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Summary

e Class conditional Gaussians

e What about if the class is unknown.

e What if just have a complicated density
e Can we learn a clustering?

e Can we learn a density?
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Gaussian: Reminder

e The vector x Is multivariate Gaussian if for mean p and covariance matrix
>, it Is distributed according to

1 1 _
P(x|p,X) = sz P (—§(X — ) T (x - u))
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Multivariate Gaussian: Picture
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Reminder: Class Conditional Classification

e Have real valued multivariate data, along with class label for each point.
e Want to predict the value of the class label given some new point.

e Presume that if we take all the points with a particular label, then we believe
they were sampled from a Gaussian.

e How should we predict the class at a new point?
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Reminder: Class Conditional Classification

e Learning: Fit Gaussian to data in each class (class conditional fitting).
Gives P(position|class)

e Find estimate for probability of each class P(class)

e Inference: Given a new position, we can ask “What is the probability of this
point being generated by each of the Gaussians.”
e Pick the largest and give probability using Bayes rule

P(class|position) « P(position|class)P(class)
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Unsupervised Problem

e Given exactly the same problem, but without any class labels, can we still
solve it?

e Presume we know the number of classes and know they are Gaussian.
e Can we model the underlying distribution?
e Can we cluster the data into different classes?

e Effectively we want to allocate a class label to each point.
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Can solve either-or

e If we know which clusters the points belong to we can solve (learning a
class-conditional model).

e If we know what the Gaussian clusters are we can solve (inferential
classification using a class-conditional model)

e The first case was just what we did when we had training data.
e The second was just what we did using Bayes rule for new test data.

e But how can we do the two together?
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Ilterate?

e Could just iterate: Guess the cluster values. Calculate parameters. Find
maximum cluster values.

e No reason to believe this will converge.

e Problem is that we have probability of belonging to a cluster, but we
allocate all-or nothing.
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Use Gradient Optimisation

e Write out model. Calculate derivatives, optimise directly using conjugate
gradients.

e Will work. Quite complicated. Not necessarily fastest approach.

LfD 2004 12



Probabilistic Allocation

e Stronger: if we know a probabilistic allocation to clusters we can find the
parameters of the Gaussians.

e If we know the parameters of the Gaussians we can do a probabilistic
allocation to clusters.

e Convergence guarantee!

e Convergence-to-a-local-maximume-likelihood-value guarantee!!
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EM Algorithm

e Choose number of mixtures.
e Initialise Gaussians and mixing proportions.
e Calculate responsibilities:

e P(i|x*) - the probability of data point x* belonging to cluster : given the
current parameter values of the Gaussians and mixing proportions.

e Pretend the responsibilities are the truth. Update the parameters using a
maximum likelihood method (generalisation of class conditional learning).

e But the responsibilities are not the truth, so update them and repeat.
e Will converge to maximum likelihood parameter values.
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Labelling

e The labels are permutable.

e We can use partially labelled data to set the cluster labels: fix
responsibilities deterministically.

e EM algorithm for the rest.
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Choice of number of mixtures

e How good is the likelihood?

e More mixtures, better likelihood.

e One mixture on each data point: infinite likelihood.

e Need regularisation on Gaussian widths (i.e. covariances).

e Aside: Bayesian methods account for probability mass in parameter space.
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e K-Means
e Uses K-NN for clustering.

e See lecture notes.

LfD 2004

Initialisation

23



Inference and Clustering

e Just as with class conditional Gaussian model
e Have mixture parameters.

e Calculate posterior probability of belonging to a particular mixture.
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Covariances

e Full covariances
e Diagonal covariances

e Others types (factor analysis covariances - bit like PCA).
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Summary

e Mixture Models - class conditional models without the classes!
e EM algorithm
e Using class conditional models

e Issues: number of mixtures, covariance types etc.
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