
Learning from Data.
Preliminaries: Data and Mathematics

Copyright David Barber 2001-2004.
Course lecturer: Amos Storkey

a.storkey@ed.ac.uk
Course page : http://www.anc.ed.ac.uk/∼amos/lfd/

1

1 What kinds of Data, and how to represent it?

There are generally three types of data entries that we can encounter; these
are categorical, ordinal and numerical types. Since we will ultimately wish to
perform computations with the data, we need to transform any entries in the
database which are non-numerical into numerical values. Some care needs to be
taken at this point, since biases can be inadvertently introduced at this stage,
as described below.

1.1 Categorical

For categorical (or nominal) data, the observed value belongs to one of a num-
ber of classes, and there is no intrinsic ordering of the classes. An example of
a categorical variable would be the description of the type of job that some-
one does, e.g. healthcare, education, financial services, transport, homeworker,
unemployed, engineering etc. One way to transform this data into numerical1-of-m encoding
values would be to use 1-of-m encoding. Here’s an example: There are 4 kinds
of jobs: soldier,sailor,tinker,spy. A person who is a soldier is represented as
(1,0,0,0), a sailer as (0,1,0,0), a tinker as (0,0,1,0) and a spy as (0,0,0,1). So,
here’s how to transform the following records :

age 32 63
profession sailor spy →

age 32 63
profession1 0 0
profession2 0 0
profession3 1 0
profession4 0 1

This kind of coding is sensible since the distance between two vectors repre-
senting two different professions (see mathematics notes) is constant (equal to
1).

Any database is described by a list of attributes. In the above example onAttributes and values
the left, there are two attributes, ‘age’ and ‘profession’. Each record in the
database corresponds to a setting of the list of attributes to a particular value.
(Sometimes data entries might be missing, so that we would talk of ‘missing
data’ or ‘missing values’). In the above example on the right, there are five
attributes, ‘age’, ‘profession1’,‘profession2’,‘profession3’ and ‘profession4’.

It is clear that 1-of-m encoding induces dependencies in the profession at-Warning!
tributes. Clearly, if one of the profession attributes is 1, the others must be
zero. Be very careful (especially with Naive Bayes) that you do not fall into the
trap of assuming that these attributes are independent.

1.2 Ordinal

An ordinal variable again consists of categories, but there there is an ordering
or ranking of the categories, e.g. cold, cool, warm, hot or 3, 2(ii), 2(i), 1 (for
university degrees).

In this case, we may wish to encode the fact that there is an explicit ordering in
these data. Thus, we could perhaps use -1 for cold, 0 for cool and +1 for warm
and +2 for hot. Clearly, this choice is somewhat arbitrary, and one should keep
in mind that any results will be dependent on the choice of coding.

1.3 Numerical

Numerical data takes on values that are real numbers, e.g. a temperature mea-
sured by a thermometer, or the salary that someone earns.

2 What’s this course all about?

The course is about fitting models to data , and using them to answer ques-
tions about the data. Technically, these are called learning and inference. It’s
interesting to look at the dictionary definition of these words :

To learn:

2

• To gain knowledge, comprehension, or mastery of through experience or
study.

• To fix in the mind or memory; memorize: learned the speech in a few
hours.

• To acquire experience of or an ability or a skill in: learn tolerance; learned
how to whistle.

• To become aware: learned that it was best not to argue.

To infer:

• To conclude from evidence or premises

• To reason from circumstance

• surmise: We can infer that his motive in publishing the diary was less
than honorable

• To lead to as a consequence or conclusion: Socrates argued that a statue
inferred the existence of a sculptor.

• To hint; imply.

It’s clear that “learning” is always contextual – what do you learn; in what area
have you gained a skill? We will attempt to make ‘machines’ that can be skilled
in particular areas in which we provide data and possibly additional hints.

