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1. A Naive Bayes Classifier for binary attributes xi ∈ {0, 1} is parameterised by θ1
i = p(xi =

1|class = 1), θ0
i = p(xi = 1|class = 0), and p1 = p(class = 1) and p0 = p(class = 0). Show

that the decision boundary to classify a datapoint x can be written as wT x + b > 0, and state
explicitly w and b as a function of θ1, θ0, p1, p0.

2. Given a dataset {(xµ, cµ), µ = 1, . . . , P}, where cµ ∈ {0, 1}, logistic regression uses the model
p(c = 1|x) = σ(wT x+ b). Assuming that the data is drawn independently and identically, show
that the derivative of the log likelihood L of the data is

∇wL =
P∑

µ=1

(
cµ − σ

(
wT xµ + b

))
xµ

3. Consider a dataset {(xµ, cµ), µ = 1, . . . , P}, where cµ ∈ {0, 1}, and x is a N dimensional
vector.

• Show that if the training data is linearly separable with the hyperplane wT x+ b, the data
is also separable with the hyperplane w̃T x+ b̃, where w̃ = λw, b̃ = λb for any scalar λ > 0.

• What consequence does the above result have for maximum likelihood training of linearly
separable data?

4. Consider a dataset {(xµ, cµ), µ = 1, . . . , P}, where cµ ∈ {0, 1}, and x is a P dimensional
vector. (Hence we have P datapoints in a P dimensional space). If we are to find a hyperplane
(parameterised by (w, b)) that linearly separates this data we need, for each datapoint xµ,

wT xµ + b = εµ

where εµ > 0 for cµ = 1 and εµ < 0 for cµ = 0.

• Show that, provided that the data {xµ, µ = 1, . . . , P} are linearly independent, a solution
(w, b) always exists for any chosen values εµ.

• Discuss what bearing this has on the fact that the 600 handwritten digit training points
are linearly separable in a 784 dimensional space.

• (Difficult) Comment on the relation between maximum likelihood training and the algo-
rithm suggested above.
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