Learning from Data: Density Estimation - Gaussian Mixture Models

Amos Storkey, School of Informatics
University of Edinburgh

Semester 1, 2004

Summary

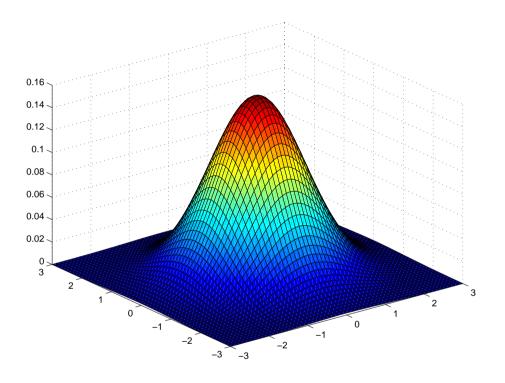
- Class conditional Gaussians
- What about if the class is unknown.
- What if just have a complicated density
- Can we learn a clustering?
- Can we learn a density?

Gaussian: Reminder

• The vector \mathbf{x} is multivariate Gaussian if for mean $\boldsymbol{\mu}$ and covariance matrix Σ , it is distributed according to

$$P(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{|2\pi\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

Multivariate Gaussian: Picture



Reminder: Class Conditional Classification

- Have real valued multivariate data, along with class label for each point.
- Want to predict the value of the class label given some new point.
- Presume that if we take all the points with a particular label, then we believe they were sampled from a Gaussian.
- How should we predict the class at a new point?

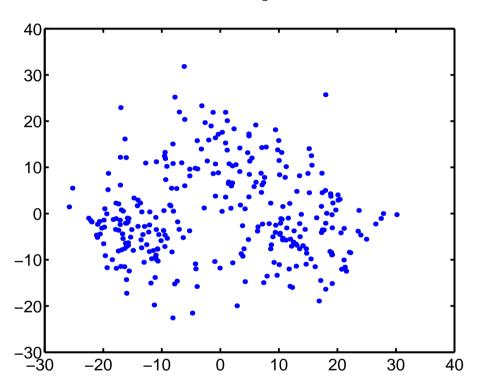
Reminder: Class Conditional Classification

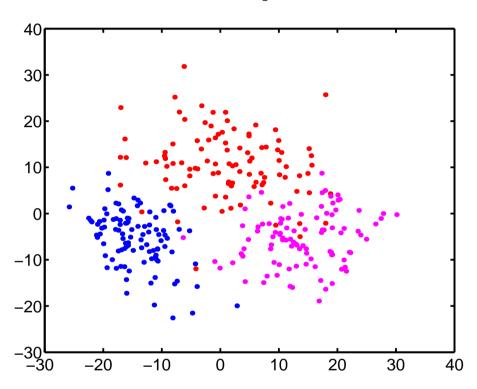
- Learning: Fit Gaussian to data in each class (class conditional fitting). Gives P(position|class)
- Find estimate for probability of each class P(class)
- Inference: Given a new position, we can ask "What is the probability of this point being generated by each of the Gaussians."
- Pick the largest and give probability using Bayes rule

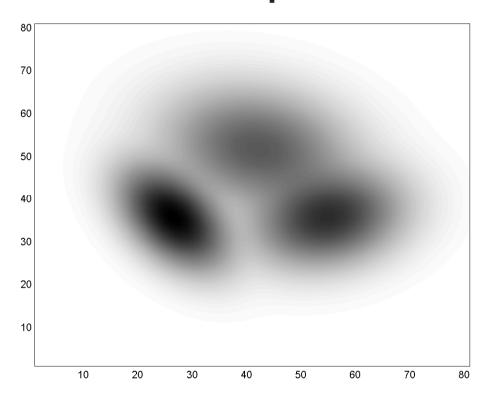
 $P(\mathsf{class}|\mathsf{position}) \propto P(\mathsf{position}|\mathsf{class})P(\mathsf{class})$

Unsupervised Problem

- Given exactly the same problem, but without any class labels, can we still solve it?
- Presume we know the number of classes and know they are Gaussian.
- Can we model the underlying distribution?
- Can we cluster the data into different classes?
- Effectively we want to allocate a class label to each point.







Can solve either-or

- If we know which clusters the points belong to we can solve (learning a class-conditional model).
- If we know what the Gaussian clusters are we can solve (inferential classification using a class-conditional model)
- The first case was just what we did when we had training data.
- The second was just what we did using Bayes rule for new test data.
- But how can we do the two together?

Iterate?

- Could just iterate: Guess the cluster values. Calculate parameters. Find maximum cluster values.
- No reason to believe this will converge.
- Problem is that we have probability of belonging to a cluster, but we allocate all-or nothing.

Use Gradient Optimisation

 Write out model. Calculate derivatives, optimise directly using conjugate gradients.

