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Multi-Layered Perceptrons

More on Optimisation

I Line Search
I Problems with gradient descent
I Second order methods
I Conjugate gradient
I Demos
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Multi-Layered Perceptrons

Line search

I Choose a search direction v starting from the current point
θ

I Minimise E(θ + λv) with respect to λ (a one-dimensional
minimisation)
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2 , using gradient as search direction
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Problems with gradient descent
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I Problem is zig-zagging in ravines
I Momentum (Mitchell §4.5.2.1)

∆θ(t + 1) = −η∇θE(θ) + α∆θ(t)
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Multi-Layered Perceptrons

But We Need to Set “Fiddle Factors”
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η = 0.095 α = 0.0 η = 0.095 α = 0.05,
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Multi-Layered Perceptrons

Second Order Information

I Taylor expansion

E(θ + δ) ' E(θ) + δT∇θE +
1
2
δT Hδ

where

Hij =
∂2E

∂θi∂θj

I H is called the Hessian.
I If H is positive definite, this models the error surface as a

quadratic bowl.
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Multi-Layered Perceptrons

Quadratic Bowl
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Multi-Layered Perceptrons

Direct Minimisation

I A quadratic function can be minimised directly using

δ = −H−1∇θE

but this requires
I Knowing/computing H, which has size O(W 2)
I Inverting H, O(W 3)
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Multi-Layered Perceptrons

Conjugate Gradients

I The conjugate gradients algorithm minimises a quadratic
form in D variables in D steps, without ever computing H or
H−1 explicitly. This is very useful!

I It uses line search, but the directions chosen to go in are
not usually the gradient:

I Conjugate directions

viHvj = 0 i 6= j
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Comparison

Gradient directions
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Multi-Layered Perceptrons

Batch vs online

I Batch learning: use all patterns in training set, and update
weights after calculating

∂E
∂θ

=
∑

µ

∂Eµ

∂θ

I On-line learning: adapt weights after each pattern
presentation, using ∂Eµ

∂θ
I Batch more powerful optimization methods
I Batch easier to analyze
I On-line more feasible for huge or continually growing

datasets
I On-line may have ability to jump over local optima
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Multi-Layered Perceptrons

Convergence of Backpropagation

I Dealing with local minima. Train multiple nets from different
starting places, and then choose best (or combine in some
way)

I Nature of Convergence
I Initialize weights near zero
I Therefore, initial networks are near-linear
I Increasingly non-linear functions possible as training

progresses
I Early stopping: a heuristic regularisation technique.
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Overfitting in Neural Networks
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Multi-Layered Perceptrons

Optimization: Summary

I Optimize over vector of all weights/biases in a network
I All methods considered find local optima
I Gradient descent is simple but slow
I In practice, second-order methods (conjugate gradients)

are used for batch learning
I Overfitting can be a problem
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Pause
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Multi-Layered Perceptrons

Representation Power of ANNs

I Boolean functions:
I Every boolean function can be represented by network with

single hidden layer
I but might require exponential (in number of inputs) hidden

units
I Continuous functions:

I Every bounded continuous function can be approximated
with arbitrarily small error, by network with one hidden layer
[Cybenko 1989; Hornik et al. 1989]

I Any function can be approximated to arbitrary accuracy by
a network with two hidden layers [Cybenko 1988].

I Neural Networks are universal approximators.
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Functional approximation
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But, ...

I The fact that a function is representable does not tell us
how many hidden units would be required for its
approximation

I Nor does it tell us if it is learnable (a search problem)
I Nor does it say anything about how much training data

would be needed to learn the function
I In fact universal approximation has only a limited benefit:

need bias.
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Multi-Layered Perceptrons

Hypothesis space and Inductive Bias for ANNs

I Hypothesis space: if there are |θ| weights and biases

H =
{

θ|θ ∈ R|θ|
}

I Inductive Bias: hard to characterize, depends on search
procedure, regularisation and how weight space spans the
space of representable functions

I Approximate statement: smooth interpolation between
data points
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Learning Hidden Layer Representations

I Backprop can develop intermediate representations of its
inputs in the hidden layers

I These new features will capture properties of the input
instances that are most relevant to learning the target
function

I This ability to automatically discover useful hidden-layer
representations is a key feature of ANN learning
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Summary

I Neural networks are a powerful nonlinear modelling tool for
classification and for regression.

I Rely on optimisation methods to find good models.
I Somewhat opaque assumptions.
I Local minimum problems.
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