

More generally, the teacher’s designations of referring expressions r en-
ables the learner to dynamically build a domain theory:

Δ ← Δ ∪ {Φ(r)[R]} (13)

As we mentioned earlier, we assume that the teacher’s utterances and desig-
nations are accurate, and furthermore referential expressions are parsed cor-
rectly to their logical forms. So the learner knows that M |= Δ. In other
words, the learner can treat it as monotonic information, which also expands
monotonically during the course of the interaction: i.e., no previously ac-
quired facts have to be retracted when acquiring new information.

Such monotonic reasoning is not feasible long-term for two reasons. First,
decoding the teacher’s message from their signal might be defeasible thanks
to both linguistic ambiguity and the defeasible implicatures that get associ-
ated with the teacher’s utterance in context (Grice, 1975b; Gamut, 1991).
Secondly, the knowledge that the teacher imparts may be explicitly defea-
sible (e.g., they may express a generic statement), thereby requiring non-
monotonic reasoning. Supporting symbolic non-monotonic inference, given
the teacher’s utterance, could be achieved by using e.g. answer-set program-
ming (Lifschitz, 2008) as the inference engine rather than (monotonic) first-
order logic.4 However, we don’t opt here for that more complex reasoning
for two reasons. Firstly, we don’t aim to build from scratch complex domain
theories such as those captured in an extensive knowledge base. Instead, we
envisage a mode of interaction in which the learner becomes aware of rela-
tively few concepts via a few turns in the conversation, making the need for
theory repair and representation revision less urgent (Li et al., 2018; Bundy
and Li, 2023). Second, in the particular task that we use to empirically test
our model, when the teacher and learner encounter a new visual scene, which
obviously corresponds to a new model with new entities, the learner retains
its beliefs about how to map symbols to entities given their visual features,
but the previously built domain theory Δ must be discarded, because it is not
a (partial) description of the current visual scene (or model) anymore. This

4In Barwise and Cooper (1981) witness set is the truth-conditional equivalent of the proba-
bilistic answer set.
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reduces the complexity of the theory Δ that the agent builds over the course
of its learning process.

Let’s now illustrate the effects of different theories Δ on probabilistic
queries about the domain model. We’ll consider three separate theories, in-
volving the following three referential expressions, whose semantics relative
to the model in Eq. 1 are also given below:

r1 = “a red square” R1 = {{u2}}
r2 = “the one red square” R2 = {{u2}}
r3 = “the one blue square” R3 = {{u4}}

Our three contrasting theories are then defined as follows, where φ1 =
〈_a_q .x(red(x) ∧ square(x))〉[{u2}] (and so corresponds to the formulae
in Eq. 12), and φ2 and φ3 are similarly defined:

• Δ1 = {φ1}: built from uttering r1 and the teacher pointing to u2,
• Δ2 = {φ2}: built from uttering r2 and the teacher pointing to u2,
• Δ23 = {φ2,φ3}: built from uttering r2 and the teacher pointing to u2

and uttering r3 and the teacher pointing to u4.

Table 2 shows the probabilities for queries that result from these dif-
ferent logic theories. Between Δ1 and Δ2, there’s additional information
inferred about the domain, as shown in Eq. 11 vs. Eq. 12. Crucially,
this additional monotonic information under WMC affects the probabili-
ties of atoms that aren’t a part of Δ1 or Δ2: e.g., the atom red(u1) is less
likely to be true given Δ2 compared with its likelihood given Δ1, because
Pr(red(u1) ∧ square(u1)|Δ2) = 0 and this is not the case with respect to
Δ1.

When comparing Δ2 and Δ23, observe that blue(u2) and red(u4) are
false thanks to the (classical) logical reasoning from the logical formulae in
Δ23. WMC yields soft belief changes as well. For example, the neologism
“blue” has just been introduced, but one logical consequence of Δ23 is that
for all individuals other than u4, the probability that they are both a square
and blue is 0. This reduces the likelihood that u1 and u3 are blue for similar
reasons to those we mentioned for red(u1) given Δ2. In Δ23 we have equiv-
alent evidence for symbols red and blue, coming from φ2 (r2=“the one red
square”) and φ3 (r3=“the one blue square”), respectively leading to the same
probability assigned for atoms red(u1),red(u3), blue(u1), blue(u3), while
it’s different and smaller for symbol square, because we have evidence about
this symbol from both φ2 and φ3. For MAP queries, there is no qualitative dif-
ference between Δ1 and Δ2 because MAP sets the truth value of a to true if,
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Atoms a EVI(a,Δ1) EVI(a,Δ2) EVI(a,Δ23) MAP(Δ1) MAP(Δ2) MAP(Δ23)
red(u1) .50 .33 .40 0 0 0
red(u2) 1 1 1 1 1 1
red(u3) .50 .33 .40 0 0 0
red(u4) .50 .33 0 0 0 0
blue(u1) − − .40 − − 0
blue(u2) − − 0 − − 0
blue(u3) − − .40 − − 0
blue(u4) − − 1 − − 1
circle(u1) − − − − − −
circle(u2) − − − − − −
circle(u3) − − − − − −
circle(u4) − − − − − −
square(u1) .50 .33 .20 0 0 0
square(u2) 1 1 1 1 1 1
square(u3) .50 .33 .20 0 0 0
square(u4) .50 .33 1 0 0 1

Table 2: Comparison of different probabilistic queries: EVI and MAP for
Δ1,Δ2 and Δ23. The symbol “−” denotes the unawareness about that concept
for that particular stage of the interaction. This may change: e.g. upon the
teacher conveying φ3, the vocabulary V← V∪{blue} expands, as the agent
becomes aware of the concept blue. Thus for Δ23 “−” gets replaced with a
probability. In MAP queries, 1 means that an atom is in the domain model; 0
means it is not.

and only if, Pr(a|Δ) > 0.5 (according to EVI). For Δ23 we infer additional
atoms to be true in the domain due to the addition of new knowledge from
φ3.

3.2 Interactive Symbol Grounding
We now describe how to integrate the evidence stemming from the logical
theory Δ, built from the embodied conversation, with the (visual) sensory
information about the entities and their perceptual similarity. To achieve
this, we extend our domain model definition for each entity u ∈ U to have
a corresponding d-dimensional feature vector u ∈ U that’s extracted from
the learner’s sensory observation of the environment.5 For illustration, we
amend the toy example domain model from Eq. 1 with 2-dimensional feature
vectors for each of its entities, in which the first dimension corresponds to a

5Section 5.2 give details about feature extraction
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‘colour’ feature and the second one corresponds to a ‘shape’ feature:

M :

U = {u1, u2, u3, u4}
U = {u1 = [0.7, 0.2]⊤, u2 = [0.1, 0.7]⊤, u3 = [0.6, 0.1]⊤, u4 = [0.9, 0.8]⊤}
V = {blue, red, circle, square}
I = {blue : {u1, u3, u4}, red : {u2}, circle : {u1, u3}, square : {u2, u4}}

(14)

This is for illustrative purposes only: we are using here an extremely small
feature space, but the approach we describe for combining logical and sensory
information to enhance learning can cope with arbitrarily complex feature
spaces, and the feature space used in the experiments in Section 5 is much
larger.