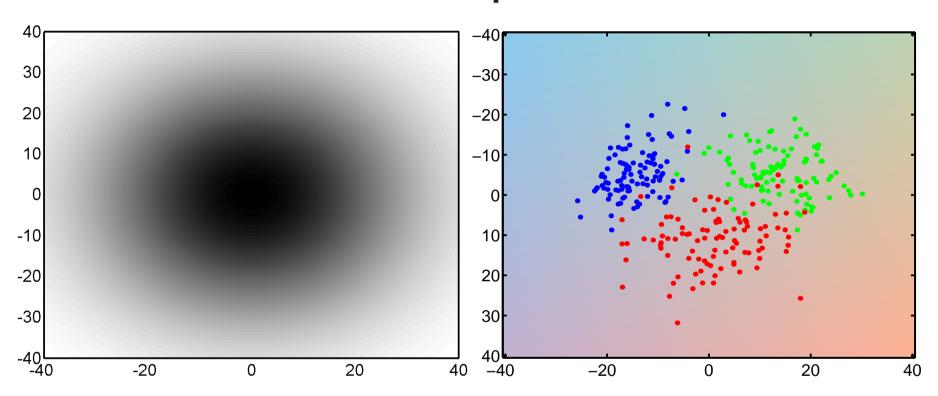
Will work. Quite complicated. Not necessarily fastest approach.

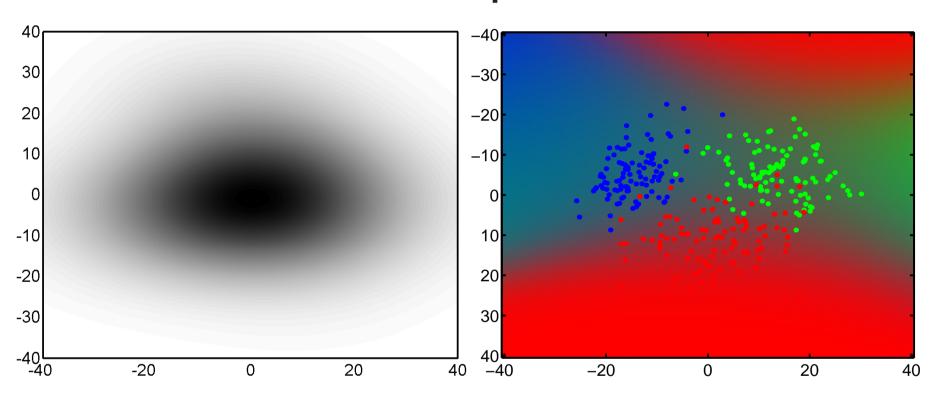
Probabilistic Allocation

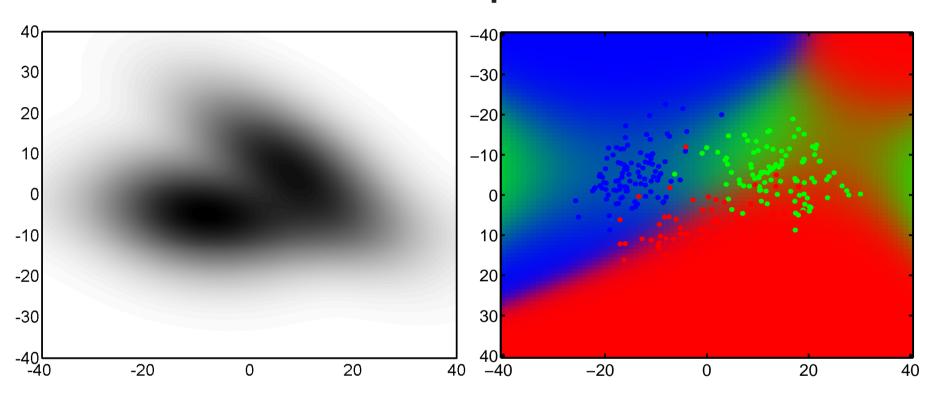
- Stronger: if we know a *probabilistic* allocation to clusters we can find the parameters of the Gaussians.
- If we know the parameters of the Gaussians we can do a probabilistic allocation to clusters.
- Convergence guarantee!
- Convergence-to-a-local-maximum-likelihood-value guarantee!!

