
Learning from Data
Adaptive Basis Function Networks and Committees

Copyright David Barber 2001-2004.
Course lecturer: Amos Storkey

a.storkey@ed.ac.uk
Course page : http://www.anc.ed.ac.uk/∼amos/lfd/

1

2

−1

−0.5

0

0.5

1

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1

0

0.5

1

x(1)x(2)
−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.5

1

1.5

x(1)

x(2)

Figure 1: Left: The output of an RBF function exp(− 1
2

(
x−m1

)2
/α2).

Here m1 = (0, 0.3)T and α = 0.25. Right: The combined output for two
RBFs, m2 = (0.5,−0.5)T .

1 Adaptive Basis Function Networks

In neural networks, typically the output of each node (or neuron) in theLinear weighted inputs
network is some non-linear function of a linear combination of the nodes
entering the network (the parents). That is,

yi = gi


∑

j

wijxj + µi


 (1.1)

As previously discussed, because the output of the node only depends on
a linear combination of the inputs to the network node/neuron, essentially
there is only variability in one direction in the input space (where by input
I mean the inputs to the node). We can make a bump, but only a one
dimensional bump, albeit in a high dimensional space. To get variability
in more than one direction, we need to combine neurons together. Since it
is quite reasonable to assume that we want variability in many dimensions
in the input space, particularly in regions close to the training data, we
typically want to make bumps near the data.

1.1 Adaptive Basis Functions

In the case of linear parametric models, we saw how we can approximate
a function using a linear combination of fixed basis functions. Localised
Radial Basis Functions(exp(−(x − m)2)) are a reasonable choice for the
“bump” function type approach. The output of this function depends on
the distance between x and the centre of the RBF m. Hence, in general, the
value of the basis function will change as x moves in any direction, apart
from those that leave x the same distance from m, see fig(1). Previously,
we suggested that a good strategy for placing centres of basis functions is to
put one on each training point input vector. However, if there are a great
number of training patterns, this may not be feasible. Also, we may wish to
use the model for compression, and placing a basis function on each training
point may not give a particularly high compression. Instead we could adapt
the positions of the centres of the basis functions, treating these also as
adaptable parameters. In general, an adaptive basis function network is of

3

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

Figure 2: A RBF function using five basis functions. Note how the positions
of the basis function centres, given by the circles, are not uniform.

the form
y(x, θ) =

∑

i

wiφi(x,bi) (1.2)

where now each basis function φi(x,bi) has potentially its own parameters
that can be adjusted. θ represents the set of all adjustable parameters. If
the basis functions are non-linear, then the overall model is a non-linear
function of the parameters.

2 Training Adaptive Basis Functions

Let us consider, for convenience, only a single output variable y. Given a
set of input-output pairs, D = {(xµ, yµ), µ = 1, . . . , P}, how can we find
appropriate paramters θ that minimise the error that the network makes in
fitting this function?

A suitable choice of energy or error function for regression isRegression

Etrain (θ) =
∑

µ

(yµ − f (xµ,θ))2 (2.1)

We can train this network by any standard (non-linear) optimisation algo-
rithm, such as conjugate gradient descent.

However, one should always bear in mind that, in general, the training of
complex non-linear models with many parameters is extremely difficult.

A suitable choice of energy or error function to minimise for classification isClassification
the negative log likelihood (if yµ ∈ {0, 1})

Etrain (θ) = −
∑

µ

(yµ log fµ + (1− yµ) log(1− fµ)) (2.2)

where fµ = f(xµ, θ).

The smootheness of the RBF mapping is mainly determined by the widthRegularisation
of the basis functions. The easiest approach is to use a validation set to
determine α and not to regularise any of the other parameters.

The quality of the solutions is critically dependent on the initial parame-Initialisation

4

ter settings, in particular where we initially speculatively place the basis
function centres.

One reasonable initialisation strategy is to place the centres on a randomly
chosen subset of the data, and then solve for the hidden to output weights
w easily (this is just a linearised parameter model if we consider the basis
functions fixed).