Sensory observations must combine with evidence from the embodied
conversation to solve the interactive symbol grounding problem. Our ground-
ing model (grounder) uses prototype networks ωS : Rd 7→ R|V| (Yang et al.,
2019; Cano Santín et al., 2020): these offer the means to address a multilabel
classification problem with expanding hypothesis space, and they are also
designed to support few-shot learning. Here, we show how prototype net-
works can combine with evidence obtained via the teacher’s assertions (i.e.,
Δ) to ground 1-place predicates (properties), such as shapes and colours. Our
model is not limited in principle to grounding 1-place symbols. It could be
extended to ground symbols of other arities; e.g., grounding spatial relation-
ships that have binary and ternary arity. But our experiments don’t explore
the model’s capacity to do that in this paper and so to simplify the notation
we consider grounding only 1-place symbols.

To ground a symbol p ∈ V, ωS acts as a probabilistic classifier using a
sigmoid function: it takes as input a d-dimensional feature vector u ∈ Rd

and predicts a |V|-dimensional semantic vector ŷ ∈ [0, 1]|V|, whose entry ŷp
estimates a probability that the atom p(u) is inHM.:

ŷ = ωS(u)
ŷp = Pr (p(u) ∈ HM | u,S)

ŷp =
1

1 + e(−cos(z−p −z+p ,f(u))

(15)

The sigmoid function uses cosine similarity to compare how visually sim-
ilar a given entity is compared to positive and negative prototypes, denoted
as z+p and z−p respectively. These prototypes are computed using support
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S = {(ui, yi)}|S|
i=1 of feature vector–semantic vector pairs. This is used to

construct positive and negative support for each symbol p ∈ V, denoted as
S+p and S−p , respectively. Whether a pair goes into one of these support sets
is decided by the value of yp as well as the entropy H of a Bernoulli distribu-
tion parametrised by yp. That is, the pair is added to the (positive or negative)
support if entropy is smaller than the threshold τ:

S+p = {(u, y) ∈ S | yp >
1
2
∧H[yp] ≤ τ}

S−p = {(u, y) ∈ S | yp <
1
2
∧H[yp] ≤ τ}

(16)

Using these support sets, prototypes are computed by taking the weighted
average of the feature vectors of the corresponding support sets, the weight
being the likelihood that the relevant entity is (or respectively is not) denoted
by the symbol p (i.e., the values yp and (1− yp) respectively).

z+p =
1
|S+p |

∑
(u,y)∈S+

p

yp f(u)

z−p =
1
|S−p |

∑
(u,y)∈S−

p

(1− yp) f(u)
(17)

where f : Rd 7→ Rl is an encoder that could be a pretrained neural network, a
small feed-forward neural network or a combination of the two.

The encoder f acts both as a feature extractor and as a way to bound the
computation in our approach. As an entity-centric approach, the computa-
tional complexity of probabilistic queries depends on the number of entities
in the domain: as the number of the entities the agent is aware of grows so do
the computational needs, making it intractable for the agent’s (perhaps long)
lifecycle. To bound the complexity, the knowledge that has been learned in
the interaction periodically has to be integrated using batch learning tech-
niques (i.e., not during a particular embodied conversation): f is fine-tuned
withS and in turn ωS can be used to assign other initial weight values, instead
of uniform weights as presented above. Such batch learning is not lossless,
but does bound the overall complexity of the approach. The fine-tuning of f
can be achieved by using binary-cross entropy loss on semantic vectors as an
optimization criterion.

LBCE =
∑
p∈V

−ŷp log (yp)− (1− ŷp) log (1− yp) (18)
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However, exploring empirically the effects of integrating periodic batch
learning with the online learning of our model during a ‘lifetime’ of em-
bodied conversations is beyond the scope of this paper.

Note that if for the lack of evidence S+/−
p are empty—in other words,

there isn’t enough evidence (yet) to deem any of the observed feature vectors
to be good-enough exemplars for positive/negative support—then z+/−

p de-
faults to support elements with the largest/smallest Bernoulli entropy H as
the best guess of what exemplars are suitable for these support sets.

The probability distribution ωS , which assigns to each entity a (binary)
probability distribution for each symbol (the symbols being Boolean vari-
ables), handles unawareness in the following way. Suppose that the learner
observes a new symbol or neologism p∗. ωS becomes aware of it by extend-
ing the vocabulary V← {p∗} ∪ V and consequently, each semantic vector is
extended with a new entry:

y← Concat(y, 0.5) (19)

where Concat is a concatenation function, adding the additional value to the
prior vector. The value 0.5 in the (updated) semantic vector represents the
(current) complete ignorance about the neologism’s denotations. The new
prototype network ω′

S is assigned the same encoder f as the original one ωS .
ωS ’s prediction for all entities u ∈ U in the domain specifies the weights

w given by the overall grounding model ΩS : Rd×|U| 7→ [0, 1]H:

w = ΩS(U) = [ωS(u1),ωS(u2), . . . ,ωS(u|U|)] (20)

These weights w can in turn be used as weights for probabilistic queries. In
Rubavicius and Lascarides (2022) we showed how to use Δ to construct se-
mantic vectors for support S ′ using EVI queries (see Eq. 5): yi = EVI(ai,Δ)
(e.g., see the example values in Table 2). This dynamic change is denoted by
the following procedure

S ′ = ζ(S,Δ) (21)

To illustrate how beliefs change, given the evidence Δ from the embod-
ied conversation combined with sensory observations, we consider the belief
changes under the same logic theories Δ1, Δ2, and Δ23 as we used in Table 2,
combined with the example 2-dimensional vectors for our toy example that
are shown in Eq. 14. For this illustrated toy example, we make f identity.
But in practice, both the visual features in U and the extraction is much more
complex and hard to reason about—this simple example is designed merely
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to anchor one’s intuitions. Furthermore, we set the threshold τ to 0.7. This
corresponds to a positive (or negative) exemplar being added to the support
set, thereby affecting the vector representation of positive (or negative) proto-
types, if the probability that the atom is true is above 0.55 (or for the negative
case, below 0.44).

The comparison of the beliefs about grounding using these three different
logic theories is given in Table 3. Consider first Δ1. u2 is in the positive
support vectors for red and square thanks to Δ1 (entries in Table 2, column
2 are above 0.55 for these atoms) while u1 is chosen at random to be assigned
to the negative support vector for these concepts, because no exemplars have
the probability below the 0.44 margin (see Table 2, column 2): since the
possible candidates ({u1, u3, u4}) all have the same entropy, one is chosen
without a loss of generality.

Using these support sets, prototypes for symbols red and square is
z+
red/square = u2 and z−

red/square = 0.5u1 (0.5 being the probability in Table 2
that u1 is red, and the probability that it’s a square). Similarly, computation
between these vectors and the feature vector for each entity acts as an activa-
tion for the sigmoid in Eq. 15, which yields weights (Table 3, column 6) that
show that u4 is more likely to be red and square than u1 or u3, even though
no evidence is provided about that in the embodied conversation. This dif-
ference stems entirely from the relevant cosine similarities on the vectors of
the entities vs. the positive (and negative) prototypes.

When grounding with Δ2, the ordering of the likelihoods persist: u4 is
more likely to be red and square than u1 and u3, but the weights are overall
lower because the logical theory now has the information stemming from the
logical consequences of using “the one” instead of “a”.

