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October 16, 2006

1 Change of variables of Guassian Distribution

By plugging in the change y = (z — pu)/o we get a function of the form of a
zero mean, unit variance Gaussian. However the constant factor is not correct.
That is because we are making a change of variables in a distribution - and a
distribution must integrate to one. In changing variables, you are changing the
associated lengths/hypervolumes in the space and so you need to adjust for the
changes. For example a uniform distribution between 0 and 1 becomes a uniform
distribution between 0 and 10 using y = 10z. But each region (x, z + dx) is also
ten times as long, and so we need to reduce the height by a factor of 10 to keep
the area the same.

Doing this for our Gaussian distribution, we find we need to multiply all the
values by o giving us the required distribution.

Generally:
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and |.| denotes the determinant (det() in matlab). The quantity
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is called the Jacobian, and basically gives the ratio of hypervolumes in the first
coordinate system to hypervolumes in the other.

Using this, for probability density P(y) we have P(y) = P(x)|0x/Jy]|.

For a one dimensional problem the Jacobian reduces to the absolute value
of a derivative.




2 ML Gaussian Parameter Estimation

Likelihood of the data, x, being generated from a Gaussian N(x;u,c?), is
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Find the estimator for ¢2 which maximizes the log likelihood by differenti-
ating and equating to zero
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3 Class Conditional Classification

Classification probability is given by Bayes theorem;
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In this case, using the using the Gaussian likelihood p(z|c;) = —Z=e 2 ( )

and ML parameter estimators /i; = N% 25\21 Zi, OfJQ = N% va (@i—p;), plej) =
JNLN, we have; 1i; = 0.26, jio = 0.8625, Of% = 0.0149, 02 = 0.0092, p(c1) =
0.714, p(cs) = 0.2857 and p(c1]0.6) = 0.6305.



4 Matlab Exercise

See attached w4.m

5 Decision Boundary

Decision boundary is given by the value(s) of 2 where the posterior probability
of each class is equal
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Taking logs and rearranging
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When expanded gives a quadratic in x where
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Solutions are given by the quadratic formula
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Hence there can be one, two or zero decision boundaries, (consider the cases
where piand s are are far, where p; = ps = 0 and 0? > o3 , and the latter
but where in addition, ps/p1 < 03/0%).



