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Layered Neural Networks

e Error model
e Calculating the derivative: the chain rule

e Optimisation
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Error Function: Real Case

e Remember there is a correspondence between the error function and the
log likelihood up to an additive and multiplicative constant.

¢ In the real case the output neurons are usually linear.
e The neural network is a deterministic function.

e \We presume the output of of the neural network is subject to Gaussian
measurement error.

e Remember the Gaussian likelihood produces the sum squared error
function.
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Sum squared error function

o Remember
e y; is the desired output of unit j
o f; is the actual output of unit j

E=) (y;— f)

J
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Error Function: Binary Class Case

¢ In the binary class case the output neurons are usually sigmoid.
e The output is interpreted as the probability of class 1.

e Then the logistic likelihood produces the cross-entropy error.

E=— Z[y] log f; + (1— yj) log(1 — fj)]

J
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Error function: multinomial case

¢ In the multinomial case (many classes) there is an output neuron per class
and the output neurons are usually linear.

e The final class y is interpreted from the outputs f; using a softmax or logit

model. ()
_ oy exp(fe
PU=9= S ()

e Here the number of output neurons matches the number of classes.
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Multinomial error function

e The multinomial error function is therefore

—[log f,, — log Z exp(f;)]

e Again subscripts denote the neuron number.
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Form of error functions

e The error surface is continuous and differentiable.
e The error surface may have local minima (unlike logistic regression).
e The error surface is generally high dimensional.

e There are many symmetries to the error surface (for a start all the hidden
layer neurons are exchangeable).
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ErroEr function

Pt )| e

W,

e Ais alocal minimum
e B is the global minimum
e Cis nota minimum, grad(E) # 0
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Learning in a multi-layer network

e Presume a sum squared error function.

e Present an input pattern x and observe outputs y of the output nodes. Let
6 denote the vector of parameters of the network.

e y IS the desired output, f the actual output. Adjust weights to minimise
B= Y

where u labels the particular training item.

e Calculate & >0 £ and carry out minimisation.
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Reqularisation

e Remember regularisation is the approach used to incorporate a prior over
weights into the error function.

e This can help prevent overfitting.
e Standard regulariser is \0" 6.

e Add this on to the error function.
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The Full Error Function

e We write the MLP with one hidden layer as

f(x,0)=r <Z vig(W) x 4 b;) + b)

1=1

e The full error function in the regression case is
N

E(6) = Y (f(x",8) - y)> + A678

p=1
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Calculating Derivatives

e \We can calculate the derivatives...

N
=2 (e, 0) — ) 2000 o,

e But to do this we can to calculate af(ge 0).

e To do this we need to use the chain rule.
e The use of the chain rule in neural networks has become known as

backpropagation.
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Optimisation

e Gradient descent

e Line search

e Problems with gradient descent
e Second-order information

e Conjugate gradients

e Batch vs online

LfD 2004

13



Optimisation

e Use methods that “go downhill” on the error surface to find a local

minimum, e.g.
— gradient descent

— conjugate gradient
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Gradient Descent

e Remember the gradient descent (or ascent) procedure from the lecture on
logistic regression.

e Can do the same here.
0"’ =0 — anE(H)
e Forsmall n

E0"") ~ E(0) —n(VgE(0))’
e Locally, we are modelling the function as a plane.
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Gradient Descent Algorithm

— T T T
Set 0 = (Wl,W2,...,WK,bl,bQ,...,bK,’Ul,’UQ,..

Initialise 6

while FE(0) is still changing substantially
0=0-nVgE(0)

end while

return 6
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Choosing 7

e Too small

— too slow

e ToO big

— unstable — goes outside region where linear approximation is valid.
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n = 0.0952
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Summary

e Error functions for various standard problems.
e the full MLP error.
e Calculating the derivatives.

e Gradient ascent.
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