Towards cross-lingual distributed representations without parallel text trained with adversarial autoencoders Antonio Valerio Miceli Barone

Overview	Architecture
 Hypothesis: natural languages are semantically similar Homologous words in different languages should occur in homologous contexts Word embedding distributions should be nearly isomorphic 	 Autoencoder: linear model with tied matrices Reconstruction loss: cosine dissimilarity Discriminator: Deep Residual Network (He et al., 2015) with leaky ReLU, batch normalization and dropout.
 Learn to match word embedding distributions 	• Optimization: Adam (Kingma & Ba, 2014)

Using Adversarial Autoencoders

• Without using any parallel resource

Links

Adversarial Autoencoder (AAE)

Code: https://github.com/Avmb/clweadv

Experiments

• Qualitative evaluation

- English and Italian word2vec (Mikolov et al., 2013) embeddings trained on Wikipedia
- Document classification (Klementiev et al., 2012)
 - English and German word2vec embeddings trained on Reuters + News Commentary corpora embeddings.
 - Train document classifier on German embeddings, then evaluate it on embeddings mapped from English

Qualitative results

Adversarial prediction

- Map source embeddings to latent representations and back
- Force the latent and target distribution to match
- The discriminator tries to distinguish between true and mapped target embeddings
- The encoder and the decoder try to fool the discriminator and get good reconstructions
- Extends Makhzani et al., 2015

- Correct mappings: 'computer' (en) \rightarrow 'computer' (it); 'man' (en) \rightarrow 'Mann' (de)
- Close mappings: 'rain' (en) → 'gelo', 'gela', 'intensissimo', 'galleggiava', 'rigidissimo', 'arida', 'semi-desertico', 'fortunale', 'gelata', 'piovosa' (it 10-best)
- Bad mappings: 'France' (en) → 'Radiomobile', 'Cartubi', 'Freniatria', 'UNUCI', 'Cornhole', 'Internazione', 'CSCE', 'Folklorica', 'UECI', 'Rientro' (it 10-best)

Document classification results

Small improvement on the smallest training set size.

Conclusions

- Adversarial training on point-mass distributions
 - Difficult, lots of tricks are needed (e.g. ResNet)
 - Standard GANs (Goodfellow et al. 2014) fail by mapping everything to a single embedding
 - The decoder preserves diversity

• Embedding transfer without parallel resources

- Feasible to some extent, but not yet competitive to methods that use parallel resources
- May be an issue of training difficulty or too strong language similarity hypothesis
- The proposed method can be augmented with parallel resources and extended to sentence embeddings

