Learning from Data
Linear Parameter Models

Copyright David Barber 2001-2004.

Course lecturer: Amos Storkey

a.storkey@ed.ac.uk

Course page : http://www.anc.ed.ac.uk/~amos/1£fd/

1

Introduction

et
©

X XXx

chirps per sec

70 75 80 85
temperature (F)

Figure 1: Data from crickets — the number of chirps per second, versus the
temperature in Fahrenheit.

Consider the data in fig(1), in which we plot the number of chirps per sec-
ond for crickets, versus the temperature in degrees Fahrenheit. A biologist
believes that there is a simple relation between the number of chirps and
the temperature. Modelling such a relation is a regression problem. The
biologist decides to make a straight line fit :

c=a+bt (1.1)

where she needs to determine the parameters a and b. How can she deter-
mine these parameters based on the training data (¢, t*),up =1,...,15 7
For consistency with our previous notations, let us use y rather than ¢, and
x in place of ¢, so that our model is y = a + bx. The sum squared training

error is
P

E(a,b) = Z(y“ —a — bxt)? (1.2)

p=1
Differentiating with respect to a, we find
Z(y“ —a—bz")=0 (1.3)
1
Differentiating with respect to b, we find
Z(y“ —a—bxt)xt =0 (1.4)
1

Dividing by P, we thus have two simultaneous linear equations

(1.6)
(1.7)

where we used the notation (-) to denote + Zizl - .We can easily solve these
linear equations to determine a and b. The important thing to note about
this regression model is that the parameters only appear in a linear fashion.
We could also, more conveniently write our model as

y=w'¢ (1.8)

1.1 Regression and PCA

w

8
N
>

N
a

N
S

e
ol

20
18
16

75 80 85 90 95 100 70 75 80 85 90
temperature (F) temperature (F)

chirps per sec
chirps per sec

»-
)

-

R

@

o
&
~
3

Figure 2: Left: Straight line regression fit to the cricket data. Right: PCA
fit to the data. In regression we minimize the residuals — the fit represents
the shortest vertical distances. In PCA the fit minimizes the orthogonal
projections to the line.

where w = (a,b)” and ¢ = (1,2)”. The training error then is

—wloh)? (1.9)

nMw

where ¢* = (1,2#)T. We now wish to determine the parameter vector w.
Writing out the error in terms of the components,

P
= " szszﬁ“ Zwm" (1.10)
pn=1
Differentiating with respect to wy, this gives
Yoyt = wiy ¢lel (1.11)
I i ©

or, in matrix notation,
Yoyt =) ¢M¢")w (1.12)
nw n

Hence, the solution is

W= (Z ¢“(¢“)T> >yt (1.13)

Putting in the actual data, we get a = —0.3091, b = 0.2119. The fit is
plotted in fig(2). Although the solution is written in terms of the inverse
matrix, we never actually compute the inverse numerically; we use instead
Gaussian elimination — see the MATLAB code.

In an earlier chapter, we discussed using PCA to reduce the dimensionality
of data, based on the idea that data may lie close to a low dimensional
hyperplane. Since a line is a low dimensional hyperplane, one may wonder

chirps per sec

=
5

65 70 75 90 95 100

80 85
temperature (F)

Figure 3: Cubic polynomial fit to the cricket data.

what the difference is between using PCA to fit a line and the above re-
gression approach. The answer is that the objective functions are different.
Regression finds a line that minimizes the vertical distance between a dat-
apoint and the line; PCA finds a line that minimizes the distance between
a datapoint and the line — see fig(2).

2 Linear Parameter Models (Generalised Linear Models)

2.1 Training LPMs

A linear parameter model is defined as

y(x) = w' ¢(x) (2.1)

As we saw above, straight line regression fits to data are examples of this.
If we choose the coefficients of the vector ¢ to be non-linear functions of x,
then the mapping x — y will be non-linear. The phrase “linear” model here
refers to the fact that the model depends on its parameters in linear way.
This is an extremely important point. Unfortunately, the terminology is a
little confused in places. These models are often referred to as “generalised
linear models”. However, sometimes people use this same phrase to refer to
something completely different — beware!

In the derivation above, there was nothing specific about the form of ¢.
Hence, the solution in equation (2.5) holds in general. That is, you simply
put in a different ¢ vector if you wish to find a new solution. For example,
consider the case of fitting a cubic function y = wq + wex + w3x? + waz> to
the data. In this case, we would choose

¢=(1,2,0%2%)" (2.2)

The solution has the same form, except w is now a 4 dimensional vector

% Linear Parameter Regression :

data=[

example using Cubic Polynomial

20.0 16.0 19.8 18.4 17.1 15.5 14.7 17.1 15.4 16.2 15.0 17.2 16.0 17.0 14.4 ;
88.6 71.6 93.3 84.3 80.6 75.2 69.7 82.0 69.4 83.3 79.6 82.6 80.6 83.5 76.3];

= data(2,:);

phi = phi_fn(x); n

y = data(1,

:); plot(x,y,’x’)

size(phi,1);

= (phi*phi’ + 107 (-7)*eye(n))\sum(repmat (y,size(phi,1),1).*phi,2); % Better than inv

xp = 65:100;

function phi

phi(1,:) =
phi(2,:)

phi(3,:) =
phi(4,:) =

yp =

= phi_fn(x)

ones(1,length(x));
= x;

x.72;
x.73;

w’*phi_fn(xp); hold on; plot(xp,yp)

% cubic polynomial :

Choosing between Different

Models

The above MATLAB code implements LPM in general. All that needs to
be changed in the above code for a different model is the function phi_£n.
Note that, rather than using the inv function in MATLAB to solve the linear
equations, it is much better to use the slash function \ — this implements
Gaussian elimination to solve linear systems. This is both much faster and
more accurate. As a rule we never invert matrices unless you need to — and
you never need to if you only want to solve the linear system.