2.1 Learning

Learning is the process of fitting a model to data. For example, in a supervisedStatistics in disguise?
learning scenario, we might be interested in learning a mapping from inputs
to outputs. One way to do this is to postulate the existence of some kind of
underlying data generating mechanism for which we do not know the exact
parameter settings. In many ways, this is related to statistics. Whatever you
decide to call it, ultimately, fitting models to data is the domain of statistics.
What changes is the domain expertise that can be brought to bear. For example,Mathematics is the language

of science. Probability is the
logic of science.

a physicist may be rather indignant to be called a statistician just because
s/he fits a postulated physical model to data from sub-nuclear experiments.
Similarly, a researcher in Natural Language Processing may be rather annoyed
to hear that “s/he’s just a statistician”. Indeed, science is (largely) about fitting
models to data – it’s just that domain knowledge can be very deep and specific.
(The difficult and interesting thing about science is suggesting – from amongst
the infinite sea of possibilities – a useful restricted class of models in the first
place.) In this course, our domain of interest is applications in some rather non-
specific areas. Is it possible to come up with methods and models that work in
the absence of specific domain knowledge? Well, not really. We shall provide
various general hints that always bias our solutions in a certain way that usually
intuitively corresponds to the way we think (hope!) the world works.

2.2 Inference

A doctor spends a lifetime learning both from textbooks but from patients. A
new patient comes into the surgery exhibiting a list of symptoms. The doctor
(based on her own internal model of how symptoms and diseases are related)
infers that the patient has glandular fever.

Inference is using the learned model to answer specific questions. For example,
we may have fitted a classification model from a database. We might be then
interested in using the model to infer the class of a novel input. For example,
will this person default on their loan if they are married, ask for a loan of 100000
pounds, and are a teacher?

3

3 What kind of Learning?

Machine learning is traditionally (and not always helpfully!) split into two main
areas: supervised, and unsupervised learning. The difference between the two
depends on what kind of question you wish the data to try to answer (and
possibly on the data available). (Reinforcement learning –covered in LFD2 –
is a kind of supervised learning in which the supervisor provides rewards for
actions which improve a situation and penalties for deleterious actions).

3.1 Unsupervised Learning

A baby processes a mass of initially confusing sensory data. After a while the
baby begins to understand her environment in the sense that novel sensory
data from the same environment is familiar or expected. When a strange face
presents itself, the baby recognises that this is not familiar and may be upset.
The baby has learned a representation of the familiar and can distinguish the
expected from the unexpected; this is an example of unsupervised learning.

In a mathematical sense, here we just wish to fit a model which describes suc-Descriptive modelling
cinctly and accurately the data in the database. That is, there is no supervisor
telling us what is right or wrong – we simply observe some data and try to
describe it in an efficient way with our model. For example, here are some
points:

x1 -2 -6 -1 11 -1 46 33 42 32 45
x2 7 22 1 1 -8 52 40 33 54 39

This is an example of unlabelled data. In a sense, there are no outputs, only
inputs. We can visualise this data by plotting it in 2 dimensions:

−10 0 10 20 30 40 50
−10

0

10

20

30

40

50

60

By simply eye-balling the data, we can see that there are two apparent clusters
here, one centred around (0,0) and the other around (35,35). A reasonable
model to describe this data might therefore be to describe it as two clusters,
centred at (0,0) and (35,35), each with a variance (spread) of around 1.

3.2 Supervised Learning

I’m fond of the following story :

“ A father decides to teach his young son what a sports car is. Finding it diffi-
cult to explain in words, he decides to try to explain by examples. They stand
on a motorway bridge and, as each car passes underneath, the father cries out
‘that’s a sports car!’ when a sports car passes by. After ten minutes, the father
asks his son if he’s got it. The son says, ‘sure, it’s easy’. An old red VW Beetle
passes by, and the son shouts – ‘that’s a sports car!’. Dejected, the father asks
– ‘why do you say that?’. ‘Because all sports cars are red!’, replies the son. ”

This story is an example of supervised learning. Here the father is the super-
visor, and his son is the ‘learner’, or ‘machine learner’ or ‘predictor’. The nice
point about this story is that you can’t expect miracles – unless you explicitly
give extra information, learning from examples may not always give you what
you might hope for. On the other hand, if they had been there the whole week,
probably the son would have learned a reasonably good model of a sports car,

4

and helpful hints by the father would be less important. It’s also indicative of
the kinds of problems typically encountered in machine learning in that it is not
really clear anyway what a sports car is – if we knew that, then we wouldn’t
need to go through the process of learning!