With domain theory Δ23, compared to the version without sensory ob-
servation (Table 2 column 4), integrating sensory information makes a dif-
ference, in particular to the (probabilistic) beliefs for red(u1), red(u3),
blue(u1) and blue(u3). In particular, the sensory observations make
blue(u1) and blue(u3) more probable than red(u1) and red(u3), thanks
to the visual similarity of u1 and u3 to the positive prototypes for blue. These
differences lead to a different and more accurate estimated domain model
for Δ23 (when compared to using only the symbolic information Δ23 alone):
MAP query with sensory observations (Table 3 column 7) additionally suggest
that blue(u1) and blue(u3) holds in the domain, in contrast to the estimated
model without sensory observations (Table 2 column 7).
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Δ Positive Support
Feature Vectors

Negative Support
Feature Vectors

Positive
Prototypes z+

Negative
Prototypes z− Weights w Model

HM̂

Δ1

red : {u2}
blue : −
circle : −
square : {u2}

red : {u1}
blue : −
circle : −
square : {u1}

z+red =
[
.10
.70

]
z+square =

[
.10
.70

] z−red =
[
.35
.10

]
z−square =

[
.35
.10

]

.36, 1., .33, .47
−,−,−,−
−,−,−,−

.36, 1., .33, .47

 {red(u2)
square(u2)}

Δ2

red : {u2}
blue : −
circle : −
square : {u2}

red : {u1, u3, u4}
blue : −
circle : −
square : {u1, u3, u4}

z+red =
[
.10
.70

]
z+square =

[
.10
.70

] z−red =
[
.49
.24

]
z−square =

[
.49
.24

]

.27, 1, .26, .31
−,−,−,−
−,−,−,−

.27, 1, .26, .31

 {red(u2),
square(u2)}

Δ23

red : {u2}
blue : {u4}
circle : −
square : {u2, u4}

red : {u1, u3, u4}
blue : {u1, u2, u3}
circle : −
square : {u1, u3}

z+red =
[
.10
.70

]
z+blue =

[
.90
.80

]
z+square =

[
.50
.75

]
z−red =

[
.56
.33

]
z−blue =

[
.29
.29

]
z−square =

[
.52
.12

]

.29, 1, .28, 0
.41, 0, .42, 1
−,−,−,−
.20, 1, .19, 1


{red(u2),
square(u2),
square(u4),
blue(u1),
blue(u3),
blue(u4)}

Table 3: Comparison of different support set feature vectors, prototypes, weights, and domain models (MAP query) con-
structed with different logic theories Δ1, Δ2, and Δ23. Semantic vectors y are omitted as they are equivalent to EVI queries
in Table 2. Weights w are given in the same order for atoms as in Table 2.
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Teacher Learner

REFERENCE RESOLUTIONTASK

I think you are looking for
this. (points to )

Show me  the one green
circle.

EXPLORATION

ENVIRONMENT

Before that, show
me every circle.

Before that, is this a
green object ?
(point to )

CLARIFICATION

Figure 4: A task instance in which learner may refer using its beliefs (cur-
rently incorrect) or query the teacher to reduce uncertainty via clarification
(asking if an entity is denoted by an expression) or exploration (asking for a
referent for an expression).

4 Learning a Policy
We now describe the main contribution of this article, which is to extend the
method for learning a grounding model from Section 3 with a neuro-symbolic
method for learning a policy for acquiring the evidence the learner needs to
acquire that grounding model efficiently, through embodied conversation. In
effect, this is a method for learning a policy of when (and what) to ask the
teacher vs. when (and how) to perform a task in the domain. Like the ground-
ing model, it utilises the logical consequences of quantifiers to reason about
what strategies work best. We use this model in our experiments (see Sec-
tion 5), which address the task of interactive reference resolution, described
in Section 4.1. Table 11 in Appendix A gives a summary of symbols and
their descriptions from this section.

4.1 The Task
Interactive reference resolution involves an embodied conversation between
two agents: the learner L and the teacher T. We consider an environment
of 2D coloured shapes (see Figure 4) based on ShapeWorld (Kuhnle and
Copestake, 2017). Each environment instance comes as a pair: an image
X ∈ R256×256 that contains entities of various shapes and colours on a
solid black background in non-overlapping positions; and a symbolic rep-
resentation of that image that is much like the domain model M given in



30 · LiLT SUBMISSION

Eq. 1. Specifically, the symbolic representation features predicate symbols
for shapes (domain’s vocabulary V) in the domain model M = (U,V, I),
where U is a set of entities associated with a feature vector U that is deter-
mined by the sensory observations X (as illustrated in Eq. 14, for details see
Section 5.2), and I is an interpretation function that maps each predicate to a
subset of U.

The learner L can observe X and also has perfect object detection: thus
for each ShapeWorld instance. L observes U and the corresponding feature
vectors U. But I is latent to L. Indeed, even the set of possible domain models
isn’t known to L because it starts its learning process unaware of all colour
and shape symbols (its vocabulary V starts as the empty set), and so it doesn’t
know the domain of I, let alone the denotations defined by I.

Each interactive reference resolution task tr is conceptualized as an
episode that begins with the teacher T issuing a request to the learner L that
it identify a referent for a particular referring expression r, such as:

T: show me the one green circle.︸ ︷︷ ︸
r

L observes the logical form Φ(r) of r: see Section 3.1 for the symbolic logic
of Φ(r) and Section 5.2 for how L constructs Φ(r), even when r contains a
neologism.

L’s objective is to accurately point to a referent of r. L’s estimated ref-
erent(s) of r is Φ(r)M̂ (Eq. 8), where M̂ is the learner’s estimated domain
model (Eq. 6). In this interaction, L faces a choice: either point to a currently
estimated referent; or utter a query to T so as to use her response to mini-
mize the uncertainty about what to point to. Queries come at a cost, which
incentivise L to minimise T’s effort.

If L decides its next action is to point at an estimated referent (which
may involve pointing to more than one entity, e.g., for expressions such as
“every circle” or “both squares”), then it executes the following (the estimated
referent being given in red):

L: Here it is (points to {{u1}}︸ ︷︷ ︸
Φ(r)M̂

).

By performing this action, L receives a reward: R = 1 if the referent is
correct, R = −1 if it isn’t. This action terminates the episode. If, on the
other hand, L chooses to utter a query, then the episode continues, L incurs the
query’s cost and uses T’s response to compute updated beliefs. A sequence
of interactive resolution tasks T = tr1 , tr2 , . . . , tr|T | over the same image X
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constitutes an embodied conversation C = (X, T ). A sequence of embodied
conversations (i.e., one conversation per image) constitutes a dataset D =
C1, C2, . . . , C|D|.

