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The Gaussian distribution in one dimension is defined as

p(x) =
1√

2πσ2
e−

1
2σ2 (x−µ)2

and satisfies
∫∞
−∞ p(x)dx = 1.

1. Show that
∫∞
−∞ xp(x)dx = µ.

2. Show that
∫∞
−∞(x− µ)2p(x)dx = σ2.

3. Consider data xi, i = 1, . . . , P . Show that the Maximum Likelihood
estimator of µ is µ̂ = 1

P

∑P
i=1 xi and that the ML estimate of σ2 is σ̂2 =

1
P

∑P
i=1(x

i − µ)2

4. A training set consists of one dimensional examples from two classes. The
training examples from class 1 are {0.5, 0.1, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.35, 0.25}
and from class 2 are {0.9, 0.8, 0.75, 1.0}. Fit a (one dimensional) Gaussian us-
ing Maximum Likelihood to each of these two classes. Also estimate the class
probabilities p1 and p2 using Maximum Likelihood. What is the probability
that the test point x = 0.6 belongs to class 1?

5. Given the distributions p(x|class1) = N(µ1, σ
2
1) and p(x|class2) = N(µ2, σ

2
2),

with corresponding prior occurrence of classes p1 and p2 (p1 + p2 = 1), cal-
culate the decision boundary explicitly as a function of µ1, µ2, σ

2
1, σ

2
2, p1, p2.

How many solutions are there to the decision boundary, and are they all
reasonable?
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