We typically have a training set of labelled data, for example, here are somePredictive modelling
data

nationality British Dutch Taiwanese British
height(cm) 175 195 155 165

sex m m f f

We might have a large database of such entries. A supervised learning problem
might be: given a new, previously unseen (nationality,height) pair, predict the
sex of the person. For example, given that a person is Taiwanese and 167cm
tall, are they going to be male or female? In this case we see the training
data as a collection of (input,output) pairs, where the output or label has been
given by a ‘supervisor’. Ultimately, we wish to form a mapping from the inputs
to the output (possibly more than one output) that accurately describes the
label/output given the inputs. Ideally, we would like our model to generalise
well (predict accurately) novel test data not seen previously during the model
building process.

Note that this is a good example to motivate our later ideas about probabil-Uncertainty
ity/uncertainty – there is clearly not going to be absolute certainty about our
predictions in this case since there are always going to be tall females and shorter
males that will make classifying a novel person an inexact science. However, we
may be able to infer what is the probability that a novel person is male, given
our trained model. In practice, uncertainty often plays a major role in machine
learning, and we need to use a framework that can handle this. Uncertainty is
not just an issue in supervised learning. Also we may be uncertain as to the
exact values in an unsupervised set of data, and we may wish to take this into
account in building a model. In my humble opinion, any method that does not
take uncertainty into account (such as decision trees) are not really worth their
salt. However, many traditional methods from machine learning and computer
science are non-probabilistic and some are included in this course since their
use is (unfortunately!) rather widespread.

Supervised learning problems traditionally come in two flavours, classification
and regression.

Given a set of inputs, predict the class (one of a finite number of discrete labels).Classification
Normally, the class is ordinal (there is no intrinsic information in the class la-
bel). For example, given an image of a handwritten digit, predict whether it
is 0,1,2,3,4,5,6,7,8 or 9. This would be a 10-class classification problem. Many
problems involve binary classes (you can always convert a multi-class problem
into a set of binary class problems – though this is not always natural or de-
sirable). For binary classes, there is usually no information as to whether we
say the data are labelled as class 0 or 1, or alternatively as class 1 or 2. For
example, the sports-car classification problem would have been the same if the
father said ‘1’ or ‘0’ when the car passing by was a sports car or not. A great
deal of problems in the machine learning arena are classification problems. Un-
certainty will ultimately play a key role in any real world application. Can we
really say that Mr Smith will definitely default on his loan? This may seem a
very strong statement if there is little obvious difference between the attributes
of Mr Smith and Mr Brown.

Given a set of inputs, predict the output value (one of a potentially infinite setRegression
of real-valued points). For example, given historical stock market data, predict
the course of the FTSE for tomorrow.

5

4 Mathematical Representation

In order to conveniently describe the data and algorithms in a mathematical
way, we will typically use vectors. Thus, the dataset could be represented as

coffee 1 0 0
tea 0 0 1
milk 1 0 1
beer 0 0 0

diapers 0 0 1
aspirin 0 1 0

as x1 =




1
0
1
0
0
0




,x2 =




0
0
0
0
0
1




,x3 =




0
1
1
0
1
0




where each vector x = (x1, . . . , x6)T is a 6 dimensional vector whose components
represent the values of each attribute. Note that the upper-index, e.g.,x3 refers
simply to the third datapoint (vector) in the dataset. (Some care is needed
since it is common in mathematics to use a2 to refer to aT a. I will also use this
notation in the text – hopefully the context should dispel any confusion.)

In general, we can represent any dataset as a set of vectors X =
{
x1, . . .xP

}
,

which would represent a dataset of P items. Normally I will use an index (upper)
to denote which datapoint we are referring to, and a suffix (lower) to denote the
attribute (or component) of the data vector. Thus x4

6 would represent the sixth
attribute of the fourth datapoint. A dataset, being a collection of datapoints
can then be represented as a matrix X in which the element Xij = xj

i .

