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Summary

• Class conditional Gaussians

• What about if the class is unknown.

• What if just have a complicated density

• Can we learn a clustering?

• Can we learn a density?
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Gaussian: Reminder

• The vector x is multivariate Gaussian if for mean µ and covariance matrix
Σ, it is distributed according to

P (x|µ, Σ) =
1

|2πΣ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
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Multivariate Gaussian: Picture
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Reminder: Class Conditional Classification

• Have real valued multivariate data, along with class label for each point.

• Want to predict the value of the class label given some new point.

• Presume that if we take all the points with a particular label, then we believe
they were sampled from a Gaussian.

• How should we predict the class at a new point?
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Reminder: Class Conditional Classification

• Learning: Fit Gaussian to data in each class (class conditional fitting).
Gives P (position|class)

• Find estimate for probability of each class P (class)
• Inference: Given a new position, we can ask “What is the probability of this

point being generated by each of the Gaussians.”

• Pick the largest and give probability using Bayes rule

P (class|position) ∝ P (position|class)P (class)
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Unsupervised Problem

• Given exactly the same problem, but without any class labels, can we still
solve it?

• Presume we know the number of classes and know they are Gaussian.

• Can we model the underlying distribution?

• Can we cluster the data into different classes?

• Effectively we want to allocate a class label to each point.
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Example
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Example
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Can solve either-or

• If we know which clusters the points belong to we can solve (learning a
class-conditional model).

• If we know what the Gaussian clusters are we can solve (inferential
classification using a class-conditional model)

• The first case was just what we did when we had training data.

• The second was just what we did using Bayes rule for new test data.

• But how can we do the two together?
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Iterate?

• Could just iterate: Guess the cluster values. Calculate parameters. Find
maximum cluster values.

• No reason to believe this will converge.

• Problem is that we have probability of belonging to a cluster, but we
allocate all-or nothing.
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Use Gradient Optimisation

• Write out model. Calculate derivatives, optimise directly using conjugate
gradients.

• Will work. Quite complicated. Not necessarily fastest approach.
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Probabilistic Allocation

• Stronger: if we know a probabilistic allocation to clusters we can find the
parameters of the Gaussians.

• If we know the parameters of the Gaussians we can do a probabilistic
allocation to clusters.

• Convergence guarantee!

• Convergence-to-a-local-maximum-likelihood-value guarantee!!
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EM Algorithm

• Choose number of mixtures.

• Initialise Gaussians and mixing proportions.

• Calculate responsibilities:

• P (i|xµ) - the probability of data point xµ belonging to cluster i given the
current parameter values of the Gaussians and mixing proportions.

• Pretend the responsibilities are the truth. Update the parameters using a
maximum likelihood method (generalisation of class conditional learning).

• But the responsibilities are not the truth, so update them and repeat.

• Will converge to maximum likelihood parameter values.
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Example
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Labelling

• The labels are permutable.

• We can use partially labelled data to set the cluster labels: fix
responsibilities deterministically.

• EM algorithm for the rest.
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Choice of number of mixtures

• How good is the likelihood?

• More mixtures, better likelihood.

• One mixture on each data point: infinite likelihood.

• Need regularisation on Gaussian widths (i.e. covariances).

• Aside: Bayesian methods account for probability mass in parameter space.
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Initialisation

• K-Means

• Uses K-NN for clustering.

• See lecture notes.
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Inference and Clustering

• Just as with class conditional Gaussian model

• Have mixture parameters.

• Calculate posterior probability of belonging to a particular mixture.
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Covariances

• Full covariances

• Diagonal covariances

• Others types (factor analysis covariances - bit like PCA).
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Summary

• Mixture Models - class conditional models without the classes!

• EM algorithm

• Using class conditional models

• Issues: number of mixtures, covariance types etc.
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