
Learning from Data
Generalisation

Copyright David Barber 2001-2004.
Course lecturer: Amos Storkey

a.storkey@ed.ac.uk
Course page : http://www.anc.ed.ac.uk/∼amos/lfd/

1

2

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
Raw Noisy Data

x

t

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
Straight line fit

x

t

Figure 1: Left: Training Data for a regression problem. We wish to fit a
function f(x|θ) to this data. Right: A straight line fit might look reasonable.

1 Introduction

One major goal in supervised learning is, on the basis of labelled training
data, to encapsulate the underlying mechanism which generated the data,
thereby learning a model with predictive power. That is, given a novel
unlabelled instance, to make an accurate prediction.

1.1 Supervised Learning

Formally, supervised learning consists of the following scenario: A given set
of training data, Dtrain = {(xµ, tµ), µ = 1, . . . , P} where each xµ is a vector
of (in general real valued) attributes, and tµ is the associated target for the
µth pattern. (In the binary classification tasks we have been considering,
tµ ∈ {0, 1}). If tµ can take on one of only a finite set of values, we call this
a classification problem. If tµ can be any value, we call this a regression
problem.

Our basic paradigm is the following : There is some underlying process
which generates “clean” data. The data is then possibly corrupted by noise
to give the actual data that we observe. The aim in supervised learning is
to try to recover the underlying clean data generating mechanism.

Consider the following problem. What is the next number in the sequencePrediction without
assumptions is meaningless 1,2,3,4,5, ?1 Well, there is no “correct” answer. I could predict anything,

and who’s to say that I’m incorrect? It may well be perfectly reasonable
to a Martian to say the next number is 78. In fact, the “answer” that I
was looking for was 63. This is the number of the bus that follows buses
1,2,3,4 and 5 in my home town. “Not fair!”, you might say, “we didn’t know
that you were talking about busses in your home town”. Well, that’s what
learning from data is about – you have to try to collate as much information
about the data domain as you can, and hope that your assumptions are
reasonable. Whatever you do, your predictions are only as good as your
assumptions.

Consider the training data in fig(1). This is an example of a regression
problem in which the targets t are real values. In this case, the inputs x are
also real values. Our aim is to fit a function f(x|θ) to this data. What kinds
of functions might we fit? For example, a straight line fit f(x|θ) = θ0 + θ1x
may look reasonable.
1 This is a supervised problem since a sequence has a temporal ordering and can be
written as (t, x) pairs : (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, ?).

3

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

x

t

10th order polynomial fit

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

t

True underlying generating function

Figure 2: Left: What about a 10th order polynomial. This has zero training
error. Right: The “correct” clean underlying function which generated the
data.

Or is it a 10th order polynomial, f(x|θ) =
∑10

i=0 xiθi, see fig(2)? In fact, the
data was generated using the rule t = sin(2.5x) + η, where η is zero mean
Gaussian noise of variance 0.22.

To find a “good” curve, we need appropriate beliefs/assumptions about the
smoothness of the “clean” underlying function and the level of noise. If our
assumptions are not correct, our predictions will be poor.

Our general approach to supervised learning is to make some function f(x|θ)Classes of Predictors
so that, given a novel point x our prediction f(x|θ) will be accurate. What
do we mean by accurate? If we had some extra data, Dtest, different from
the training data and generated in the same manner, then we would like
that the error made by our predictions is roughly the same as the error
that would be made even if we knew exactly what the clean underlying data
generating process were. Of course, this is in some sense, an impossible task.
However, we can devise procedures that can help give us some confidence
in our predictions.

1.2 Training Error

The typical way that we train/learn the adjustable parameters θ of our
model is to optimise some objective function. For example, if our current
model outputs f(xµ|θ) on an input xµ and the training data output for that
xµ is tµ, we would like to adjust the parameters θ such that f(xµ|θ) and tµ

are close. We can measure how close these values are by using a function
d(x, y) which measures the discrepancy between two outputs x and y. To
find the best parameter settings for the whole training set, we use

Etrain(θ) =
∑

(xµ,tµ)∈Dtrain

d(f(xµ|θ), tµ) (1.1)

If we adjust the parameters θ to minimise the training error, what does this
tell us about the prediction performance on a novel point x? In principle,
nothing! However, in practice, since the mechanisms which generate data
are in some sense smooth, we hope that our predictions will be accurate. We
saw that in the case of using a perceptron, we can always find a hyperplane
that separates data, provided that the dimension of the data space is larger
that the number of training examples. In this case, the training error is
zero. We saw, however, that the error on the 600 test examples was non-
zero. Indeed, if the training data is believed to be a corrupted version of

4

some clean underlying process, we may not wish to have a zero training
error solution since we would be “fitting the noise”. What kind of error
would we expect that our trained model would have on a novel set of test
data?