As we’ve stated, L can query the teacher to improve its beliefs. We con-
sider two types of queries q ∈ Q. The first type is an exploration query,
which allows L to find out more about the symbols that feature in r. E.g., in
our running example:

L: Before that, show me every circle︸ ︷︷ ︸
ri

.

ri must include a subset of r’s non-logical symbols plus a quantifier that’s re-
stricted to guarantee a valid reference. E.g., where r is “the one green circle”,
ri could be “the one green circle”, “a circle”, “one green object”, “a green cir-
cle”, “every circle”, and so on. But “the one circle” and “two green circles”
are forbidden: the former carries a Russellian uniqueness condition (there is
exactly one circle) that might be false, and the latter violates the uniqueness
condition entailed by r (see column 3 of Table 1). The above query results in
a response where T designates a referent of ri, like this:

T: Here it is. (points to {{u2, u4}}︸ ︷︷ ︸
Φ(ri)M

)

The second category of queries is clarification queries: yes/no-questions
about a particular entity, e.g.:

L: Is this a circle︸ ︷︷ ︸
rj

? (points to u3︸︷︷︸
u∈U

)

rj is similar to ri, except the quantifier is “a”, “an” or “the one” to ensure rj’s
denotations are single entities. T’s response is:

T:

{
Yes. (if {u} ∈ Φ(rj)

M)
No. (otherwise)

Each query has an inherent cost, Cost : Q 7→ R>0. As we’ll see in Sec-
tion 4.2, this will allow us to balance T’s effort to find and show the referent
against the value of L knowing T’s answer. We approximate the inherent cost
of answering the query using two quantities: the number of entities Ent(q)
in the referent of the query, which is determined by the head quantifier for a
referential expression and approximates the pointing effort; and the number
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of symbols Sym(q) in the logical form of q, which approximates the effort to
search for referents. These quantities are weighted by unit pointing wpoint and
unit symbol reference wref, resulting to the overall cost defined as follows:

Cost(q) = wpointEnt(q) + wrefSym(q) (22)

To illustrate, consider q = “before that show the one red square”. The
cost of q would be wpoint + 2wref : q features two symbols and its answer
must point to one entity. For some of the quantifiers (e.g., _every_q) the
number of entities in a referent is not known in advance: it could be anything
from 1 to |U|. To approximate this, we use an average number of entities
assuming ignorance about reference (e.g., |U|−1

2 for _every_q).

4.2 The Neuro-symbolic Learner
We now present a neuro-symbolic learner that aims to solve interactive refer-
ence resolution tasks by learning a policy from evidence, the evidence being
the observed costs or rewards of the actions its experienced so far in various
embodied conversations for the purpose of doing reference resolution. Our
model is novel in that the learning such a policy utilizes reasoning about the
logical consequences of possible responses to its queries. Specifically, as
we’ll see shortly, the learner distinguishes the expected reward of a query
such as show me every circle from show me a circle. It also copes with the
discovery of, and adaptation to, unforeseen concepts.

As is standard in models of rational behaviour, our learner’s decisions aim
to maximise expected reward. This is determined by its epistemic state, which
captures its expectations of what outcome (and hence what reward) it is likely
to achieve from its actions. We denote the learner’s current (epistemic) state
as a tuple s = (ΩS ,Δ,U) ∈ S, consisting of the current grounding model
ΩS with support S , the current domain theory Δ (as constructed from the
teacher’s assertions, described in Section 3.2) and the set of visual feature
vectors U.

On receiving the teacher’s utterance (e.g., the teacher’s response to the
learner’s query q) with logical form φ, the state is updated in the following
manner:

Update(s,φ) = Update((ΩS ,Δ,U),φ) = (Ωζ(S,Δ∪{φ}),Δ ∪ {φ},U)
(23)

When faced with the task of finding a referent of r, the learner can either
ask a query q ∈ Q (subject to the above constraints on the quantifier and
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non-logical symbols in q), or it can perform the action ref of designating a
referent based on M̂. Thus the action space A = {ref} ∪ Q.

As we mentioned earlier, for ref ∈ A, the reward is R = 1 if the correct
referent is found and R = −1 otherwise. The (immediate) reward of asking
query q ∈ Q approximates the trade-off between the information that learner
gains from the teacher’s response—in other words, how much the new epis-
temic state improves its chances of correctly identifying the referent—and
the teacher’s effort in responding, as given by the Cost function in Eq. 22.

We use a preference function H : S 7→ R (Sutton and Barto, 1998) to
quantify the favourability of being in s. In words, H is determined by the
learner’s confidence that it will succeed in performing the task, given M̂.6
It is defined in terms of the weights w (Eq. 20) within the learner’s (current)
grounding model ΩS . Because of the expanding domain model (the size of w
expands every time the learner discovers a new concept via the teacher’s ne-
ologisms), functional approximation methods requiring a fixed size input are
not immediately suitable in our scenario. To cope with this, we use a statistic
extractor function h : [0, 1]|H| 7→ Rm to extract m summary statistics from a
distribution defined by w. Using these extracted features, H is computed by
a linear approximation parameterized by θ = {v, b}:

H(s) = v⊤h(w) + b = v⊤h(ΩS(U)) + b (24)

Using H and Cost, the reward for asking q is defined as follows, where
ANS(q) is the logical form of the answer that the teacher gives to q:

R(q) = Softmax

(
H(Update(s, ANS(q)))− H(s)

Cost(q)

)
− 1 (25)

In words, R(q) depends on the difference in preferences H of the updated
epistemic state that’s triggered by the teacher’s answer to query q (compared
with the prior belief state) and the query’s cost COST(q): it effectively mea-
sures the gain in information per unit cost. This quantity is normalised be-
tween the queries using the Softmax function over possible queries Q.

Note that, like the reward for ref, the learner will not observe this reward
until the teacher’s response is observed—the learner does not know what
answer ANS(q) the teacher will provide until after the learner has actually
asked q. So the learner must base its decisions on expected rewards, given its
current epistemic state s. We’ll shortly define how the agent computes these
expected rewards for both ref and for a query q. But overall, it means that, in

6Given this metric one could view H has measuring the informativeness of s, but we stick
with the term preference to match the reinforcement learning literature.
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the usual way, the learner must base it’s decision on an action-value function
Q(a | s) that captures these expected rewards. Specifically, the learner can
choose a (greedy) a∗ ∈ A as follows:

a∗ = arg max
a∈A

Q(a | s) (26)

Now let’s define these expected rewards Q(a | s). The expected reward
Q(ref | s) is defined as follows, where Pr(ref|s) is the probability of suc-
cessful task execution, given the epistemic state s:

Q(ref | s) Δ
= 2Pr(ref | s)− 1 (27)

The reward for correct and incorrect execution is 1 and −1 respectively, so
the computation simplifies to the one given in Eq. 27. Where r is the re-
ferring expression for which the teacher requested a referent (“show me r”),
Pr(ref | s) is computed using EVI, where Φ(r)[Φ(r)M̂] is a logical form
that’s constructed from the estimated referent Φ(r)M:

Pr(ref | s) = EVI(Φ(r)[Φ(r)M̂],Δ) (28)

where For instance if r=“a red square” and the estimated domain model
computes the referent to be u1, then we are evaluating the probability of
red(u1) ∧ square(u1) using the methods described in Section 3.

The expected reward Q(q|s) effectively replaces the numerator in Eq. 25,
which captures the difference in preference afforded by the actual answer to
q, with the established concept of Value of Information (VOI)—that is, the
expected difference in preference, as determined by marginalising over all
the possible answers to q (Howard, 1966):

VOI(q | s) = Eφ∼ANS(q)[H(UPDATE(s,φ))]− H(s) (29)

More specifically, the expectation in Eq. 29 is computed by marginalising
over every possible answer φ to the query q, consistent with the learner’s
current state s (Eq. 30), with the probability that the teacher answers with φ
computed by marginalising over all the modelsM that are consistent with φ,
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with that probability computed via WMC (Eq. 32), as defined in Eq. 4:

Eφ∼ANS(q)[H(UPDATE(s,φ))] = (30)

=
∑

φ
Pr (ANS(q) = φ | s)H(UPDATE(s,φ))

=
∑

φ
Pr
ΩS

(φ)H((Ωζ(S,φ),Δ ∪ {φ},U)) (31)

=
∑

φ
WMC(φ,ΩS(U))H((Ωζ(S,φ),Δ ∪ {φ},U)) (32)

Thus Q(q | s) works out to be like R(q) except VOI is used for information
gain:

Q(q | s) Δ
= Softmax

(
VOI(q | s)
Cost(q)

)
− 1 (33)

Q parameters θ = {v, b} are learned by semi-gradient SARSA (Rum-
mery and Niranjan, 1994), the particular instantiation of which is outlined in
Algorithm 1.

