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Various Terms

I Regularisation.
I Overfitting.
I Prior parameter distributions.
I Validation set.
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All About Generalisation

I We have talked about maximum likelihood learning.
I In fact maximum likelihood learning is problematic.
I Problems show up when the number of parameters is

large.
I The fundamental problem is called overfitting.
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But isn’t Maximum Likelihood the Right Thing?

I Well actually no, because ...
I ...picking one maximum likelihood parameter doesn’t take

into account the fact that there might be
I Other nearby settings which could be almost as good, but

have qualitatively quite different effects.
I Completely different parameter setting which are also good.
I A different large group of parameter settings which are all

different but have qualitatively similar effects.
I In other words...
I We haven’t taken into account the distribution of

parameters.
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Distribution of Parameters??

I But the parameters are just numbers.
I Maybe. But are you certain about what they should be?
I Use distributions to represent uncertainty.
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Back to the Beginning

I Let us look at some simple data and look at various
polynomial fits.

I We know how to do polynomial fits now: we use a
generalised linear model, and the pseudo-inverse solution.

I We will try various orders of polynomial.
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Some Data
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11 data points

Amos Storkey, School of Informatics Learning from Data: Generalisation



Generalisation

Linear Regression
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A linear fit to the data
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Polynomial Fit
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A seventh order polynomial fit to the data
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Polynomial Fit
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A second order polynomial fit to the data
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Polynomial Fit
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An overlay of first to seventh order polynomial fits
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So Which is the Best?

I More parameters = more powerful.
I More parameters will fit the data better: minimising error
I But how well will it predict new data?
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Test Data
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+ indicates new data
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How Well does the Method Predict?
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First order prediction. Not great.
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How Well does the Method Predict?
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Second order prediction. Pretty good.
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How Well does the Method Predict?
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Seventh order prediction. Oh dear.
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Test Error versus Training Error

I Increasing the power of the model will improve the training
error.

I However that does not mean it will necessarily perform well
on a test set.

I For more powerful models, we find the model fits itself to
the noise in the data, and tries to model that noise
deterministically.

I This is called overfitting.
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Typical Test versus Training Error.
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Training error (blue) and test error (red) with increasing model power

Amos Storkey, School of Informatics Learning from Data: Generalisation



Generalisation

What Should We Do?

I We could set aside some data for validation purposes, and
then see what order of polynomial to use based on
performance on this validation set

I Training set: for learning the parameters of the model.
I Validation set: for model selection between different

possible models.
I Test set: check how well the final chosen model performs.
I Note this approach, and much of this discussion applies

more generally than just for polynomials.
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The Whole Process.

I Decide on a set of models to test (eg a set of polynomial
model orders).

I Learn the parameters for all these models using maximum
likelihood learning.

I Check the performance of each model with the maximum
likelihood parameters on the validation set.

I Use the (log) probability of the validation data given each
model as the performance measure.

I Pick the model which performs best on the validation set.
I Test it on the test set to see how well you should expect it

to perform.
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This is Nonsense!

I A seventh order polynomial contains a second order
polynomial as a special case.

I There should be some way to automatically learn a
seventh order polynomial that is at least as good as a
second order one.

I We use exactly the same data in each case. So why is this
not happening?

I Or in other words... what is wrong with maximum
likelihood!
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Three Problems: Problem 1

I Problem 1: we haven’t provided our priors.
I If we believe an exceedingly squiggly line is worse than a

flat one, we certainly haven’t told anyone.
I Maximum likelihood treats all parameters as equally valid.

But they are not.
I For example we are likely apriori to be happier with a

polynomial y = 0.8x − 0.4 than with y = 20200.33 +
3932x2 − 44x3 + 2923x4 + 21045x5 + 140x8 + 30x15 as a
solution.

I So we can encode this by putting a prior distribution over
parameters W : P(W ). Commonly this might be a
Gaussian prior.
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Three Problems: Problem 1

I Then we can calculate the maximum a posteriori
parameter solution.

I Instead of max log P(data|W ) we calculate
max log P(W |data) = max(k + log P(data|W ) + log P(W )).

I This approach is also called regularisation. It involves
adding a penalty term log P(W ) to the log likelihood which
penalises large parameter values.

I Note that for Gaussian P(W ), log P(W ) is quadratic.
I Here we have taken an important step. Parameters W

have become random variables and are treated in just the
same way as unseen data: we calculate posterior
distributions.
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Three Problems: Problem 2

I Maximum likelihood model selection chooses the model
order k according to P(data|W ∗, k) where
W ∗ = arg max P(data|W , k).

I Hence maximum likelihood model selection will choose a
higher order model over a lower order one.

I This is problematic as really we want to know P(data|k).
I This is called Bayesian model selection, and it involves

choosing k to maximise P(data|k) instead of
P(data|W ∗, k).

I The details of this approach is beyond the scope of this
course.
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Three Problems: Problem 3

I We should look at the results of using all high posterior
probability parameters, not just the highest.

I In fact we should average over the predictions for each of
the parameters weighted by the posterior probability.

I That is we want P(test data|k) not P(test data|W ∗, k).
I This is called the full Bayesian inference for the target

values. We integrate out over all the possible parameter
values.

I The details of this approach is beyond the scope of this
course.

I See e.g. Bishop chapter 10 for more details of these last
two approaches.
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Regularisation for Generalised Linear Models

I We set a prior P(w) for the parameters w of the
generalised linear model y = wT φ.

I Let w have a zero centred d dimensional Gaussian
distribution

P(w) =
1

(2πσ2)d/2 exp(− w2

2σ2 )

I Then then negative log posterior
− log P(data|w)− log P(w) + log P(data) can be written

A(
N∑

µ=1

(yµ −wT φµ)2 + λw2) + B

using the notation from the previous lecture.
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Regularisation for Generalised Linear Models.

I We can then differentiate this w.r.t w, and find the optimal
w given λ. Then we get

w = (ΦΦT + λI)−1Φy

I In other words we have a simple modification to the
pseudo inverse solution.
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Regularisation
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Regularisation for various values of λ
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Summary

I Overfitting
I Maximum likelihood problems
I Model selection
I Bayesian methods
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