4.1 A Matlab Interlude

% A first look at matlab

% Here are a set of datapoints (done in a longhanded way!)

x(:,1)=[-2 7]’; x(:,2)=[-6 22]’; x(:,3)=[-1 1]’; x(:,4)=[11 1]’;

x(:,5)=[-1 -8]’; x(:,6)=[46 52]’;x(:,7)=[33 40]’; x(:,8)=[42 33]’;

x(:,9)=[32 54]’; x(:,10)=[45 39]’;

x % each *column* represents a 2 dimensional datapoint, of which there are 10

mean(x’)’ % need transposes since matlab assumes that data are arranged

% in rows. To be consistent with our mathematics though, we

% will use the column representation (at the cost of having to

% use a few more transposes)

plot(x(1,:),x(2,:),’o’)

5 What kind of Approaches?

This course focusses on a modelling approach, framed within probability theory.
Some of the approaches we talk about (such as decision trees, and KNN and
K-means clustering) are non-probabilistic. However, probabilistic versions of
these methods have been developed but are beyond the scope of this course.

5.1 Why do we expect to be able to learn anything?

Arguably all machine learning approaches are based on some notion of smooth-
ness or regularity underlying the mechanism that generated the observed data.
Roughly speaking : if two people (datapoints) are close neighbours, they are
likely to behave similarly. We will usually frame this intuition mathematically,
in which we will need to be precise by what we mean by ‘close’ and ‘behave’.
This naturally places machine learning in the arena of measuring distances be-
tween datapoints, a natural place for vectors and vector algebra.

5.2 How are we going to learn?

The general procedure will be to postulate some model and then adjust it’s pa-
rameters to best fit the data. For example in a regression problem, we may think

6

that the data {(xµ, yµ), µ = 1, . . . , P}, where x is an input and y an output, is
well modelled by the function y = wx, and our task is to find an appropriate set-
ting of the parameter w. An obvious way to do this is to see how well the current
model predicts the training data that we have, and then to adjust the parameter
w to minimise the errors that our model makes on predicting the data. This
general procedure will usually involve therefore optimisation methods, usually
in high dimensional spaces (although the above is a one-dimensional example).
Sometimes, the parameter space that we will search for a solution in is discrete
(for example, in evolution, the parameters are the discrete sequence of genes,
and the optimisation function is survival). Optimisation in discrete parameterGenetic Algorithms
spaces can be very difficult – however, there are many approaches developed in
mathematics to do this. Recently, some computer scientists have been excited
by ‘genetic algorithms’ – it is worth bearing in mind that these are simply dis-
crete optimisation methods (and in my opinion, rather poor ones). Why should
optimisation mechanisms based on sexual selection have any relevance to find-
ing the best construction of a bridge? My point is that you shouldn’t be swayed
by applying ‘sexy’ methods to areas which are not obviously related.

In the case that there is noise on the data (sometimes, the father might beNoise, overfitting and
Generalisation inconsistent in his labelling of sports cars, or there might be essentially random

perturbations on the FTSE index), we don’t want to model this noise. That is,
we have to be careful to make sure that our models only capture the underlying
process that we are truly interested in, and not necessarily the exact details
of the training data. If we have an extremely flexible model, it may overfit
noisy training data be a very poor predictor of future novel inputs (that is, it
will generalise poorly). This is very important topic and central to machine
learning. We shall return to this in a later chapter.

7

6 Mathematics Required

The material here is presented to give you an idea of the level of mathematics required. Don’t worry if
you don’t understand too well all of the following. However, it would be very useful for you to foster
enthusiasm for learning this material since I may ask exam questions using this level of mathematics.

6.1 Vectors

The course assumes that you are familiar with the basics of vectors and vector
calculations. Let x denote the n-dimensional vector with components

(x1, x2, · · · , xn)

Then |x| denotes the length of this vector, using the usual Euclidian definition:

|x| =
√

x2
1 + x2

2 + · · ·+ x2
n

The inner product w · x is defined as:

w · x =
n∑

i=1

wixi

and has a natural geometric interpretation as:

w · x = |w||x| cos(θ)

where θ is the angle between the two vectors. Thus if the lengths of two vectors
are fixed their inner product is largest when θ = 0, whereupon one is just some
constant multiple of the other.

6.2 Matrices

The course assumes some familiarity with matrices, which are shown as upper-
case bold letters such as a. If the element of the i-th row and j-th column is
aij , then aT denotes the matrix that has aji there instead - the transpose of a.
So, for example if a is a 3× 3 matrix:

a =




2 3 4
4 5 9
6 7 1




then the transpose (written aT) is:

aT =




2 4 6
3 5 7
4 9 1




The product of two matrices a and B has
∑

k aikbkj in the i-th row and j-th
column.

