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Linear Regression

Classification or Regression?

I Classification: want to learn a discrete target variable.
I Regression: want to learn a continuous target variable.
I Linear regression, generalised linear models, and

nonlinear regression.
I Most regression models can be turned into classification

models using the logistic trick of logistic regression.
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One Dimensional Data
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Linear Regression

Linear Regression

I Simple example: 1 dimensional linear regression.
I Suppose we have data of the form (x , y), and we believe

the data should follow a straight line.
I However we also believe the target values y are subject to

measurement error, which we will assume to be Gaussian.
I Often use the term error measure for the negative log

likelihood.
I Hence training error, test error.
I Remember: Gaussian noise results in a quadratic negative

log likelihood.
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Linear Regression

Example

I Believe the data should have a straight line fit: y = a + bx
I but that there is some measurement error for y :

y = a + bx + η where η is a Gaussian noise term.
I Training error is

−
∑

µ

log P(η = (yµ−bxµ−a)) = A
∑

µ

(yµ−bxµ−a)2 +B.

for training data {(xµ, yµ);µ = 1, . . . , N} of size N. A and B
depend on the variance of the Gaussian, but do not
actually matter in a minimisation problem: we get the same
minimum whatever A and B are.
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Generated Data
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Linear Regression

Multivariate Case

I Consider the case where we are interested in y = f (x) for
D dimensional x: y = a + bT x

I In fact if we set w = (a, bT )T and introduce φ = (1, xT )T ,
then we can write

y = wT φ

for the new augmented variables.
I The training error (up to an additive and multiplicative

constant) is then

E(w) =
N∑

µ=1

(yµ −wT φµ)2

where φµ = (1, (xµ)T )T .
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Linear Regression

Maximum Likelihood Solution

I Minimum training error equals maximum log-likelihood.
I Take derivatives of the training error:

∇wE(w) = 2
N∑

µ=1

φµ(wT φµ − yµ)

I Write Φ = (φ1,φ2, . . . ,φN), and y = (y1, y2, . . . , yN)T .
I Then

∇wE(w) = 2Φ(ΦT w− y)
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Linear Regression

Maximum Likelihood Solution

I Setting the derivatives to zero to find the minimum gives

ΦΦT w = Φy

I This means the maximum likelihood w is given by

w = (ΦΦT )−1Φy

The term (ΦΦT )−1Φ is called the pseudo-inverse.
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Generated Data
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The black line is the maximum likelihood fit to the data.
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Linear Regression

Recap

I Error measure is the negative log likelihood
I Gaussian error term is the sum-squared error (up to a

multiplicative and additive constant).
I Write down the regression error term.
I Build weight vector w and data vector φ.
I Take derivatives and set to zero to obtain pseudo-inverse

solution.
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But...

I All this just used φ.
I We chose to put the x values in φ, but we could have put

anything in there, including nonlinear transformations of
the x values.

I In fact we can choose any useful form for φ so long as the
final derivatives are linear in w. We can even change the
size.

I We already have the maximum likelihood solution in the
case of Gaussian noise: the pseudo-inverse solution.

I Models of this form are called generalized linear models or
linear parameter models.
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Example:polynomial fitting

I Model y = w1 + w2x + w3x2 + w4x3.
I Set φ = (1, x , x2, x3)T and w = (w1, w2, w3, w4).
I Can immediately write down the ML solution:

w = (ΦΦT )−1Φy, where Φ and y are defined as before.
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Higher dimensional outputs

I Suppose the target values are vectors y.
I Then we introduce different wi for each yi .
I Then we can do regression independently in each of those

cases.
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Radial Basis Models

I Set φi(x) = exp(−1
2(x−mi)2/α2).

I Need to position these “basis functions” at some prior
chosen centres mi and with a given width α. We will
discuss how the centres and widths can also be
considered as parameters in a future lecture.

I Finding the weights is the same as ever: the
pseudo-inverse solution.
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Dimensionality Issues

I How many radial basis bumps do we need?
I Suppose we only needed 3 for a 1D regression problem.
I The we would need 3D for a D dimensional problem.
I This becomes large very fast: this is commonly called the

curse of dimensionality.
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Model comparison

I How do we compare different models?
I For example we could introduce 1,2, ... 4000 radial basis

functions.
I The more parameters the model has, the better it will do.
I Models with huge numbers of parameters could fit the

training data perfectly.
I Is this a problem?
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Summary

I Lots of different models are linear in the parameters
I For regression models the maximum likelihood solution is

analytically calculable.
I The optimum value is given by the pseudo-inverse solution.
I Overfitting.

Amos Storkey, School of Informatics Learning from Data: Regression


	Linear Regression