We have modelled the problem of decision-making for reference reso-
lution as a single-shot decision-making problem, making the learner ‘my-
opic’ (in other words, when deciding on its next action, the learner does not
speculate about the effects that the teacher’s response to a query might have
on the expected value of follow-up queries). We’ve done this to make the
overall problem tractable. Treating this as a single-shot decision problem
contrasts with, for instance, partially observable Markov Decision Processes
(POMDPs), which support sequential decision-making, trading off immedi-
ate rewards against longer-term returns (Mykel J. Kochenderfer and Wray,
2022). But as well as the vastly increased complexity that comes with solv-
ing a sequential decision problem, our problem cannot be modelled, even in
principle, by a POMDP. This is because POMDPs don’t support a chang-
ing hypothesis space of possible states and actions, and provide no reasoning
about how to utilise one’s experience and learning so far on the discovery of
an unforeseen possibility. At any rate, while decision-making in our model is
myopic, it does not exclude the option of asking a sequence of queries before
acting in the environment (see examples of such cases that are attested in our
experiments in Section 5.3).

Another interesting feature of our decision-making problem is that the
reward function is non-stationary when learning dialogue strategy (Eq. 25
depends on preference function, and in turn θ). This is done so that the re-
ward function itself would reflect the value of changing the state to a more
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favourable state. Such a choice makes the policy learning procedure more
stochastic, but during evaluation (as done in Section 5), the reward function
is stationary and is much closer to the traditional decision-making problem.

Algorithm 1 semi-gradient SARSA for dialogue strategy learning
Require: learning rate α, discount factor γ, epsilon ε, dataset D, action-

value function Q parameterized by θ, grounding model Ω.
1: for TASKS, U in D do ▷ iterate over the dataset
2: Δ ← THEORY() ▷ initial theory
3: s← (Ω,Δ,U) ▷ initial state
4: for TASK in TASKS do ▷ process task instance
5: Q ← QUERIES(TASK) ▷ queries as defined in § 4.1
6: A← {ref} ∪ Q ▷ action space
7: while True do ▷ SARSA training loop
8: a← arg maxa∈A Q(s;A) ▷ greedy action
9: R, s′,Done← ACT(a) ▷ act in the environment

10: if Done then
11: δ← R− Q(s, a)
12: θ← θ + αδ∇θQ(s, a)
13: break
14: else

15: a′ ←

{
arg maxa∈A Q(s′;A) with prob. 1− ε
CHOOSE(A) otherwise

16: δ← R + γQ(s′, a′)− Q(s, a)
17: θ← θ + αδ∇θQ(s, a)
18: s← s′

5 Experiments
We now describe the experiments we use to evaluate the effects of utilizing
the logical consequences of quantifiers for both decision-making and ground-
ing when the task to be mastered is interactive reference resolution.7

7The code and data for these experiments can be found in https://github.com/
ipab-rad/dialogue-strategies.

https://github.com/ipab-rad/dialogue-strategies
https://github.com/ipab-rad/dialogue-strategies
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Dataset # Conversations # Tasks # Task / # Conversations

Dtrain 128 496 3.9
Dtest 32 51 1.6
D∗

test 32 128 4

Table 4: Number of conversations, number of tasks, and average number of
tasks per conversation in each experiment datasets.

5.1 Experimental Setup
Our experiments use three ShapeWorld datasets: Dtrain, Dtest, and D∗

test.
Each of these datasets consists of a set of ShapeWorld images that contain
5-7 coloured shapes in varying orientation and hues. These objects can
be described using the 7 shapes (square, rectangle, circle, ellipse,
triangle, cross, pentagon) and 7 colours (red, blue, green, yellow,
magenta, cyan, grey). The orientation of entities in each ShapeWorld in-
stance and the shades of the colour categories (which are not mutually ex-
clusive) can both vary within a particular ShapeWorld instance X and also
across the different ShapeWorld instances that L and T will encounter during
learning. For each ShapeWorld image X in the datasetD, there is a sequence
of tasks T , where each t ∈ T is an instruction to identify a referent of a refer-
ring expression r (r is chosen so that it has a non-empty denotation in X). As
we mentioned earlier, the verbal exchanges that ensue while performing the
sequence of tasks in T constitute a conversation C. The number of entities
in a correct referent vary in the tasks from 1 to 5, with the average number
being 1.4. Table 4 gives details of the number of conversations (equivalent
to the number of images) and the number of tasks in each data set.
Dtest and D∗

test consist of the same images, but their tasks are different.
The symbols used in the referring expressions r for tasks T in Dtrain and
Dtest are restricted: they feature only 10 of the 14 possible symbols: square,
rectangle, triangle, cross, ellipse, red, blue, green, cyan, grey.
In contrast, T inD∗

test features the additional 4 symbols: circle, pentagon,
yellow, magenta. This enables us to showcase in our experiments the ex-
tent to which the learner copes with unforeseen possibilities at test time, hav-
ing experienced different unforeseen possibilities during training. We should
stress, however, that for both test data sets, Dtest and D∗

test, the agent retains
its learned policy from training, but we re-set the agent so that it starts the
test phase unaware of all shape and colour words and completely ignorant
about their denotations and what they look like: we’re testing in both test
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data sets how well the learned policy copes with overcoming unawareness so
as to master interactive reference resolution.

Table 5 outlines the number of occurrences of each symbol in the under-
lying truth domain modelM (a.k.a. the maximum number of exemplars that
could be observed if the learner L knows M) and the number of symbols
mentioned in each task tr (not all entities get covered in all conversations).

The tasks in each conversation have overlapping concepts (e.g., “show me
the one red square” and “show me a red circle”), but tasks within a single
conversation are not directly reducible to each other without sensory obser-
vations (e.g. the sequence of tasks T doesn’t ever include both “show me
a square” and “show me the one square”). The learner maintains the same
domain theory Δ between the tasks in the same conversation, for Δ is build-
ing up a partial, but ever more specific, symbolic description of the same
image, or equivalently the same modelM. But when the image changes, so
the learner must estimate a new model. Accordingly, the learner retains what
it’s learned so far about the mapping from symbols to visual features (ie., the
support S , from which visual prototypes z+/− and grounding model ΩS are
computed). But the conversation is no longer about the same entities, and so
the learner must reset Δ to ∅ and re-set M̂ via its (accurate) object detection,
their associated visual features and hence, via ΩS , the prior probabilities of
which of these (new) entities in the new image are denoted by which symbols.

As argued in Section 3.2, this support S could periodically be integrated
into the encoder f, so as to bound the size of the support. But such integration
is out of the scope of this article. Instead, we just maintain support from all
conversations, and the grounding model ΩS makes decisions based on it.8

In the training phase, the learner optimizes Q parameterised by θ using
semi-gradient SARSA, as given in Algorithm 1, by being exposed to Dtrain.
The learner starts unaware of all shapes and colour symbols and their map-
pings to referents, and has to acquire both by learning an effective dialogue
policy for learning a grounding model ΩS (see §3.2).

