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Multi-Layered Perceptrons

Layered Neural Networks

I Error model
I Calculating the derivative: the chain rule
I Optimisation

Amos Storkey, School of Informatics Learning from Data: Layered Neural Networks 2



Multi-Layered Perceptrons

Error Function: Real Case

I Remember there is a correspondence between the error
function and the log likelihood up to an additive and
multiplicative constant.

I In the real case the output neurons are usually linear.
I The neural network is a deterministic function.
I We presume the output of of the neural network is subject

to Gaussian measurement error.
I Remember the Gaussian likelihood produces the sum

squared error function.
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Multi-Layered Perceptrons

Sum squared error function

I Remember
I yj is the desired output of unit j
I fj is the actual output of unit j

E =
∑

j

(yj − fj)2
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Multi-Layered Perceptrons

Error Function: Binary Class Case

I In the binary class case the output neurons are usually
sigmoid.

I The output is interpreted as the probability of class 1.
I Then the logistic likelihood produces the cross-entropy

error.

E = −
∑

j

[yj log fj + (1− yj) log(1− fj)]
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Multi-Layered Perceptrons

Error function: multinomial case

I In the multinomial case (many classes) there is an output
neuron per class and the output neurons are usually linear.

I The final class y is interpreted from the outputs fi using a
softmax or logit model.

P(y = c) =
exp(fc)∑
i exp(fi)

.
I Here the number of output neurons matches the number of

classes.
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Multi-Layered Perceptrons

Multinomial error function

I The multinomial error function is therefore

−[log fy − log
∑

i

exp(fi)]

I Again subscripts denote the neuron number.
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Multi-Layered Perceptrons

Form of error functions

I The error surface is continuous and differentiable.
I The error surface may have local minima (unlike logistic

regression).
I The error surface is generally high dimensional.
I There are many symmetries to the error surface (for a start

all the hidden layer neurons are exchangeable).
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Multi-Layered Perceptrons

Error function
E

w

w

B C.A.

2

1

grad(E)

I A is a local minimum
I B is the global minimum
I C is not a minimum, grad(E) 6= 0
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Multi-Layered Perceptrons

Learning in a multi-layer network

I Presume a sum squared error function.
I Present an input pattern x and observe outputs y of the

output nodes. Let θ denote the vector of parameters of the
network.

I y is the desired output, f the actual output. Adjust weights
to minimise

E =
∑

µ

(yµ − fµ)2

where µ labels the particular training item.
I Calculate ∂E

∂θ
and carry out minimisation.
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Multi-Layered Perceptrons

Regularisation

I Remember regularisation is the approach used to
incorporate a prior over weights into the error function.

I This can help prevent overfitting.
I Standard regulariser is λθT θ.
I Add this on to the error function.
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Multi-Layered Perceptrons

The Full Error Function

I We write the MLP with one hidden layer as

f (x,θ) = r

(
K∑

i=1

vig(wT
i x + bi) + b

)

I The full error function in the regression case is

E(θ) =
N∑

µ=1

(f (xµ,θ)− yµ)2 + λθT θ
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Multi-Layered Perceptrons

Calculating Derivatives

I We can calculate the derivatives...

∂E
∂θi

= 2
N∑

µ=1

(f (xµ,θ)− yµ)
∂f (xµ,θ)

∂θi
+ 2λθi

I But to do this we need to calculate ∂f (xµ,θ)
∂θi

.
I This involves the use of the chain rule.
I The use of the chain rule in neural networks has become

known as back-propagation.
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Multi-Layered Perceptrons

Optimisation

I Gradient descent
I Line search
I Problems with gradient descent
I Second-order information
I Conjugate gradients
I Batch vs online
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Multi-Layered Perceptrons

Optimisation

E

w

w

B C.A.

2

1

grad(E)

I Use methods that “go downhill” on the error surface to find
a local minimum, e.g.

I gradient descent
I conjugate gradient
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Multi-Layered Perceptrons

Gradient Descent

I Remember the gradient descent (or ascent) procedure
from the lecture on logistic regression.

I Can do the same here.

θnew = θ − η∇θE(θ)

I For small η

E(θnew ) ' E(θ)− η(∇θE(θ))2

I Locally, we are modelling the function as a plane.
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Multi-Layered Perceptrons

Gradient Descent Algorithm

Set θ = (wT
1 , wT

2 , . . . , wT
K , b1, b2, . . . , bK , v1, v2, . . . , vK , b)

Initialise θ

while E(θ) is still changing substantially

θ = θ − η∇θE(θ)

end while

return θ
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Multi-Layered Perceptrons

Choosing η

I Too small
I too slow

I Too big
I unstable – goes outside region where linear approximation

is valid.
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Example
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Summary

I Error functions for various standard problems.
I the full MLP error.
I Calculating the derivatives.
I Gradient ascent.
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