The matrix I is the identity or unit matrix, necessarily square, with 1s on the
diagonal and 0s everywhere else. If det(a) denotes the determinant of a square
matrix a then the equation

det(a− λI) = 0

is called the characteristic polynomial of a. Using the example above, the char-
acteristic polynomial would be:

∣∣∣∣∣∣

2− λ 3 4
4 5− λ 9
6 7 1− λ

∣∣∣∣∣∣
= 0

8

which is

(2− λ)((5− λ)(1− λ)− 63)− 3(4(1− λ)− 54) + 4(28− 6(5− λ)) = 0

which simplifies to:
−λ3 + 8λ2 + 82λ + 26 = 0

Note that a square matrix must satisfy its own characteristic polynomial, by
definition of the polynomial, so (pre- or post-multiplying through by a−1) it
provides a way to calculate the inverse of a matrix using only matrix multi-
plication, if that inverse exists. Clearly the inverse exists if and only if the
matrix is square and det(a) 6= 0 (note that det(a) is the constant term in the
characteristic polynomial).

The roots of the characteristic polynomial are called the eigenvalues of the
matrix. Note that if a is an m× n matrix and x is an n-dimensional (column)
vector, then

y = ax

represents a linear map into an m-dimensional space. If a happens to be a
square matrix then any vector which is transformed by the linear map into a
scalar multiple of itself is called an eigenvector of that matrix. Obviously, in
that case ax = λx for some λ. The eigenvectors can be found by finding the
eigenvalues and then solving the linear equation set:

(a− λI)x = 0

An orthogonal matrix is a square matrix a such that aT = a−1. Such matrices
represent a mapping from one rectangular co-ordinate system to another. For
such a matrix,

aaT = I

- the inner product of any two different rows is 0 and the inner product of any
row with itself is 1.

6.3 Basic combinatorics

The number of ways of selecting k items from a collection of n items is
(

n
k

)
=

n!
k!(n− k)!

if the ordering of the selection doesn’t matter. This quantity is also the coef-
ficient of xk in the expansion of (1 + x)n. Stirling’s formula provides a useful
approximation for dealing with large factorials:

n! ≈ nne−n
√

2πn

There are a huge number of formulae involving combinations. For example,
since (1 + x)n+1 = (1 + x)n(1 + x) it is clear that

(
n
k

)
+

(
n

k + 1

)
=

(
n + 1
k + 1

)

and so on.

6.4 Basic probability and distributions

A random variable X is a variable which, in different experiments carried out
under the same conditions, assumes different values xi, each of which then
represents a random event. A discrete random variable can take one of only
a finite, or perhaps a countably infinite, set of values. A continuous random
variable can take any value in a finite or infinite interval. Random variables are
completely characterised by their probability density and distribution functions.

For a discrete random variable, if p(X = x) is the probability that it takes the
value x then

F (x) = p(X < x)

9

is the distribution function of X. For a continuous random variable, there is a
probability density function f(x) such that

∫ ∞

−∞
f(x) dx = 1

and the distribution function is then:

F (x) =
∫ x

−∞
f(t) dt

For a discrete random variable, the mean value µ is

µ =
∑

xip(X = xi)

and for a continuous variable it is

µ =
∫ ∞

−∞
tf(t) dt

The variance σ2 is, for a discrete variable:

σ2 =
∑

(xi − µ)2p(X = xi)

and for a continuous variable:

σ2 =
∫ ∞

−∞
(t− µ)2f(t) dt

There are several widely-occurring distributions that are worth knowing about.
Suppose that some event will happen with fixed probability p. Then the prob-
ability that it will happen exactly k times in n trials is

(
n
k

)
pk(1− p)n−k

and this is the binomial distribution. It has mean np and variance np(1 − p).
If one lets n → ∞ one gets the Gaussian or normal distribution, typically
parameterised by two constants a and b; it has density function

1
a
√

2π
e−(x−b)2/(2a2)

with mean b and variance a2. If one starts with the binomial distribution and
lets n →∞ and p → 0 with the extra assumption that np = a, where a is some
constant, then one gets the Poisson distribution with density functionWe will not use the Poisson

distribution in this course
ake−a

k!

with mean and variance both a.