1.3 Test Error

Imagine that we have gone through a procedure to minimise training error.
How can we assess if this will have a good predictive performance – i.e., will
generalise well? If we have an independent set of data Dtest, the test error

Etest(θ) =
∑

(xµ,tµ)∈Dtest

d(f(xµ|θ), tµ) (1.2)

is an unbiased estimate of the prediction error of our model f(x|θ).

1.4 Validation Data

Consider two competing prediction model classes, f1(x|θ1) and f2(x|θ2).
We train each of these by minimising the training error to end up with
training error “optimal” parameter settings θ∗1 and θ∗2. Which is the better
model? Is it the one with the lower training error? No. We can say that
model with setting θ∗1 is better than a model with setting θ∗2 by comparing
the test errors, Etest(θ1) < Etest(θ2). Using test data in this way enables
us to validate which is the better model.

The standard procedure is to split any training data into three sets. The first
is the training data, Dtrain, used to train any model. The second Dvalidate

is used to assess which model has a better test performance. Once we have
chosen our optimal model on the basis of using validation data, we can get
an unbiased estimate of the expected performance of this model by using a
third set of independent data Dtest. This data should not have been used
in any way during the training procedure if we wish to obtain an unbiased
estimate of the expected test performance of the model.

1.5 Dodgy Joe and Lucky Jim

Perhaps the following parody will make the above arguments clearer:

Let me introduce two characters, “Lucky Jim” and “Dodgy Joe”. Lucky
Jim invents some new procedure, and initially, finds that it works quite
well. With further experimentation, he finds that it doesn’t always work,
and that perhaps it requires some rather fine tuning to each problem. Unde-
terred, this charismatic scientist attracts both funds and attention enough
to stimulate a world wide examination of his method. Working indepen-
dently of each other, surely enough research groups from around the world
begin to report that they manage to achieve zero test error on each problem
encountered. Eventually, some research group reports that they have found
a procedure, based on Lucky Jim’s method that is able to give zero test
error on every problem that has ever been known to exist. After so many
years of hard work, Lucky Jim happily announces his universal predictor
(perhaps a billion hidden unit neural network with fixed parameters), with
the (indeed true) claim that it gives zero test error on every known problem
that ever existed. He markets this product and hopes to claim a fortune.

5

Contrast the dogged determination of Lucky Jim now with the downright
unscrupulous behaviour of Dodgy Joe. Quite frankly, he doesn’t have the
patience of Lucky Jim, and he simply assembles all the known problems
that ever existed, and their corresponding test sets. He then constructs his
method such that, when asked to perform the prediction on problem A with
corresponding test set B, he simply makes the output of his method the
output for the test set B (which he of course knows). That is, his algorithm
is nothing more than a lookup table - if the user says, “this is the test set B”
then Dodgy Joe’s algorithm simply reads off the predictions for test set B
which, by definition, will give zero error. He then also markets his universal
predictor package as giving zero test performance on every known problem
(which is indeed true) and also hopes to make a fortune.

If we look at this objectively, both Lucky Jim and Dodgy Joe’s programs are
doing the same thing, even though they arrived at the actual code for each
method in a different way. They are both nothing more than lookup tables.
The point is that we have no confidence whatsoever that either Lucky Jim’s
or Dodgy Joe’s package will help us in our predictions for a novel problem.
We can only have confidence that a method is suitable for our novel problem
if we believe that a particular method was successful on a similar problem
to ours in the past, or the assumptions that resulted in successful prediction
on a previous problem might well be expected to hold for a novel problem
– smoothness of the problems for example.

The above also highlights the issue that it is not enough to assess a method
only on the reported results of a subset of independent research groups. It
may be that, with the same method (eg neural nets with a fixed architecture
but undetermined parameters) one of a hundred groups which decide to
tackle a particular problem is able to find that particular set of parameter
values (essentially by chance) that gives good test performance, whilst the
other 99 groups naturally do not report their poor results. In principal, real
comparison of a method on a problem requires the collation of all results
from all sources (attempts).

