
LFD 2005 Tutorial Solutions - Week 4

October 16, 2006

1 Change of variables of Guassian Distribution
By plugging in the change y = (x − µ)/σ we get a function of the form of a
zero mean, unit variance Gaussian. However the constant factor is not correct.
That is because we are making a change of variables in a distribution - and a
distribution must integrate to one. In changing variables, you are changing the
associated lengths/hypervolumes in the space and so you need to adjust for the
changes. For example a uniform distribution between 0 and 1 becomes a uniform
distribution between 0 and 10 using y = 10x. But each region (x, x+ δx) is also
ten times as long, and so we need to reduce the height by a factor of 10 to keep
the area the same.

Doing this for our Gaussian distribution, we find we need to multiply all the
values by σ giving us the required distribution.

Generally: ∫

S

f(x) dx =
∫

S

f(y)
∣∣∣∣
∂x
∂y

∣∣∣∣ dy (1)

where we have used the shorthand
(

∂x
∂y

)

ij

=
∂xi

∂yj
(2)

and |.| denotes the determinant (det() in matlab). The quantity
∣∣∣∣
∂x
∂y

∣∣∣∣ (3)

is called the Jacobian, and basically gives the ratio of hypervolumes in the first
coordinate system to hypervolumes in the other.

Using this, for probability density P (y) we have P (y) = P (x)|∂x/∂y|.
For a one dimensional problem the Jacobian reduces to the absolute value

of a derivative.
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2 ML Gaussian Parameter Estimation
Likelihood of the data, x, being generated from a Gaussian N(x; u, σ2), is

L(x|µ, σ2) =
P∏

i=1

1
(2πσ2)

1
2
e−

1
2σ2 (xi−µ)2

=
1

(2π2)
P
2

e−
1

2σ2
PP

i=1(xi−µ)2

LL(x|µ, σ2) = −P

2
ln(2πσ2)− 1

2σ2

P∑

i=1

(xi − µ)2

Find the estimator for σ2 which maximizes the log likelihood by differenti-
ating and equating to zero

∂LL

∂σ̂2
= − P

2σ̂2
− 1

2(σ̂2)2

P∑

i=1

(xi − µ̂)

σ̂2 =
1
P

P∑

i=1

(xi − µ̂)

3 Class Conditional Classification
Classification probability is given by Bayes theorem;

p(cj |x) =
p(x|cj)p(cj)

p(x)

=
p(x|cj)p(cj)∑N

k=1 p(x|ck)p(ck)

In this case, using the using the Gaussian likelihood p(x|cj) = 1√
2πσ2

j

e
− 1

2 (
x−µj

σj
)2

and ML parameter estimators µ̂j = 1
Nj

∑Nj

i=1 xi, σ̂2
j = 1

Nj

∑Nj

i=1(xi−µ̂j), p̂(cj) =
NjPN

k=1 Nk
, we have; µ̂1 = 0.26, µ̂2 = 0.8625, σ̂2

1 = 0.0149, σ̂2
2 = 0.0092, p̂(c1) =

0.714, p̂(c2) = 0.2857 and p(c1|0.6) = 0.6305.
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4 Matlab Exercise
See attached w4.m

5 Decision Boundary
Decision boundary is given by the value(s) of x where the posterior probability
of each class is equal

1√
2πσ2

1

e−
1
2 (

x−µ1
σ1

)2p1 =
1√
2πσ2

2

e−
1
2 (

x−µ2
σ2

)2p2

Taking logs and rearranging

−1
2
(
x− µ1

σ1
)2 −−1

2
(
x− µ2

σ2
)2 + ln(

p2σ1

p1σ2
) = 0

When expanded gives a quadratic in x where

ax2 + bx + c = 0
a = σ2

1 − σ2
2

b = 2(σ2
2µ1 − σ2

1µ2)

c = σ2
2µ2

1 + σ2
1µ2

2 − 2σ2
1σ2

2ln(
p2σ1

p1σ2
)

Solutions are given by the quadratic formula

x =
−b±√b2 − 4ac

2a

Hence there can be one, two or zero decision boundaries, (consider the cases
where µ1and µ2 are are far, where µ1 = µ2 = 0 and σ2

1 > σ2
2 , and the latter

but where in addition, p2/p1 < σ2
2/σ2

1).
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