6.5 Partial differentiation

If z = f(x1, x2, · · · , xn) is a function of n independent variables then one can
form the partial derivative of the function with respect to one variable (say xi),

∂fxi

by treating all other variables as constant. For example, if

f = xy + y3

then
∂fx = y ∂fy = x + 3y2

10

x1

x2

f(x)

Figure 1: Interpreting the gradient. The ellipses are contours of constant func-
tion value, f = const. At any point x, the gradient vector ∇f(x) points along
the direction of maximal increase of the function.

The geometric significance of a quantity such as ∂fx is as follows. If the function
f is plotted and represents some suitably well-behaved surface, then this partial
derivative represents the slope of the surface in a direction parallel to the x-axis
at any given point (x, y). The total derivative dz is given by

dz =
∑

i

∂zxidxi

and clearly, if all the xi are functions of one variable t then

dz

dt
=

∑

i

∂zxi
dxi

dt

There is a directly analogous version of this ‘chain rule’ for the case where the xi

are each functions of several variables and you wish to find the partial derivative
of z with respect to one of those variables.

Exercise: Find the partial derivatives of the function

f(x, y, z) = (x + 2y)2 sin (xy)

6.6 The gradient vector operator

Consider a function φ(x) that depends on a vector x. We are interested in how
the function changes when the vector x changes by a small amount : x → x+δ,
where δ is a vector whose length is very small. According to a Taylor expansion,
the function φ will change to

φ (x + δ) = φ(x) +
∑

i

δi
∂φ

∂xi
+ O

(
δ2

)
(1)

We can interpret the summation above as the scalar product between the vector
∇φ with components [∇φ]i = ∂φ

∂xi
and δ.

φ (x + δ) = φ(x) + (∇φ)T δ + O
(
δ2

)
(2)

6.7 Interpreting the Gradient ∇f(x)

The gradient points along the direction in which the function increases most
rapidly. Why?

Consider a direction p̂ (a unit legnth vector). Then a displacement, δ units
along this direction changes the function value to

f(x + δp̂) ≈ f(x) + δ∇f(x) · p̂
The direction p̂ for which the function has the largest change is that which
maximises the overlap

∇f(x) · p̂ = |∇f(x)||p̂| cos θ = |∇f(x)| cos θ

where θ is the angle between p̂ and ∇f(x). The overlap is maximised when
θ = 0, giving p̂ = ∇f(x)/|∇f(x)|. Hence, the direction along which the function
changes the most rapidly is along ∇f(x).

11

6.8 Optimization: Lagrange multipliers

Suppose that you wish to find the stationary points (maxima or minima) of
some n-argument function f(x) = f(x1, · · · , xn), subject to the m constraints
g1(x) = 0, · · · , gm(x) = 0. Lagrange showed that they could be found as the
solution of the (n+m) equations in the (n+m) variables x1, · · · , xn, λ1, · · · , λm:

∂fx1 −
m∑

j=1

λj∂gjx1 = 0

· · ·
∂fxn −

m∑

j=1

λj∂gjxn = 0

g1(x) = 0
· · ·

gm(x) = 0

where the λj are m specially-introduced variables called Lagrange multipliers.
This theorem provides a handy way to tackle a range of optimization problems.
Notice that the above equations are the (n+m) partial derivatives of the function

f −
m∑

j=1

λjgj

each set to zero.

For example, to find the maximum of f(x, y) = x + y subject to the constraint
x2 + y2 = 1, solve:

1− 2λx = 0
1− 2λy = 0

x2 + y2 − 1 = 0

to get x = y = λ = ±1/
√

2, after which you should then check to determine
which of these two solutions is the true maximum.

Exercise: Find the maximum of y − x subject to the constraint y + x2 = 4.

You can find the answer to the same problem experimentally as follows. Plot
the graph of y = 4− x2 and the graph of y = x + m, and find the largest value
of m such that the two graphs still intersect.

