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Dimensionality Reduction Exploratory Analysis

Dimensionality Reduction

I Goal: to construct new representations of the data that
capture its underlying structure

I Presumed that the the inherent (useful) structure of the
data does not fill the whole of the space.

I Don’t forget the size of these spaces. 4000 data points. 12
attributes. Many quadrants of the space must have 0 data
points in them (212 quadrants in all).

I Often choose attributes with some conceptual overlap.

Thanks to Chris Williams for some of the figures and comments in these slides
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Dimensionality Reduction Exploratory Analysis

Lower Dimensional Structures

I Some lower dimensional structures in a
higher-dimensional space e.g.

I Cluster centres (points in 0-d)
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Dimensionality Reduction Exploratory Analysis

Lower Dimensional Structures

I Some lower dimensional structures in a
higher-dimensional space e.g.

I Lower-dimensional manifolds, e.g. lines, sheets (1-d, 2-d)
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Dimensionality Reduction Exploratory Analysis

Linear dimensionality reduction

I If lines or surfaces are linear manifolds.
I Straight lines, Flat sheets.
I Want to find the positions of those flat sheets
I This is linear dimensionality reduction.
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Dimensionality Reduction Exploratory Analysis

Exploratory data analysis

I Related idea, understand structure in data.
I See what you get if you reduce dimensionality to

visualisable levels.
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Dimensionality Reduction Exploratory Analysis

Covariance Matrix: Variance

I Let 〈 〉 denote an average
I Suppose we have a random vector x = (x1, x2, . . . , xd)T

I 〈x〉 denotes the mean of x, (µ1, µ2, . . . µd)T

I σii = 〈(xi − µi)
2〉 is the variance of component i (gives a

measure of the “spread” of component i)
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Dimensionality Reduction Exploratory Analysis

Covariance Matrix: Illustration

.
.
..

.

.

.
.
.

.
. ...

. .
..

.
.

.

.

..
.

.

Amos Storkey, School of Informatics Learning from Data: Dimensionality Reduction



Dimensionality Reduction Exploratory Analysis

Covariance Matrix: Calculation

I σij = 〈(xi − µi)(xj − µj)〉 is the covariance between
components i and j

I In d-dimensions there are d variances and d(d − 1)/2
covariances which can be arranged into a covariance
matrix C

C = 〈(x − µ)(x − µ)T 〉

I Covariance matrix is symmetric
I E.g. Weight and Height
I Highly correlated variables say the same thing, there is

redundancy to be removed
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Dimensionality Reduction Exploratory Analysis

Principal Components Analysis

I A linear dimensionality reduction technique
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Dimensionality Reduction Exploratory Analysis

One view of PCA

I If you want to use a single number to describe a whole
vector drawn from a known distribution, pick the projection
of the vector onto the direction of maximum variation
(variance)

I Assume 〈x〉 = 0
I y = w.x
I Choose w to maximise 〈y2〉, subject to w.w = 1
I Solution: w is the eigenvector corresponding to the largest

eigenvalue of C = 〈xxT 〉
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Dimensionality Reduction Exploratory Analysis

More Generally

I Want to write

xi = c +
M∑

k=1

wk
i bk + εi

I The vectors {bk , k = 1, . . . , M} are orthonormal. That is

(bi)T bj = δij

I Want to choose the set {bk , k = 1, . . . , M} to minimise the
size of the error terms εi .

I I.e. Min
∑

i ε
T
i εi .
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Dimensionality Reduction Exploratory Analysis

Solution

I Solution is to choose b to be given by:
I Calculating the sample mean and covariance of the data:

m =
1
N

N∑
k=1

xk , and S =
1

N − 1

N∑
k=1

(xk − m)(xk − m)T

I Calculating the eigenvalues λi of the sample covariance
matrix (use eig in Matlab).

I Ordering λi in descending order, and finding the M largest
eigenvalues

I Setting bk to be the eigenvector corresponding to the k th
largest eigenvalue.
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Dimensionality Reduction Exploratory Analysis

Solution

I Then the span of the vectors bi are the principal subspace
I Set c = m
I wk

i = (bk )T (xi − m) is the lower dimensional
representation of data point xi . This is the projection to the
principal linear manifold.

I For details of the derivation see the handout.
I Fraction of total variation explained by using M principal

components is ∑M
i=1 λi∑d
i=1 λi

≤ 1
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Dimensionality Reduction Exploratory Analysis

Example

I Handwritten Characters
I See handout.
I Can summarise much of data using principal components.
I Captures the essence of the character.
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Dimensionality Reduction Exploratory Analysis

Issues

I Inherent dimensionality?
I Usefulness.
I Scaling dependent.
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Dimensionality Reduction Exploratory Analysis

Issues

I Inherent dimensionality?
I Usefulness.
I Scaling dependent.
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Dimensionality Reduction Exploratory Analysis

Summary

I Dimensionality reduction
I Linear manifolds
I Covariance matrix
I PCA as finding largest eigenvalues
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