How would we decide if a straight line fit is preferable to a cubic polynomial
fit? A general way to address this problem is to use some validation data
to test how accurate each model predicts the validation data. The more
accurate model on the validation data would then be preferred.

2.2 Regularisation and numerical stability

It should be fairly clear from the above that all polynomial regression fits are
simply special cases of LPMs. Also, the more terms there are in polynomial,
the more curved can be the fit to the data. One way to penalise too complex
models is to use a penalty term

Ereg(w) = wiw (2.3)

The regularised training error is then

Ereqtrazn w,)\ T¢P« +)\WTW (24)

HM"U

If we differentiate the regularised training error to find the optimal w for a
given A, we find: Hence, the solution is

w = (Z ¢ (¢")" + n) > v (2:5)

where I is the n x n identity matrix and n = dim(w). Another beneficial
aspect of using a quadratic penalty term is that the solution is more numer-
ically stable — this can be a problem in cases where there is limited training
data. We can determine A\ by using a validation set.

2.3 Higher Dimensional OQutputs

2.4 Classification

It is straightforward to generalise the above framework to cases where there
is more than one output variable — rather there is an output vector y:

yi(x) = wqub(X) (2.6)

The mathematics follows similarly to before, and this is left as an exercise
for the interested reader.

One way to adapt the LPM model to classification is to use p(c = 1]x) =
o(wip(x)). The logistic regression model simply used a special case in
which the vector ¢(x) = x. However, there is nothing to stop us using this
more general method. The nice thing is that the decision boundary is then
a non-linear function of x. Clearly, instead of using the euclidean square
distance as the error measure, we now use the log-likelihood, exactly as in
the chapter on logistic regression. Again, however, the training to find w
will not be so straightforward, since the obejective function is not quadratic.
However, the surface remains well behaved so that finding a solution is not
numerically difficult. We leave it as an exercise for the reader to work out
the details.

3 Radial Basis Functions

Setting «

A popular choice for the vector ¢(x) is the radial basis function :
i\2
$i(x) = ¢~ 7z (X710 (3.1)

where the vectors m?,i = 1,...,M define M centres in the input space.
The parameter « determines the width of each basis function. These basis
functions are bump shaped, with the position of the bump being given by
m and the width by a. An example is given in fig(4)(Left) in which several
RBFs are plotted. In regression, we can then use a linear combination of
these “bumps” to fit the data. For example consider fitting the data in
fig(4)(Right).

We use the validation data to set a. Throughout these experiments, I set
the regularisation parameter A = 0.0001. In principle one could use the
validation set to optimise over both o and A. In fig(5) we plot the validation
error as a function of a. Based on this graph, we can find the best value of
a; that which minimises the validation error. The predictions are also given

in fig(5).

4 The curse of Dimensionality

We saw that using radial basis functions we can get good predictions, pro-
vided that we choose appropriate basis functions (set the widths correctly).

0 0.2 0.4 0.6 0.8 1

Figure 4: Left: A set of radial basis functions, « = 5, with m =
—1,-0.8,—0.6,...,2. Right: Data to be fitted. The x are the training
points, and the + are the validation points.

7

6

validation error
©w & o

N

-

)

o

0.2 0.4 0.6 0.8 1 4
alpha 0 0.2 0.4 0.6 0.8 1

Figure 5: Left: The validation error as a function of the basis function width.
Right: The predictions. The solid line is the correct underlying function
sin(10x); the dashed line is the best predictor based on the validation set.
The dotted line is the worst predictor based on the validation set.

It seems intuitively clear that if the data has non-trivial behaviour over some
region in xz, then we need to cover the region of x space fairly densely with
“bump” type functions. In the above case, we used 16 basis functions for
this one dimensional space. In 2 dimensions, we can also use bump type
functions. However, we now need to cover a 2 dimensional space. If we wish
to cover it to the same discretisation level, we would need 162 = 256 basis
functions. In an n dimensional input space, we would need 16™ functions.
This is an extremely rapidly growing function of n so that in 10 dimensions,
we would need 16'° = 10'2 basis functions. This means we would have to
solve linear systems in 10'? variables! This cannot be easily done. This
explosion in the apparent number of basis functions required is the famous
“curse of dimensionality”.

A possible solution is to make the basis functions very broad to cover more
of the high dimensional space. However, this will mean a lack of flexibility of
the fitted function. Another approach is to place basis functions centred on
the training input points that we have, and add some more basis functions
randomly placed close to the training inputs. The rational behind this is
that when we come to do prediction, we will most likely see novel x that are
close to the training points — we do not need to make “accurate” predictions
over all the space.

A further approach is to make the positions of the basis functions adaptive,

5 Summary

allowing them to be moved around in the space to minimise the error. This
approach motivates the neural network models.

The criticism of the curse of dimensionality is, in my humble opinion, rather
weak, and good results are often obtained by using basis functions which
are dense around the training inputs.

e Linear Parameter models are regression models that are linear in the
parameters.

e They are very easy to train (no local minima).
e Criticised in high dimensional input spaces due to the curse of dimen-
sionality.

e Judicious placement of the basis functions on close to the training
inputs is a workaround for the curse of dimensionality. Otherwise we
need to optimise the placement of the basis functions — that is, use
neural networks.

e Easily adapted to classification (though the training is now more dif-
ficult and needs to be solved using optimisation).