WowCo.com is a new startup prediction company. After years of failures,WowCo.com
they eventually find a neural network with a trillion hidden units that
achieves zero test error on every learning problem posted on the internet
up till January 2002. Each learning problem included a training and test
set. Proud of their achievement, they market their product aggressively
with the claim that it ‘predicts perfectly on all known problems’. Would
you buy this product?

Let us reconsider our favourite digit classification problem. There are 1200Model Comparison : An
example examples of the digit 1 and 7. Let us split this to form a new training

set of 400 examples, and a validation set of 200 examples. We will retain
a further 600 examples to measure the test error. I used PCA to reduce
the dimensionality of the inputs, and then nearest neighbours to perform
the classification on the 200 validation examples. Based on the validation
results, I selected 19 as the number of PCA components retained, see fig(3).
The independent test error on 600 independent examples using 19 dimen-
sions is 14. Once we have used the validation data to select the best model,
can we use both training and validation data to retrain the optimal model?
In this case, we would have decided that 19 is the optimal dimension to
use, based on 200 training and 100 validation points. Can we now, having

6

0 20 40 60 80 100
0

2

4

6

8

10

12

number of eigenvalues

nu
m

be
r

of
 e

rr
or

s

Figure 3: 400 training examples are used, and the validation error plotted on
200 further examples. Based on the validation error, we see that a dimension
of 19 is reasonable.

decided to use 19 components, retrain the model on the 300 training and
validation points? This is a fairly subtle point. In principle, the answer is
no, since the new procedure, strictly speaking, corresponds to a different
model. However, in practice, there is probably little to be lost by doing so,
and possibly something to be gained since we are making use of more train-
ing data in setting many parameters. These issues highlight some of the
philosophical complications that can arise based on a frequentist interpre-
tation of probability. No such difficulties arise in the Bayesian framework,
where all the training data can be used in a clear and consistent manner for
model selection.

1.6 Regularisation

If the data generation process includes noise (additive), then the true, clean
data generating process will typically be smoother than the observed data
would directly suggest. To try to discover this smoother clean underlying
process, we need to ensure that our model for the clean underlying process
does not fit the noise in the observed data. That is, it is undesirable to have a
zero training error, and we need to encourage our model to be smooth. One
way to achieve this is through regularisation in which an extra “penalty”
term is added on the the standard training error, to form the regularised
training error:

Eregtrain(θ, λ) = Etrain(θ) + λEreg(θ) (1.3)

The larger λ is, the smoother will be solution which minimises the regu-
larised training error. If we regularise too much, the solution will be inap-
propriate and too smooth. If we don’t regularise at all, the solution will be
over complex, and the solution will be fitting the noise in the data. (Regu-
larisation only really makes sense in the case of models which are complex
enough that overfitting is a potential problem. There is little point in tam-
ing a pussy-cat; taming a lion however, might be worthwhile!). How do we
find the “optimal” value for λ? Training is then done in two stages:

• For a fixed value of λ, find θ∗ that optimises Eregtrain. Repeat this
for each value of λ that you wish to consider. This gives rise to a set
of models,

{
θ∗λi

, i = 1, . . . , V
}
.

• For each of these models, on a separate validation set of data (different
from the training data used in the first step), calculate the validation

7

error:
Eval(θ∗) =

∑

(xµ,tµ)∈Dval

d(f(xµ|θ∗), tµ) (1.4)

The “optimal” model is that which has the lowest validation error.

In fig(4), we fit the function t = a sin(wx) to data, learning the parametersRegularisation : An example
a and w. The unregularised solution badly overfits the data, and has a high
validation error. To encourage a smoother solution, I used a regularisation
term Ereg = w2. I then computed the validation error based on several
different values of the regularisation parameter λ, finding that λ = 0.5 gave
a low validation error.

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

6

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 4: Left: The unregularised fit (λ = 0) to training given by ×. Whilst
the training data is well fitted, the error on the validation examples, + is
high. Right: the regularised fit (λ = 0.5). Whilst the training error is high,
the validation error (which is all important) is low. The true function which
generated this noisy data is the dashed line, and the function learned from
the data is the solid line.