In the testing (evaluation) phase, the learner uses Q parameterized by θ
that it learned in training, but as we mentioned earlier: it starts the test phase
completely unaware of shape and colour terms again: we do this by re-setting
its vocabulary V to ∅ (i.e., the agent is made unaware of all the colour and
shape symbols), and its support S and grounder ΩS that it acquired while
training gets dropped as well (so that, on encountering a neologism, it starts
out completely ignorant about what the denotations look like). Thus during
the test phase, the learner is tasked with learning the grounding model again

8Situations where entities are added to the domain is deemed as a new conversation and the
logical theory Δ would be discarded in such a situation while support S persists.
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Symbols Dtrain Dtest D∗
test

inM in tr inM in tr inM in tr

blue 125 42 41 14 41 16
red 114 38 24 9 24 13
green 137 51 31 10 31 12
yellow 126 - 42 - 42 17
cyan 119 41 43 11 43 13
magenta 147 - 29 - 29 9
grey 138 27 30 15 30 18

Average in category 129 28 34 8 34 14
Total in category 906 199 240 59 240 98

circle 123 - 35 - 35 14
cross 116 45 33 14 33 21
pentagon 127 - 30 - 30 12
rectangle 152 56 38 9 38 11
square 87 37 25 6 25 7
triangle 134 37 43 13 43 18
ellipse 167 36 43 15 43 18

Average in category 129 30 34 8 34 14
Total in category 906 211 240 57 240 97

Average symbols 129 29 34 8 34 14
Total symbols 1812 410 480 116 480 195

Table 5: Number or symbols in each dataset used in the experiments, by
category (colour and shape) together with the total count and the average
number of symbols per category. Columns “in M ” show the number of
symbol occurrences in the ground-truth domain model while Columns “in
tr” shows the number of times a symbol occurs in the tasks. − indicates
that the relevant symbol was not introduced during the learning for the entire
dataset D.
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‘from scratch’, starting in a position of unawareness, but using it’s learned
policy (of when to query and when to act in the environment). The learner is
exposed toDtest featuring the same symbols as those inDtrain, and (separately)
to D∗

test, which includes symbols not in Dtrain.
To evaluate the effects of reasoning with the logical consequences of

quantifiers on learning a dialogue strategy that aims for accurate grounding,
and on learning the grounder itself, we consider the following types of learn-
ers:

• Semantic learner Lsem performs grounding utilising the logical conse-
quences of quantifiers to construct (noisy) support, and makes deci-
sions on whether to query the teacher that are based on the expected
value of information (Eq. 29) that takes these consequences into ac-
count as well, thereby making the expected value of a query sensitive
to its quantifier (i.e., the quantifier affects both VOI in Eq. 29 and Ent(q)
in Eq. 22).

• Base learner Lbase is just like Lsem except it doesn’t have any active
learning: that is, it lacks entirely the capacity to query T. It uses only
T’s yes/no response to the action ref to acquire its grounder.

• The ‘simple’ learner Lexists performs simplified semantic analyses, in
which each quantifier in Φ(r) is replaced with the existential ∃. That
means that when deliberating over the expected value of its queries,
they are all the same: i.e., it always amounts to the trade-off between
the value of information and the cost of using an existential (see Eqs. 22
and 29). Likewise, the formulae added to Δ during grounding is that of
the existential referring expression, as contrasted with those for other
quantifiers, regardless of the quantifier that the teacher used. So over-
all, the interpretations and potential benefits that Lexists ascribes to
the referential expressions “both circles”, “two circles”, “a circle” and
“every circle” are all the same, when performing grounding and when
learning a dialogue strategy.

We further consider the interaction between using the logical conse-
quences of quantifiers, or not, on each of the two learning tasks—to learn a
grounder, and to learn a dialogue strategy—by conducting an ablation study
on two mixture learners:

• Lmix1 makes decisions like Lsem but performs grounding like Lexists:
i.e., its strategy discriminates among the meanings of quantifiers but
its grounding does not.



LiLT SUBMISSION · 41

• Lmix2 makes decisions like Lexists but performs grounding like Lsem:
i.e., its grounding discriminates among the meanings of quantifiers but
its strategy does not.

We compare the different learners with the following metrics:

• The cumulative reward received inDtest andDtest∗, showing the value
of the policy used. Each learner aims to maximise this metric in
its decision-making, choosing an action with the maximum expected
value (Eq. 26), with expected values defined in Eqs. 27–33 (where for
the simple learner Lexists these are computed off the existential regard-
less of the quantifier in the utterances). Note that the base learner Lbase

doesn’t attempt resolve dilemmas between asking vs. doing, because
querying the teacher isn’t an option for it.

• Macro average F1 score on the learner’s chosen referent vs. the true
referent for each task.

We do not measure F1 scores on M̂ because there are frequently symbols
with empty denotations in the givenM, in which case F1 is 0. Those symbols
with empty denotations vary across the models, so it is not informative and
meaningful to measure average F1 scores over all the domain models.

5.2 Implementation Details
To extract feature vectors U from the image X, we use bounding boxes
from the generation process to localize each entity in the visual scene and
DENSENET161 (Huang et al., 2017) for feature extraction.

To process natural language, and in particular, to parse referential expres-
sions to their logical form, we use the same pipeline as used in Rubavicius
and Lascarides (2022). It consists of the English Resource grammar (ERG)
(Copestake and Flickinger, 2000) and ACE9 parser to obtain a minimal re-
cursion semantics (MRS) representation (Copestake et al., 1997), which is
further processed using UTOOL (Koller and Thater, 2005) to remove under-
specification, and customised munging rules then yield the logical forms of
referential expressions in the format needed for our reasoning component.
ERG is a wide-coverage hand-crafted grammar with a formal semantic com-
ponent, which handles unknown words via (estimated) part-of-speech tags.
It defines a procedure for constructing the predicate symbol for the unknown

9http://sweaglesw.org/linguistics/ace/

http://sweaglesw.org/linguistics/ace/
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word from its orthography, with the symbol’s arity determined by the syn-
tactic parse that utilizes the unknown word’s part-of-speech. This ensures
well-formed logical forms Φ(r) for expressions r with neologisms.

To compute probabilistic queries (WMC, EVI and MAP), as well as to es-
timate the value of information (VOI) for decision-making, we utilise Prob-
abilistic Sentential Decision Diagrams (PSDDs) (Kisa et al., 2014).10 The
logical forms of referential expressions are in general in predicate logic, but
to perform inference, they are propositionalized to propositional logic and
converted to conjunctive normal form. This conversion and inference is in
principle NP-hard (Valiant, 1979), but in our experiments and in practice rea-
soning over a small bounded set of formulae can be done in real time.

Table 6 outlines the hyperparameters and their values that are used in our
experiments for learning dialogue strategies and grounding models We used
standard values (e.g. discount factor η = 0.98) rather than performing tuning,
to avoid overfitting within the low-data regime. For the Cost (Eq. 22), we
used the same for both symbol usage cs and entity designation ce, scaled down
to match the order of magnitude of the value of information observed. These
values are set to encourage exploration initial exploration. For example, if
for simplicity we ignore the value of the information term, the clarification
question “Show me a one red square” has an overall cost of 0.3 which the
agent may choose to incur unless it belief about the the denotation of “a red
square” is above 0.65.

