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Logistic Regression

Learning Logistic Regressors

I P(t |x) = σ(wT x + b). Want to learn w and b using training
data.

I As before:
I Write out the model and hence the likelihood.
I Find the derivatives of the log likelihood w.r.t the

parameters.
I Adjust the parameters to maximize the log likelihood.
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Logistic Regression

Likelihood

I Assume data is independent and identically distributed.
I The likelihood is

p(D) =
N∏

i=1

P(t i |xi) =
N∏

i=1

P(t = 1|xi)t i
(

1− P(t = 1|xi)
)1−t i

(1)
I Hence the log likelihood is

log P(D) =
N∑

i=1

t i log P(t = 1|xi)+(1−t i) log
(

1− P(t = 1|xi)
)

(2)
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Logistic Regression

Logistic Regression Log Likelihood

I Using our assumed logistic regression model, the log
likelihood becomes

L = log P(D|w, b) =
N∑

i=1

t i log σ(b + wT xi)

+ (1− t i) log
(

1− σ(b + wT xi)
)

(3)

I We wish to maximise this value w.r.t the parameters w and
b.

I Cannot do this explicitly as before. Use an iterative
procedure.
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Logistic Regression

Gradients

I As before we can calculate the gradients of the log
likelihood.

I Gradient of sigmoid is σ′(x) = σ(x)(1− σ(x)).

∇wL =
N∑

i=1

(t i − σ(b + wT xi))xi (4)

∂L
∂b

=
N∑

i=1

(t i − σ(b + wT xi)) (5)

I This cannot be solved directly to find the maximum.
I Have to revert to an iterative procedure. - E.g. Gradient

Ascent
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Logistic Regression

Gradient Ascent

I Consider the likelihood as a surface: a function of the
parameters.

I Want to find the maximum likelihood value. In other words
we want to find the highest point of the likelihood surface -
the top of the hill.

I We propose a dumb hill climbing approach. Make sure you
take each step in the steepest direction (locally).

I Eventually we will get to a point where whatever direction
we step in will take us down. We are at a top.

I Note we are not necessarily at the top, but are at a top. We
ignore this issue for the moment.
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Logistic Regression

Gradient Ascent for Logistic Regression

I Choose some step size (or more accurately a learning
rate) η.

I Initialise at some position in parameter space. Presume
we are in position (w, b).

I At each step, move to position

wnew = w + η∇wL (6)

bnew = b + η
∂L
∂b

(7)

I Iterate the stepping until some stopping criterion is
reached. This might be when w and b don’t change much
anymore (equivalently all the partial derivatives are nearly
zero).
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Logistic Regression

Problems

I Local minima: luckily there are none for logistic regression,
but there can be for other models.

I Need to set the learning rate:
I Too small: never get there.
I Too large: gradient information ceases to be of much use.

Keep jumping about somewhat randomly.
I A learning rate of 0.1 is a good starting point.
I Naively this approach might seem like a good idea.
I In fact a pretty bad optimization approach. Will discuss

conjugate gradient and pseudo-Newton methods.
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Logistic Regression

Batch or Online

I Batch: update using all the training data.

wnew = w + η

N∑
i=1

(t i − σ(b + wT xi))xi (8)

bnew = b + η

N∑
i=1

(t i − σ(b + wT xi)) (9)

I Online: make an update using one training example at a
time.

wnew = w + η/N(t i − σ(b + wT xi))xi (10)

bnew = b + η/N(t i − σ(b + wT xi)) (11)
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Logistic Regression

What shape is the likelihood surface

I Calculate the Hessian (matrix of second derivatives)

Hij =
∂2L

∂wiwj
= −

∑
ijµ

xµ
i xµ

j σ(b + wT xµ)(1− σ(b + wT xµ))

I Always negative definite: second derivatives in any
direction at any point are negative.

I Hence likelihood surface is convex: only one peak. No
local maxima.

I Bowl shaped (upside down!).
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Logistic Regression

Convex Likelihood Surface
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The likelihood surface has no local minima
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Logistic Regression

Linear separability

I The decision boundary is a hyperplane
I Data is linearly separable if some hyperplane can divide

the two classes perfectly.
I The maximum likelihood logistic regressor for linearly

separable training data is a perceptron. The firmer the
decision, the more probable the data.

I Linear separability might occur just because of limited
training data
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Logistic Regression

Maximum Likelihood for Linear Seperability
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Logistic Regression

Regularisation and prior belief

I What if we believe that the classification should not be
certain.

I For example we could know that in general the data would
not be linearly separable: just that a finite training set might
be.

I This is prior information about the parameter.
I Hence we have some model P(w), which is low for large
|w|. E.g. P(w) is Gaussian.

I This actually amounts to adding a penalty term −αwT w to
the likelihood.

I This is called regularisation.
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Logistic Regression

Summary

I Likelihood for logistic regression.
I Derivatives of the log likelihood
I Using derivatives for gradient ascent.
I Perceptron
I Regularisation
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