EM Algorithm

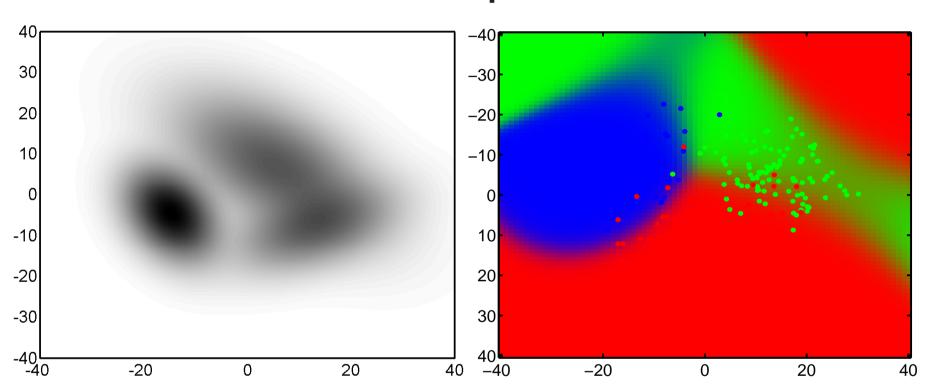
- Choose number of mixtures.
- Initialise Gaussians and mixing proportions.
- Calculate responsibilities:
- $P(i|\mathbf{x}^{\mu})$ the probability of data point \mathbf{x}^{μ} belonging to cluster i given the current parameter values of the Gaussians and mixing proportions.
- Pretend the responsibilities are the truth. Update the parameters using a maximum likelihood method (generalisation of class conditional learning).
- But the responsibilities are not the truth, so update them and repeat.
- Will converge to maximum likelihood parameter values.

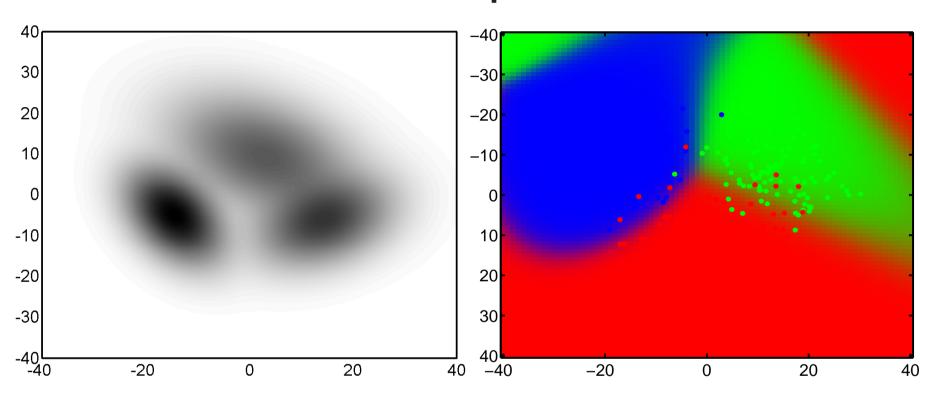


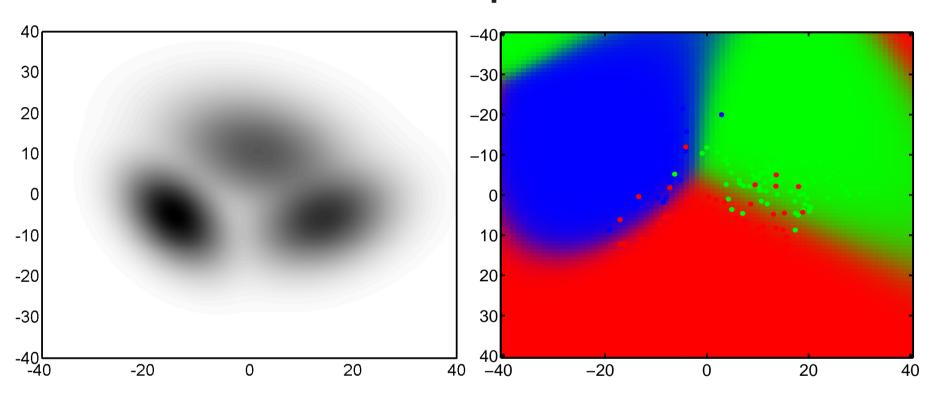




LfD 2004 17







LfD 2004 20

Labelling

- The labels are permutable.
- We can use partially labelled data to set the cluster labels: fix responsibilities deterministically.
- EM algorithm for the rest.

Choice of number of mixtures

- How good is the likelihood?
- More mixtures, better likelihood.
- One mixture on each data point: infinite likelihood.
- Need regularisation on Gaussian widths (i.e. covariances).
- Aside: Bayesian methods account for probability mass in parameter space.

Initialisation

- K-Means
- Uses K-NN for clustering.
- See lecture notes.

Inference and Clustering

- Just as with class conditional Gaussian model
- Have mixture parameters.
- Calculate posterior probability of belonging to a particular mixture.

Covariances

- Full covariances
- Diagonal covariances
- Others types (factor analysis covariances bit like PCA).

Summary

- Mixture Models class conditional models without the classes!
- EM algorithm
- Using class conditional models
- Issues: number of mixtures, covariance types etc.