Another approach is to use K-means clustering (see later chapter) to set
the centres of the basis functions. Given the initial centres of the basis
functions, we can solve for the weights easily. This gives an initial setting
for the basis function and weight values.

Perhaps the most obvious thing to do is to treat both the weights w andOptimisation Strategies
basis function parameters bi together as one parameter set, θ, and optimise
the objective function with respect to θ. Example code for regression us-
ing a this approach is given below. It is straightforward to adapt this for
classification. This code is not fully vectorised for clarity, and also uses the
scg.m function, part of the NETLAB (see http://www.ncrg.aston.ac.uk)
package.

5

% adaptive RBF for regression :

% Training data: (each row contains a datapoint)

x=randn(20,2); % two dimensional inputs

y = sin(4*sum(x,2)); % one dimensional ouputs

n = size(x,2); p = size(x,1);

K = 5; % number of basis functions

r = randperm(p); w = x(r(1:K),:)’; % initialise centres to random training points

v = randn(K,1); b0=1; % other initial parameters

nw = prod(size(w)); % number of weight parameters

th_init=[reshape(w,1,nw),v’,b0]; % initial parameter vector

alpha = 0.5; % basis function width

% now use Scaled Conjugate Gradients to find optimal parameters:

options = zeros(1,18); options(9)=1; options(1)=1;options(14)=200;

[th_opt]=scg(’E_rbf’,th_init,options,’grad_E_rbf’,x,y,nw,K,alpha);

train_err = sum((rbfn(x,th_opt,nw,K,alpha) - y).^2)

function [f,w,v,b0,a,h] = rbfn(x,th,nw,K,alpha)

p = size(x,1); n = size(x,2);

w=reshape(th(1:nw),n,K); function [f,w,v,b0,a,h] = rbfn(x,th,nw,K,alpha)

p = size(x,1); n = size(x,2);

w=reshape(th(1:nw),n,K); % get the parameters from vector th

v=th(nw+1:nw+K)’; b0 =th(nw+K+1);

a = sqdist(x,w’); % find (x-w)^2

h = exp(-0.5*a./alpha^2); % RBF hidden units

a0 = h*v + repmat(b0,p,1); % output activation

f = a0; % output transfer function is the identity

function g = grad_rbfn(x,th,nw,K,alpha)

p = size(x,1); n=size(x,2);

[f,w,v,b0,a,h] =rbfn(x,th,nw,K,alpha);

for mu =1:p % Do this using loops for clarity :

for i = 1:size(w,2) % done using loops for clarity

gw_tmp(:,i) = v(i)*(x(mu,:)’ - w(:,i)).*h(mu,i)./alpha^2;

end

% gw_tmp = v’.*(repmat(x(mu,:)’,1,size(w,2))-w).*h(mu,:)./alpha^2; %loopless

gw(mu,:) = reshape(gw_tmp,1,prod(size(w)));

end

gv=h; gb0=ones(p,1); g = [gw gv gb0];

function E = E_rbf(th,x,y,nw,K,alpha)

[f,w,v,v0]=rbfn(x,th,nw,K,alpha); E = sum((y-f).^2)

function gE = grad_E_rbf(th,x,y,nw,K,alpha)

[f,w,v,b0] = rbfn(x,th,nw,K,alpha); gf = grad_rbfn(x,th,nw,K,alpha);

gE = 2*sum(repmat(f-y,1,length(th)).*gf);

function n2 = sqdist(x, c)

%SQDIST Calculates squared distance between two sets of points.

%

% Description

% D = SQDIST(X, C) takes two matrices of vectors and calculates the

% squared Euclidean distance between them. Both matrices must be of

% the same column dimension. If X has M rows and N columns, and C has

% L rows and N columns, then the result has M rows and L columns. The

% I, Jth entry is the squared distance from the Ith row of X to the

% Jth row of C.

