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Gaussian Distribution

The Gaussian Distribution

>

Last lecture we talked about density estimation, and gave
some examples on binary or Boolean quantities.

This lecture we will be focusing on continuous quantities.

The most common (and most easily analysed) distribution
for continuous quantities is the Gaussian distribution.

Gaussian distribution is often a reasonable model for many
quantities due to various central limit theorems.

Gaussian is sometimes called a normal distribution.
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Gaussian Distribution

Definition

» The one dimensional Gaussian distribution is given by
P(x|p,0%) = N(X; p, 0%) =
» 1 is the mean of the Gaussian and o2 is the variance.

» If 4 =1 and o? = 1 then N(x; i, 0?) is called a standard
Gaussian.
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Gaussian Distribution

» This is a standard one dimensional Gaussian distribution.

» All Gaussians have the same shape subject to scaling and
displacement.

» If x is distributed N(x; i, 02), then y = (x — u)/o is
distributed N(y;0,1).
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Gaussian Distribution

Normalisation

» Remember all distributions must integrate to one. The
V2ro? is called a normalisation constant - it ensures this is
the case.

» Hence tighter Gaussians have higher peaks:
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Gaussian Distribution

Central Limit Theorems (Interest Only)

» X; mean 0, variance ¥, not necessarily Gaussian.
» X; subject to various conditions (e.g. 1ID).

N
1
—— 3" X ~ N(0,5)
VN5

asymptotically as N — oc.
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Gaussian Distribution

Maximum Likelihood Estimation

» Suppose we have data {x;,i =1,2,...,n}.

» Suppose we presume the data was generated from a
Gaussian with mean 1, and variance 2. Call this the

model.
» Then the log probability of the data given the model is
1 (xi—p)? N
2 2
IogHP(x;|u,a )=—5 ,- ’T — 5 log(27c®)

Steps left as exercise: hintlog[[ = > log
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Gaussian Distribution

Maximum Likelihood Estimation

» Maximum likelihood: Set v = 1/02 Take derivatives
1 N N
log P(X|u,) = —5 ZV(XI' — ) — 5 log(2m) + 3 logy

Olo PX ,
g ’M’Y) VZXI

8logP(X’N,’Y)__7 e N
LG s

» Hence u= (1/N)Y, x; and 02 = (1/N) >_(x; — 1)
» Maximum likelihood estimate of o2 is biased.

- Gaussian Distributi
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Gaussian Distribution

Multivariate Gaussian

» The vector X is multivariate Gaussian if for mean u and
covariance matrix ¥, it is distributed according to

P, ) = o5 ire O (50w - )

» The univariate Gaussian is a special case to this.
» We already met covariance matrices. ¥ is the same form.
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Gaussian Distribution

Multivariate Gaussian: Picture
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Gaussian Distribution

Multivariate Gaussian: Maximum Likelihood

» The Maximum Likelihood estimate can be found in the
same way.

> n=(1/N) L x
> X = (1/N) S (X — p) (% — )T
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Gaussian Distribution

Example

» The data.

4t ]
e ®
2F . B
. o.. . o
LX)
- LR R
° °
or oo % ® o 7
[} CP 0o B ° o
® e ¢ ° ° .
®e d °
Py o o |
4l ]
6 . . . . .
6 -4 -2 0 2 4 6

os Storkey, School of Informatics



Gaussian Distribution

Example

» The data. The maximum likelihood fit.
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Gaussian Distribution

Class conditional classification

» Have real valued multivariate data, along with class label
for each point.

» Want to predict the value of the class label given some new
point.

» Presume that if we take all the points with a particular
label, then we believe they were sampled from a Gaussian.

» How should we predict the class at a new point?
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Gaussian Distribution

Class conditional classification

» Learning: Fit Gaussian to data in each class (class
conditional fitting). Gives P(position|class)

» Find estimate for probability of each class (see last lecture)
P(class)

» Inference: Given a new position, we can ask "What is the
probability of this point being generated by each of the
Gaussians.

» Pick the largest (just like maximum likelihood)

» Better still give probability using Bayes rule

P(class|position) « P(position|class)P(class)
Then can get ratio
P(class = 1|position)/P(class = 0|position).

» Decision boundary for two classes is where this ratio is
one.
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Gaussian Distribution

Summary
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Gaussian

Maximum Likelihood fitting of a Gaussian
Multivariate Gaussian and covariances again.
Maximum Likelihood fitting.

Class conditional classification using Gaussians.

Amos Storkey, School of Informatics Learning from Data: Density Estimation - Gaussian Distributi



	Gaussian Distribution