5.3 Results
Since we are interested in the rate of learning during the test phase, and not
just what the agent knows or achieves at the end, we present the results of
our experiments as graphs, with the x-axis being the sequence of tasks and
the y-axis being the cumulative reward or F1-score. Figures 5a and 5b record
the change to F1 scores on the learner’s chosen referent over Dtest and D∗

test
respectively (recall that the learner starts the test phase with no information
about grounding). They show that Lsem grounds more efficiently than the
other types of learners: F1 scores for the final ref actions benefit from the
entire teacher-learner interaction and are significantly higher (t-test, p < 0.05
against each other type of learner).

Figures 5c and 5d record the changes to the cumulative reward over Dtest
and D∗

test. The curves take a downward trajectory because all queries receive
a negative reward. Lsem performs better than the other learners (t-test, p <

10Implemented in the PyPSDD package: https://github.com/art-ai/pypsdd
11h computes mean, variance, standard deviation, skew, kurtosis, and entropy of ĉ

https://github.com/art-ai/pypsdd
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Figure 5: The performance measured by the cumulative reward and macro
average F1 of the learners on different test sets: Dtest andD∗

test evaluated over
10 random initialisation of sequencing Dtrain.
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Parameter Symbol Value

Cost function Cost

- symbol usage costs cs 0.1
- entity designation cost ce 0.1
Grounding model ω
- input size m 1000
- embedding size l 5
- threshold τ 0.7
Action-value function Q
- learning rate α 0.1
- discount factor η 0.98
- epsilon ε 0.25
- number of features for h11 v 6

Table 6: Hyperparameter values used in the experiments.

0.01 against each other learner); flattening curves show that toward the final
episodes, learners ask fewer queries while performing successful ref actions.

In Figure 5d, Lbase performs better than Lexists and Lmix1 because it does
not issue queries and so doesn’t receive the negative rewards that the other
learners do. However, Figures 5a and 5b show that Lbase has the worst per-
formance among all learners on selecting correct referents, given the sample
sizes. The fact that it fails to master the task is hardly surprising. The only
evidence it receives is the binary reward signal “yes/no” from the teacher,
and it receives of the order of 50-130 of those across all symbols (the spe-
cific amount depends on the testing set). Compared with simple canonical
tasks, like balancing an inverse pendulum, which are learned from a similar
(immediate) binary “yes/no” reward, this is simply much too small a sample
set. For the pendulum case, reinforcement learning agents require approx-
imately 107 timesteps (number of actions in the environment) to converge.
This amount of interaction with the environment is beyond the experiments
we conducted: they would not reflect a realistic interaction with a human
user, as they would not tolerate providing so much feedback. This illustrates
the need for sample efficient methods for interactive task learning: our aim is
to achieve that by exploiting the semantically rich signals in embodied con-
versation, and by giving the learner some control over what the learner and
teacher talk about.

Each learner, except for Lexists, perform to a similar standard onDtest vs.
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Learner # Queries Existential (%) Repeat (%) Universal (%)

Lsem 174 42.1 15.8 42.1
Lmix2 191 88.9 0 11.1
Lmix1 165 66.7 9.5 23.8
Lexists 238 88.5 0 11.5

Table 7: Summary of the number of queries and quantifiers in them (existen-
tial, repeat from the task description, or universal) used by different learners
for D∗

test. We do not include Lbase here because this learner does not ask any
queries.

D∗
test, signifying that the developed learning models exhibit a robust learned

strategy that generalizes to new situations, even when there is concept varia-
tion.

When considering the mixture learners in the ablation experiments,
Lmix2’s inferior performance to Lsem’s shows that even though they deploy the
same grounder (i.e., using the logical entailments of quantifiers), the former
has an inferior decision-making strategy: i.e., it hurts the learner if, during
learning the action-value function Q, queries do not appreciate the value of
information that comes from quantifiers other than a, such as the one and
every etc. Likewise, Lmix1’s inferior performance to Lsem shows that a bet-
ter strategy cannot compensate for a grounder that does not understand the
semantic difference among quantifiers.

5.4 Differences in the Learned Strategies
Here we explore further the different emerging behaviours of the different
learners. There are summary statistics in Table 7, listing the kinds of queries
the learners make during testing (on D∗

test), and sample dialogues for solv-
ing the task “show me the two cyan pentagons”, in the context of the same
environment (but different belief states, thanks to the different grounders and
learned policies of the different learners) is shown in Table 8.

Let’s look first at the summary statistics in Table 7. Recall that Lexists

and Lmix2 learn to query the teacher but without distinguishing the expected
value of queries with different quantifiers. This makes their dialogue strategy
different from Lsem and Lmix1. If acquiring the policy ignores the different
consequences of different quantifiers, then our experiments show that they
tend to ask queries that feature the existential quantifier in favour of alterna-
tives: more than 88% of the queries feature an existential quantifier, which
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Environment X Learner Conversation for a task

Lbase

T: show me the two cyan pentagons.

L: I think you are looking for this. (points to magenta rectangle)

T: Incorrect.

Lexists

T: show me the two cyan pentagons.

L: Before that, is this a cyan object (points to blue pentagon)

T: No.

L: Before that, show me a cyan object.

T: Here it is. (points to a cyan pentagon)

L: I think you are looking for this. (points to a cyan and grey pentagons)

T: Incorrect.

Lmix1

T: show me the two cyan pentagons.

L: Before that, is this a cyan object (points to blue pentagon)

T: No.

L: Before that, show me every cyan pentagon.

T: Here it is. (points to all cyan pentagon)

L: I think you are looking for this. (points to the two cyan pentagons)

T: Correct.

Lmix2

T: show me the two cyan pentagons.

L: Before that, is this a cyan object (points to blue pentagon)

T: No.

L: Before that, show me a cyan object.

T: Here it is. (points to a cyan pentagon)

L: I think you are looking for this. (points to the two cyan pentagons)

T: Correct.

Lsem

T: show me the two cyan pentagons.

L: Before that, is this a cyan object (points to blue pentagon)

T: No.

L: Before that, show me every cyan pentagon.

T: Here it is. (points to all cyan pentagon)

L: I think you are looking for this. (points to the two cyan pentagons)

T: Correct.

Table 8: Sample conversations exhibited by different learners for solving a
task of reference resolution “show me the two cyan pentagons” for the same
environment.
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is significantly higher than their use for Lsem and Lmix1. On the other hand,
by reasoning about the logical consequences of different quantifiers when as-
sessing the expected value of their queries, Lsem and Lmix1 exhibit a wider
range of quantifiers in their chosen queries. This suggests that during the
training process, both learners are in belief states sufficiently often that make
a material difference to the expected rewards of the queries featuring differ-
ent quantifiers. In particular, they must both experience a sufficient number
of belief states in which the expected value of information to be gained from
a query with a non-existential quantifier outweighs its higher cost (compared
to the cost of a query with an existential quantifier).

The distribution of the quantifiers varies significantly among these two
learners, however. That’s also unsurprising: in general they will be in dif-
ferent belief states during training, even though they are exposed to the same
images and same tasks (in the same sequence). These differences in belief,
even when exposed to the same stimuli, stem from how they use evidence
to build their grounders in the course of the conversations with the teacher:
Lmix1 ignores the differences among the semantics of quantifiers, and so fails
to obtain as much negative support for the symbols. This presumably leads
to poorer quality (negative) prototypes, given Lmix1’s inferior performance
on the taskcompared with Lsem (see the F1-scores in Figure 5b). But when
learning their policies, it also means that they are computing Q-values in dif-
ferent belief states and so learn a different mapping from belief state to the
expected reward of their options.

