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Naive Bayes

• Typical example: ”Bayesian Spam Filter”.

• Naive means naive. Bayesian methods can be much more sophisticated.

• Basic assumption: conditional independence.

• Given the class (eg ”Spam”, ”Ham”), whether one data item (eg word)
appears is independent of whether another appears.

• Invariably wrong! But useful anyway.
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Why?

• Easy to program. Simple and transparent.

• Fast to train. Fast to use.

• Can deal with uncertainty.

• Probabilistic.
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Data types

• Naive Bayes assumption can use both continuous and discrete data.

• However generally understood in terms of discrete data.

• Binary and discrete very common. Do not use ”1 of M”!

• E.g. Bag of words assumption for text classification:

• Can even mix different types of data
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Bag of Words

• Each document is represented by a large vector.

• Each element of the vector represents the presence (1) or absence (0) of
a particular word in the document.

• Certain words are more common in one document than another.

• Can build another form of class conditional model using the conditional
probability of seeing each word, given the document class (e.g.
ham/spam).
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Conditional Independence

• P (X,Y ) = P (X)P (Y |X).

• P (X,Y |C) = P (X|C)P (Y |X, C). Think of C as a class label.

• The above is always true. However we can make an assumption

• P (Y |X,C) = P (Y |C).

• Knowing about the value of X makes no difference to the value Y takes so
long as we know the class C.

• We say that X and Y are conditionally independent given C.
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Example

• Probability of a person hitting Jim (J) and a person hitting Michael (M) is
most likely not independent.

• But they might be independent given that the person in question is (or is
not) a known member of the class of bullies (B).

• P (J,M) 6= P (J)P (M)

• P (J,M |B) = P (J |B)P (M |B).

• B explains all of the dependence between J and M.
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Generally

• x1, x2, . . . , xn are said to be conditionally independent given c iff

P (x|c) =
n∏

i=1

P (xi|c)

for x = (x1, x2, , . . . , xn).
• For example. We could have not just Jim and Michael, but Bob, Richard

and Tim too.

• P (J,M) 6= P (J)P (M)
• P (J,M |B) = P (J |B)P (M |B).
• B explains all of the dependence between J and M.
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Naive Bayes

• The equation on the previous slide is in fact the Naive Bayes Model.

P (x|c) =
n∏

i=1

P (xi|c)

for x = (x1, x2, , . . . , xn).
• The x is our attribute vector. And the c is our class label.

• We want to learn P (c) and P (xi|c) from the data.

• We then want to find the best choice of c corresponding to a new datum
(inference)

• The form of P (xi|c) is usually given. But we do need to learn the
parameter.
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Working Example

• See sheet section 3.

• Have a set of attributes.

• Inference first: Bayes rule.

• Learning the model P (E),P (S),P (x|S),P (x|E)
• Naive Bayes assumption.

• The form of P (xi|c) is usually given. But we do need to learn the
parameter.
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Problems with Naive Bayes

• 1 of M encoding

• Failed conditional independence assumptions

• Worst case: repeated attribute.

• Double counted, triple counted etc.

• Conditionally dependent attributes can have too much influence.
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Spam Example

• Bag of words.

• Probability of ham containing each word. Probability of spam containing
each word.

• Prior probability of ham/spam.

• New document. Check the presence/absence of each word.

• Calculate the spam probability given the vector of word occurrence.

• How best to fool Naive Bayes? Introduce lots of hammy words into
the document. Each hammy word is viewed independently and so they
repeatedly count towards the ham probability.
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Summary

• Conditional Independence

• Bag of Words

• Naive Bayes

• Learning Parameters

• Bayes Rule

• Working Examples
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