[ndata, dimx] = size(x); [ncentres, dimc] = size(c);

if dimx~=dimc

error(’Data dimension does not match dimension of centres’)

end

n2=repmat((sum((x.^2)’,1))’,1,ncentres)+repmat(sum((c.^2)’,1),ndata,1)-2.*(x*(c’));

% Rounding errors occasionally cause negative entries in n2

if any(any(n2<0)); n2(n2<0) = 0; end

6

An example is given in fig(2) where we see that the optimal solution (as
found by the optimisation algorithm) produces a non-uniform placing of the
basis function centres. However, there is another strategy which, in practice,
may be preferable:

1. For fixed basis function parameters bi, find the best weights w (this
is easy to do since this is just corresponds to solving a linear system).

2. For fixed weights w, find the best basis function parameters. (This
is the difficult step since there will typically be many basis function
parameters, and the objective function depends in a highly non-linear
way on the basis function parameters).

We can iterate these two stages to improve the solution. The slight practical
advantage of this is that the parameter space in which we search for a
solution to a non-linear optimisation problem is slightly reduced since we
only optimise with respect to the bi parameters.

2.1 Non-local Basis Functions

If we use basis functions that decay rapidly from a ‘centre’, as in the case
exp(−(x − m)2), the basis function value will always decay to zero once
we are far away from the training data. In the case of binary classification
and a logistic sigmoid for the class output, this may be reasonable since
we would then predict any new datapoint far away from the training data
with a complete lack of confidence, and any assignment would be essentially
random. However, in regression, using say a linear combination of basis
function outputs would always give zero far from the training data. This
may give the erroneous impression that we are therefore extremely confident
that we should predict an output of zero far away from the training data
whilst, in realilty, this is simply an artefact of our model. For this reason, it is
sometimes preferable to use basis functions that are non-local – that is, they
have appreciable value over all space, for example, (x−m)2log((x−m)2).
Whilst any single output will tend to infinity away from the training data,
this serves to remind the user that, far from the training data, we should
be wary of our predictions.

3 Committees

Drawbacks of the non-linear approaches we have looked at – neural networks
and their cousins adaptive basis functions – are

1. Highly complex energy/error surfaces give rise to multiple solutions
since global optima are impossible to find.

2. We have no sense of the confidence in the predictions we make (par-
ticularly in regression).

Whilst there are alternative (and in my view more attractive) approaches
around these problems, we can exploit the variability in the solutions found
to produce a measure of confidence in our predictions. The idea is to form a
committee of networks from the solutions found. For example, for regression,
we could train (say) M networks on the data and get M different parameter

7

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 3: Left: A single solution using Adaptive Basis Functions to fitting
the training data (crosses). The centres of the five basis functions are given
by the circles. Right: A committee prediction from six individual solutions
of the form given on the left. The central line is the average prediction –
note how this still decays to zero away from the training data. The lines
around the central line a one standard deviation confidence intervals.

solutions θ1, . . . , θM . The average network function would then be

f̄(x) =
1
M

M∑

i=1

f(x, θi). (3.1)

A measure of the variability in the predictions is given by the variance :

var(f)(x) =
1
M

M∑

i=1

(f(x, θi)− f̄(x))2. (3.2)

A useful plot of confidence in our predictions is then to use one standard
deviation error bars :

f̄(x)±
√

var(f)(x) (3.3)

In fig(3) we give an example using a committee of six adaptive basis func-
tions.

The committee idea is quite general and applicable to any model. Whilst
this approach is rather heuristic and leaves some questions unanswered (why
did we choose uniform weighting of the solutions for example) it is never-
theless an intuitive an reasonably robust way of gaining confidence in model
predictions (these issues can be solved by a Bayesian treatment beyond the
scope of this course). Note that the committee approach does not nec-
essarily solve the issue of over confident regression predictions away from
training data. As seen in fig(3) both the mean and confidence will collapse
around zero as we move far from the training data. This is a good reason
to use non-local basis functions in this case since typically, the variability
will become unbounded as we move away from the training data.