In the sample dialogues in Table 8, Lbase has a very cursory exchange
with T because it never asks questions. Lexists and Lmix2 (i.e., the agents
that don’t exploit quantifier semantics when learning policies) both ask the
same sequence of two queries, both using the indefinite determiner (one clar-
ification query; one exploration query). Indeed, in spite of their different be-
lief states at this stage—they must be different belief states, given that Lmix2
successfully executes T’s instruction while Lexists doesn’t—they have chosen
the same actions in this exchange.

In contrast, Lmix1 and Lsem, who both exploit the logical consequences
of quantifiers when learning their policies, try at first a relatively cheap way
of learning more about the denotations of the symbol cyan (like the other
learners, they they must have been sufficiently uncertain about it that this
query has a higher expected reward than risking executing the instruction).
But on receiving the answer, the learner’s belief state must still be sufficiently
uncertain about how to recognise cyan objects to avoid the risk of executing
the reference task. Instead, they deem it preferable to ask a query with a
higher cost (featuring a universal)—in other words, the expected value of in-
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formation of the query with the universal quantifier now dominates the trade
off the learner is making when calculating which action has the highest ex-
pected reward. Even though Lsem may at test time miscalculate the value of
information it will actually gain from a response to a query—as it does in
this sample dialogue because it would have been cheaper overall to simply
ask the universal question in the first place—it’s still the case that on average
this learner performs better than the alternatives (as shown in the cumulative
reward and F1-scores in Figure 5).

6 Conclusion
We have developed an agent that jointly learns interactive symbol ground-
ing and a dialogue strategy for enhancing the accuracy of grounding. Our
model supports incremental learning and it adapts its inferences when it dis-
covers unforeseen possible domain states as a byproduct of interpreting the
teacher’s embodied utterances, which feature neologisms. Crucially, this is
the first such model to explore the effects of exploiting the valid consequences
of logical words like every and both: these truth conditions expand the set
of training exemplars (crucially, negative exemplars) that inform grounding,
and also the expected value of information for the queries the learner can ask
the teacher, with a view to improving its performance on grounding and hence
the reference resolution task that it faces. Our experiments demonstrate that
using these logical consequences for both learning dialogue strategies and
learning grounding models leads to a more data-efficient interaction, com-
pared to learners lacking such capabilities.

There are several future directions. First, the knowledge acquisition pro-
cess presented here can be complemented with additional knowledge sources,
such as large language models (Wray et al., 2021) and embodied demonstra-
tions (Argall et al., 2009), making a more comprehensive ITL system. Sec-
ond, more complex tasks like rearrangements (Batra et al., 2020) could be
tackled, in which the learner must not only identify referents but also ma-
nipulate them so as to reach a desired configuration. This would involve
extending the types of speech acts the learner handles: for example adding
the capacity to learn from the teacher’s corrective feedback (Appelgren and
Lascarides, 2020). Third, in order to increase the range of dialogues that a
semantics-aware learner can take advantage of, we would need to incorporate
more sophisticated theories of dialogue semantics into the reasoning com-
ponent, in particular to handle phenomena such as co-reference resolution.
Finally, our experiments deployed teachers that provide perfect information:
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the teacher is sincere (believes what she says) and competent (what she says
is true). In reality, even with the best of intentions, humans are not perfectly
competent (and not necessarily sincere). It remains future work to investi-
gate how teacher errors affect the learning process (but see Appelgren and
Lascarides (2021) for an initial study).
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A Mathematical Notation

Symbol/Concept Description

u1, u2, . . . Entities
U Set of Entities (domain of discourse)
p, red . . . Predicate symbols
V Vocabulary (set of known symbols)
I Interpretation function
M Domain model
M̂ Estimated domain model
u1, u2, . . . Constants for entities
a, red(u1) Atom constructed form symbols and constants
H Herbrand base
HM Domain model as the set of atoms
φ Well-formed logical formula
∨,∧,¬ Logical connectives
x Variable of a logical formula
Δ Domain theory (set of logical formulae)
WMC Weighted model counting computation
EVI Complete evidence probabilistic query
MAP Maximum-a-posteriori probabilistic query
w ∈ [0, 1]H Weights (Bernoulli probability for each atom)
r Referential expression
R Referent (set of sets of entities)
Φ(r) Logical form of r of a form 〈Q x.φ〉
Φ(r)[R] Logical formulae build from Φ(r) andR
Φ(r)M Referent of Φ(r) constructed usingM
σ(M,φ, x) M-projection (M′ s.t. ∀u ∈ U′ ⊆ UM′ |= φ[x/u])
〈Q〉M Referent constructor (〈Q〉M = {R ⊆ U | CQ(R,U)})
CQ(R,B) Q condition between restrictor R and body B sets

Table 9: Symbols and their descriptions used for reasoning about the domain
(Section 3.1).
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Symbol/Concept Description

u ∈ Rd d-dimensional feature vector for entity u
U Set of feature vectors
y ∈ R|V| |V|-dimensional semantic vector
ωS : Rd 7→ [0, 1]|V| Prototype network with support S
ΩS : Rd×|U| 7→ [0, 1]H Grounding model with support S
H Bernoulli entropy
τ Threshold
S = {(ui, yi)}|S|

i=1 Support of feature vector - semantic vector pairs.
S+/−
p Positive/negative support for symbol p

z+/−
p Positive/negative prototype vector for symbol p

f : Rd 7→ Rl Encoder (Neural network feature extractor)
ζ(S,Δ) Dynamic S update using Δ and uniform weights

Table 10: Symbols and their descriptions used for interactive symbol
grounding (Section 3.2).
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Symbol/Concept Description

L Learner
T Teacher (domain expert)
X ∈ R256×256 Image (ShapeWorld visual observation)
q query (clarification or exploration)
Q set of queries
tr Reference resolution task “show me r”
T = tr1 , tr2 , . . . , tr|T | Sequence of reference resolution tasks
C = (X, T ) Embodied conversation for task T in context X
D = C1, C2, . . . , C|D| Dataset over the sequence of embodied conversations
Φ(r)M̂ Referent of r estimated using M̂
Cost : Q 7→ R> Query cost function
cpoint ∈ R> Unit pointing cost
cref ∈ R> Unit reference resolution cost
Ent : Q 7→ R> Expected number of entities in q’s answer
Sym : Q 7→ R> Number of symbols in q’s referential expression
s Epistemic state
S State space
Update State transition function
ref action to perform reference resolution with M̂
A Action space
R : A 7→ [−1, 1] Reward function
H : S 7→ R Preference function
θ = {v, b} Preference function parameters
h : [0, 1]H 7→ Rm m-statistics extractor function
Softmax Softmax function
ANS(q) T’s answer to query q
Q 7→ R Action-value function
VOI : Q 7→ R Value of Information
Pr (red | s) Probability of successful reference resolution in state s
Φ(r)[Φ(r)M̂] logical formula from the estimated referent Φ(r)M̂

Table 11: Symbols and their descriptions used in interactive reference reso-
lution task formulation and decision-making algoritm (Section 4).
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