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Dimensionality Reduction

e Goal: to construct new representations of the data that capture its
underlying structure

e Presumed that the the inherent (useful) structure of the data does not fill
the whole of the space.

e Don't forget the size of these spaces. 4000 data points. 12 attributes. Many
quadrants of the space must have 0 data points in them (2'? quadrants in
all).

e Often choose attributes with some conceptual overlap.
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Lower Dimensional Structures

e Some lower dimensional structures in a higher-dimensional space e.g.
e Cluster centres (points in 0-d)
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Lower Dimensional Structures

e Some lower dimensional structures in a higher-dimensional space e.g.
e Lower-dimensional manifolds, e.g. lines, sheets (1-d, 2-d)
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Linear dimensionality reduction

e If lines or surfaces are linear manifolds.
e Straight lines, Flat sheets.
e Want to find the positions of those flat sheets

e This is linear dimensionality reduction.
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Exploratory data analysis

e Related idea, understand structure in data.

e See what you get if you reduce dimensionality to visualisable levels.
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Covariance Matrix: Variance

e Let ( ) denote an average
e Suppose we have a random vector x = (z1, 2, ...,24)"
e (x) denotes the mean of x, (1, pz, ... pg)?

e 0; = ((z; — p;)?) is the variance of component i (gives a measure of the
“spread” of component 1)
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Covariance Matrix: lllustration
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Covariance Matrix: Calculation

e 0,; = ((x; — w;)(x; — 1y)) is the covariance between components i and j

e In d-dimensions there are d variances and d(d — 1)/2 covariances which
can be arranged into a covariance matrix C

C=(x-—p)(x—pn")

e Covariance matrix is symmetric
e E.g. Weight and Height

e Highly correlated variables say the same thing, there is redundancy to be
removed
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Principal Components Analysis

e A linear dimensionality reduction technigque

principal
axis
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One view of PCA

e If you want to use a single number to describe a whole vector drawn from
a known distribution, pick the projection of the vector onto the direction of
maximum variation (variance)

e Assume (x) =0

® Yy —=W.X

e Choose w to maximise (y?), subjectto w.w = 1

e Solution: w Is the eigenvector corresponding to the largest eigenvalue of
C = (xx1)
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More Generally

e \Want to write

M
X; = c—l—wabk + €
k=1
e The vectors {b* . k =1,..., M} are orthonormal. That is

(b")"b? = 6%
e Want to choose the set {b*, k = 1,..., M} to minimise the size of the error

terms ;.
e l.e. Min Zz GZTGi.

LfD 2004 11



Solution

e Solution is to choose b to be given by:
— Calculating the sample mean and covariance of the data:

N N
1
:NZXk, and S—N 12}%— xk—m)T
—1 k=1

— Calculating the eigenvalues \; of the sample covariance matrix (use eig
In Matlab).

— Ordering \; in descending order, and finding the M largest eigenvalues

— Setting b* to be the eigenvector corresponding to the kth largest
eigenvalue.
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Solution

e Then the span of the vectors b; are the principal subspace
e Setc=m

e w¥ = (b*)T(x; — m) is the lower dimensional representation of data point
x;. This is the projection to the principal linear manifold.

e For details of the derivation see the handout.
e Fraction of total variation explained by using M principal components is

M
2221 )\'L S 1
Zi:l Ai
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Example

e Handwritten Characters
e See handout.
e Can summarise much of data using principal components.

e Captures the essence of the character.
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e Inherent dimensionality?
e Usefulness.

e Scaling dependent.
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e Inherent dimensionality?
e Usefulness.

e Scaling dependent.
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Summary

e Dimensionality reduction
e Linear manifolds
e Covariance matrix

e PCA as finding largest eigenvalues
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