Learning from Data: Regression

Amos Storkey, School of Informatics University of Edinburgh

Semester 1, 2004

Classification or Regression?

- Classification: want to learn a discrete target variable.
- Regression: want to learn a continuous target variable.
- Linear regression, generalised linear models, and nonlinear regression.
- Most regression models can be turned into classification models using the logistic trick of logistic regression.

One Dimensional Data

Linear Regression

- Simple example: 1 dimensional linear regression.
- Suppose we have data of the form (x, y), and we believe the data should follow a straight line.
- However we also believe the target values y are subject to measurement error, which we will assume to be Gaussian.
- Often use the term error measure for the negative log likelihood.
- Hence training error, test error.
- Remember: Gaussian noise results in a quadratic negative log likelihood.

Example

- Believe the data should have a straight line fit: y = a + bx
- but that there is some measurement error for y: $y = a + bx + \eta$ where η is a Gaussian noise term.
- Training error is

$$-\sum_{\mu} \log P(\eta = (y^{\mu} - bx^{\mu} - a)) = A \sum_{\mu} (y^{\mu} - bx^{\mu} - a)^{2} + B.$$

for training data $\{(x^{\mu}, y^{\mu}); \mu = 1, ..., N\}$ of size N. A and B depend on the variance of the Gaussian, but do not actually matter in a minimisation problem: we get the same minimum whatever A and B are.

Generated Data

Multivariate Case

- Consider the case where we are interested in $y = f(\mathbf{x})$ for D dimensional \mathbf{x} : $y = a + \mathbf{b}^T \mathbf{x}$
- In fact if we set $\mathbf{w}=(a,\mathbf{b}^T)^T$ and introduce $\phi=(1,\mathbf{x}^T)^T$, then we can write

$$y = \mathbf{w}^T \boldsymbol{\phi}$$

for the new augmented variables.

The training error (up to an additive and multiplicative constant) is then

$$E(\mathbf{w}) = \sum_{\mu=1}^{N} (y^{\mu} - \mathbf{w}^{T} \boldsymbol{\phi}^{\mu})^{2}$$

where $\phi^{\mu} = (1, (\mathbf{x}^{\mu})^T)^T$.

Maximum Likelihood Solution

- Minimum training error equals maximum log-likelihood.
- Take derivatives of the training error:

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = 2 \sum_{\mu=1}^{N} \boldsymbol{\phi}^{\mu} (\mathbf{w}^{T} \boldsymbol{\phi}^{\mu} - y^{\mu})$$

- Write $\Phi = (\phi^1, \phi^2, \dots, \phi^N)$, and $\mathbf{y} = (y^1, y^2, \dots, y^N)^T$.
- Then

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = 2\mathbf{\Phi}(\mathbf{\Phi}^T \mathbf{w} - \mathbf{y})$$

Maximum Likelihood Solution

Setting the derivatives to zero to find the minimum gives

$$\mathbf{\Phi}\mathbf{\Phi}^T\mathbf{w} = \mathbf{\Phi}\mathbf{y}$$

• This means the maximum likelihood w is given by

$$\mathbf{w} = (\mathbf{\Phi}\mathbf{\Phi}^T)^{-1}\mathbf{\Phi}\mathbf{y}$$

The term $(\Phi \Phi^T)^{-1}\Phi$ is called the *pseudo-inverse*.

Generated Data

The red line is the maximum likelihood fit to the data.

Recap

- Error measure is the negative log likelihood
- Gaussian error term is the sum-squared error (up to a multiplicative and additive constant).
- Write down the regression error term.
- Build weight vector \mathbf{w} and data vector ϕ .
- Take derivatives and set to zero to obtain pseudo-inverse solution.

But...

- All this just used ϕ .
- We chose to put the x values in ϕ , but we could have put anything in there, including nonlinear transformations of the x values.
- In fact we can choose any useful form for ϕ so long as the final derivatives are linear in w. We can even change the size.
- We already have the maximum likelihood solution in the case of Gaussian noise: the pseudo-inverse solution.
- Models of this form are called generalized linear models or linear parameter models.

Example:polynomial fitting

- Model $y = w_1 + w_2 x + w_3 x^2 + w_4 x^3$.
- Set $\phi = (1, x, x^2, x^3)^T$ and $\mathbf{w} = (w_1, w_2, w_3, w_4)$.
- Can immediately write down the ML solution: $\mathbf{w} = (\mathbf{\Phi}\mathbf{\Phi}^T)^{-1}\mathbf{\Phi}\mathbf{y}$, where $\mathbf{\Phi}$ and \mathbf{y} are defined as before.

Higher dimensional outputs

- Suppose the target values are vectors y.
- Then we introduce different w_i for each y_i .
- Then we can do regression independently in each of those cases.

Radial Basis Models

- Set $\phi_i(\mathbf{x}) = \exp(-\frac{1}{2}(\mathbf{x} \mathbf{m}^i)^2/\alpha^2)$.
- Need to position these "basis functions" at some prior chosen centres \mathbf{m}^i and with a given width α . We will discuss how the centres and widths can also be considered as parameters in a future lecture.
- Finding the weights is the same as ever: the pseudo-inverse solution.

Dimensionality Issues

- How many radial basis bumps do we need?
- Suppose we only needed 3 for a 1D regression problem.
- The we would need 3^D for a D dimensional problem.
- This becomes large very fast: this is commonly called the curse of dimensionality.

Model comparison

- How do we compare different models?
- For example we could introduce 1,2, ... 4000 radial basis functions.
- The more parameters the model has, the better it will do.
- Models with huge numbers of parameters could fit the training data perfectly.
- Is this a problem?

Summary

- Lots of different models are linear in the parameters
- For regression models the maximum likelihood solution is analytically calculable.
- The optimum value is given by the pseudo-inverse solution.
- Overfitting.