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Linear Regression

Classification or Regression?

» Classification: want to learn a discrete target variable.
» Regression: want to learn a continuous target variable.

» Linear regression, generalised linear models, and
nonlinear regression.

» Most regression models can be turned into classification
models using the logistic trick of logistic regression.
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Linear Regression

One Dimensional Data
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Linear Regression

Linear Regression

v

Simple example: 1 dimensional linear regression.

Suppose we have data of the form (x, y), and we believe
the data should follow a straight line.

However we also believe the target values y are subject to
measurement error, which we will assume to be Gaussian.

Often use the term error measure for the negative log
likelihood.

Hence training error, test error.

Remember: Gaussian noise results in a quadratic negative
log likelihood.
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Linear Regression

Example

» Believe the data should have a straight line fit: y = a+ bx

» but that there is some measurement error for y:
y = a+ bx + n where n is a Gaussian noise term.

» Training error is
—> log P(n = (y* —bx"—a AZ —bx* —a)®+B.
for training data {(x*, y*);u=1,..., N} of size N. Aand B
depend on the variance of the Gaussian, but do not

actually matter in a minimisation problem: we get the same
minimum whatever A and B are.
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Generated Data
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Linear Regression
Multivariate Case

» Consider the case where we are interested in y = f(x) for
D dimensional x: y = a+b'x
» In fact if we setw = (a,b’)" and introduce ¢ = (1,x")7,
then we can write
y=w'o
for the new augmented variables.

» The training error (up to an additive and multiplicative
constant) is then

N
=2 -wighy

p=1

where ¢* = (1, (x*)7)T.

Amos Storkey, School of Informatics Learning from Data: Regression



Linear Regression
Maximum Likelihood Solution

» Minimum training error equals maximum log-likelihood.
» Take derivatives of the training error:

N
VwEW) =2 ¢*(w ¢ — y)
u=1

» Write & = (¢",¢%,...,¢"N),andy = (y',y2,...,yN)T.
» Then
VwE(W) = 20(d"w —y)
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Linear Regression

Maximum Likelihood Solution

» Setting the derivatives to zero to find the minimum gives
oo'w = oy
» This means the maximum likelihood w is given by
w=(oo") "oy

The term (d®7)~" @ is called the pseudo-inverse.
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Linear Regression

Generated Data
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The black line is the maximum likelihood fit to the data.
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Linear Regression

v

Error measure is the negative log likelihood

Gaussian error term is the sum-squared error (up to a
multiplicative and additive constant).

Write down the regression error term.
Build weight vector w and data vector ¢.

Take derivatives and set to zero to obtain pseudo-inverse
solution.
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Linear Regression

» All this just used ¢.

» We chose to put the x values in ¢, but we could have put
anything in there, including nonlinear transformations of
the x values.

» In fact we can choose any useful form for ¢ so long as the
final derivatives are linear in w. We can even change the
size.

» We already have the maximum likelihood solution in the
case of Gaussian noise: the pseudo-inverse solution.

» Models of this form are called generalized linear models or
linear parameter models.
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Linear Regression

Example:polynomial fitting

» Model y = wy + wox + wax? + wyx3.
» Setop = (1,x,x2,x3)T and W = (wy, wo, wa, wy).
» Can immediately write down the ML solution:
w = (¢d7)"dy, where & and y are defined as before.
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Linear Regression

Higher dimensional outputs

» Suppose the target values are vectors y.
» Then we introduce different w; for each y;.

» Then we can do regression independently in each of those
cases.
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Linear Regression

Radial Basis Models

> Set ;(x) = exp(—}(x — m')?/a?).

» Need to position these “basis functions” at some prior
chosen centres m’ and with a given width o.. We will
discuss how the centres and widths can also be
considered as parameters in a future lecture.

» Finding the weights is the same as ever: the
pseudo-inverse solution.
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Linear Regression

Dimensionality Issues

» How many radial basis bumps do we need?
» Suppose we only needed 3 for a 1D regression problem.
» The we would need 3P for a D dimensional problem.

» This becomes large very fast: this is commonly called the
curse of dimensionality.
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Linear Regression

Model comparison

» How do we compare different models?

» For example we could introduce 1,2, ... 4000 radial basis
functions.

» The more parameters the model has, the better it will do.

» Models with huge numbers of parameters could fit the
training data perfectly.

» Is this a problem?
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Linear Regression

Summary

» Lots of different models are linear in the parameters

» For regression models the maximum likelihood solution is
analytically calculable.

» The optimum value is given by the pseudo-inverse solution.
» Overfitting.
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