7 Optimization methods

We are given a function E(w) which depends on the vector of variables w. We
can also calculate the vector of partial derivatives (or gradient) g(w) where
gi = ∂E/∂wi. How should be use this information to optimize E? There are
two methods that we consider

1. Gradient descent with fixed stepsize

2. Gradient descent with line searches

One powerful general purpose optimisation methods is conjugate gradients (this
is implemented in the NETLAB package for MATLAB), and I would recommend
that you use this in any (continuous) optimisation problem. It is based on line
search techniques.

7.1 Gradient descent with fixed stepsize

Locally, if we are at point w, the quickest way to decrease E is to take a step
in the direction −g(w). If we make the update equation

w(t + 1) = w(t)− ηg(t)

12

Figure 2: Optimisation using line search along steepest descent directions.
Rushing off following the steepest way downhill from a point (and continu-
ing for a finite time in that direction) doesn’t always result in the fastest way
to get to the bottom!

then we are doing gradient descent with fixed stepsize η. If η is non-infinitesimal,
it is always possible that we will step over the true minimum. Making η very
small guards against this, but means that the optimization process will take a
very long time to reach a minimum.

7.2 Gradient descent with line searches

An obvious extension to the idea of gradient descent is to choose the direction
of steepest descent, as indicated by the gradient g, but to calculate the value
of the step to take which most reduces the value of E when moving in that
direction. This involves solving the one-dimensional problem of minimizing
E(w(t)− λg(t)) with respect to λ, and is known as a line search. That step is
then taken and the process repeated again.

Finding the size of the step takes a little work; for example, you might find three
points along the line such that the error at the intermediate point is less than at
the other two, so that there is some minimum along the line lies between the first
and second or between the second and third, and some kind of interval-halving
approach can then be used to find it. (The minimum found in this way, just
as with any sort of gradient-descent algorithm, may not be a global minimum
of course.) There are several variants of this theme. Notice that if the step
size is chosen to reduce E as much as it can in that direction, then no further
improvement in E can be made by moving in that direction for the moment.
Thus the next step will have no component in that direction; that is, the next
step will be at right angles to the one just taken. This can lead to zig-zag type
behaviour in the optimisation, see Figure 2.

8 Just for Interest

Sections at the end of each chapter contain material of interest related to the
course.

8.1 Whence optimisation?

Optimisation plays a central role in learning from data. For motivation, considerThis section is rather more
technical and not directly
examinable. It is provided

for the interest of the more
motivated student and

demonstrates that vector
algebra, eigenvectors and
Lagrange multipliers are

central to even the simplest
data modelling problems.

the following simple problem of trying to explain data by a straight line.

Let xµ, µ = 1, . . . P be a set of P data points. We wish to “learn” the best
straight line approximation to the data.

Each datapoint x can be expressed in terms of component parallel to the direc-
tion e, and one orthogonal to e:

x = (x · e)e + r (3)

(remember that e · e = 1. Hence the squared length of the residual vector r is

r2 = (x− (x · e)e)2 = x · x− 2(x · e)(x · e) + (x · e)(x · e) = x · x− (x · e)2 (4)

13

x

r e

O
x

x

x
x

x

x

x

x

Figure 3: Learning the best line fit through a set of data. For zero mean data,
we want to find the best unit length vector e such that when data points are
projected onto the direction e, the residual r is minimised.

Thus, finding e that minimises the residual is equivalent to finding e that max-
imises (x · e)2. If we wish to find the best direction for the whole dataset, the
problem can be stated as

Find e to maximise
P∑

µ=1

(xµ · e)2 such that e · e = 1 (5)

Thus, this very simple problem of learning a straight line requires us to optimise
a quadratic function subject to constraints.

We can restate the problem as

Find e to maximise eT Ae such that e · e = 1 (6)

where A is the correlation matrix of the data, A = (1/P)
∑

µ xµxT
µ . One way

to solve this is to use the Lagrangian method:

L = eT Ae + λ(1− eT e) (7)

The gradient ∇e of L gives the condition Ae = λe. That is, e is an eigenvector
of the correlation matrix. The eigenvector must be normalised to satisfy the
constraint. For a 2 dimensional problem, there will, in general, be two eigen-
vectors – that corresponding to the largest eigenvalue is the solution that we
require (since the error eT Ae = λ at the optimum).

14

