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Logistic Regression

» Classification problems:
» On the basis of historical information, classify a new
instance as belonging to a particular class.
» Training data with targets (x; t).
» Sometimes validation data with targets.
» Test data: targets are only visible for evaluation of method.
» Have used class conditional modelling:
P(t|x) o< P(x|t)P(t). This is a generative approach.
» Now model P(t|x) directly. This is a discriminative
approach. Don’t bother modelling P(x).
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Logistic Regression

Which is the correct model?

>

Two approaches encode different assumptions.

Generative assumption: classes exist because data is
drawn from two different distributions.

Discriminative assumption, class label is drawn dependent
on the value of x.

Generative: Class — Data.
Discriminative: Data — Class.
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Logistic Regression

Example

» The weight of men and women. Men and women have
different weight distributions because of characteristics of
gender: men are on average taller, and are therefore more
likely to have a higher weight.

» Weight and heart attacks. Obesity is a contributory factor
to heart attacks. We do not expect someone’s current
weight to be determined by the heart attack they are going
to have in the future!

» The underlying distribution of people’s weight does affect
the chance of someone with a given weight having a heart
attack. E.g. if the whole population on average lost weight,
does not affect the model.

» Can ignore the distribution of people’s weight.
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Logistic Regression

Is this rule hard and fast?

» No. In a given stationary (i.e. no distributions are
changing) circumstance, with no missing data, either
approach can be used.

» If the discriminative approach is used in a situation where a
generative approach is more appropriate, it just models the
P(x|t) and P(t) implicitly through
P(tx) = P(x[t)P(t)/P(x).

» The discriminative approach often has the advantage that
more flexible model can be used for P(t|x) than for P(x|t).
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Logistic Regression

PMR versus LfD

» This is where PMR and LfD diverge.

» PMR is more to do with generative modelling, especially
through the use of belief networks.

» LfD is going to focus on discriminative modelling,
especially through neural networks and related methods.
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Logistic Regression

Two Class Discrimination

» Consider a two class case: t € {0, 1}.
» Use a model of the form

P(t = 1]x) = f(x; w)

» f must be between 0 and 1. Furthermore the fact that
probabilities sum to one means

P(t=0[|x) =1 — f(x;w)

» What form should we use for f?
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Logistic Regression

The logistic function

>

We need two things:

v

A function that returns probabilities (i.e. stays between 0
and 1).

A means of incorporating x dependencies through the
parameters w.

The logistic (or sigmoid) function provides the first of these.
f(x) =o(x) =1/(1 + exp(—x)).
As x goes from —oo to oo, so f goes from 0 to 1.
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Logistic Regression

The Logistic Function
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The Logistic Function o(x) = m.
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Logistic Regression

The linear weights

» We need two things:

A function that returns probabilities (i.e. stays between 0
and 1).

» A means of incorporating x dependencies through the
parameters w.

» A linear weighting scheme provides the second of these:

> P(t=1|x) = o(b+x"w).

» o(x) = 0.5 when x = 0. Hence the decision boundary is
given by x'w = —b.

» Decision boundary is a d — 1 hyperplane for a d
dimensional problem.
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Logistic Regression

The Linear Decision Boundary

For two dimensional data the decision boundary is a line.
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Logistic Regression

Logistic regression

» The bias parameter b shifts the position of the hyperplane,
but does not alter the angle.

» The direction of the vector w affects the angle of the
hyperplane. The hyperplane is perpendicular to w.

» The magnitude of the vector w effects how certain the
classifications are.

» For small w most of the probabilities within a region of the
decision boundary will be near to 0.5.

» For large w probabilities in the same region will be close to
1or0.
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Logistic Regression

The Perceptron

» The perceptron is the special case of logistic regression
where the magnitude of w tends to infinity.

» Absolutely certain classification: all probabilities are 0 or 1.
» Define 6(x) =1 if x > 0 and 0 otherwise.
» Have p(c = 1|x) = 6(b + x"w).
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Logistic Regression

Learning Logistic Regressors

» Want to set w and b using training data.
» As before:

» Write out the model and hence the likelihood

» Find the derivatives of the log likelihood w.r.t the
parameters.

» Adjust the parameters to maximize the log likelihood.
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Logistic Regression
Likelihood

» Assume data is independent and identically distributed.
» The likelihood is

N i

N
=TI ) =TT Pee = 1) (1 - P(t=1}x))
i=1 i=1
(1)

» Hence the log likelihood is

log P(D Z t'log P(t = 1|x')+(1—t") log (1 — P(t= 1|x'))
i=1
(2)
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Logistic Regression

Logistic Regression Log Likelihood

» Using our assumed logistic regression model, the log
likelihood becomes

N
log P(D|w, b) = ) " t'log o(b+w'x')+(1-t") log (1 —o(b+ wa’))

i=1

3)
» We wish to maximise this value w.r.t the parameters w and
b.
» Cannot do this explicitly as before. Use an iterative
procedure.

» This will be considered in the next lecture.
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Logistic Regression

Summary

>

The difference between generative and discriminative
models.

The logistic function.

Logistic regression.

Hyperplane decision boundaries.
The Perceptron.

The likelihood for logistic regression.
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